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Abstract

In this paper we introduce Ramsey numbers and present some re-
lated results. In particular we compute the values for some easy cases
and examine upper and lower bounds for the rest of the numbers. Us-
ing the bounds derived, we computed the values for some other, not
so easy, numbers.

1 Introduction
Frank Ramsey introduced the theory that bears his name in 1930. The main
subject of the theory are complete graphs whose subgraphs can have some
regular properties. Most commonly, we look for monochromatic complete
subgraphs, that is, subgraphs in which all of the edges have the same color
[Ram30]. In this paper we only examine graphs in which two colors are used:
red and blue. There are similar (but less tight) results about graphs with
more than two colors.

Some of the result shown in this paper are trivial, while others are harder
to come up. For sections 2 and 3 I found the work in [Gou10] useful, while
for section 4 I mostly used the work in [GG55].

For the rest of the paper we use the notation Kn for a complete graph
with n vertices. We denote by R(s, t) the least number of vertices that a
graph must have so that in any red-blue coloring, there exists either a red
Ks or a blue Kt. These numbers are called Ramsey numbers.
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2 Preliminary results
Computing exact values for Ramsey numbers is a rather hard task. A huge
amount of computational power is needed to generate all colorings of graphs
and check the conditions that should be satisfied by the subgraphs. In this
section we present a limited amount of Ramsey numbers whose exact value
is known and easy to calculate.

2.1 Trivial values

Trivial are called the Ramsey numbers for which either s = 2 or t = 2, that
is, there exists either a complete graph of friends or a pair of people that do
not know each other.

Theorem 1. R(n,2) = n.

Proof. First, we consider a complete (n−1)-gon in which every edge is colored
blue. In this case, there is neither a red edge, nor a complete blue n-gon, so
R(n, 2) > n− 1.

Next, we consider any graph with n vertices. If any edge is colored red,
then we have found the red pair of vertices. Otherwise, all edges are blue, so
we have found the blue n-gon. This means that in any graph of n vertices
there is either a blue Kn or a red K2, so R(n, 2) ≤ n.

Combining the above two results we get that R(n, 2) = n.

By symmetry of R(s, t) and R(t, s), we also get that R(2, n) = n.

2.2 A classic result

The easiest non-trivial case is the number R(3, 3). It states that in a party
of that many people, there are either 3 that know each other, or 3 that do
not know each other. The problem of determining this value has appeared
in the early days of mathematical competitions like Putnam.

Theorem 2. R(3,3)=6.

Proof. First, we claim that R(3, 3) > 5. To show that this is true, we consider
the pentagon shown in Figure 1. There is no monochromatic triangle, hence
our claim is true.
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Figure 1: Pentagon without a red or blue triangle

Next, we claim that R(3, 3) ≤ 6. Consider an arbritrary coloring of the
edges of a complete graph with 6 vertices. Take one of the vertices and call
it X. There are 5 edges adjacent to X. Since there exist just two colors, at
least 3 of those edges will be colored by the same color (say blue)

3 Asymptotics
Even though it is tough to compute the exact values due to computational
restrictions, there are many bounds that were proven mathematically. We
present some of them in this section.

3.1 A naive upper bound

The following theorem is easy to prove:

Theorem 3. If s > 2 and t > 2, then R(s, t) ≤ R(s− 1, t) + R(s, t− 1).

Proof. Assume on the contrary that R(s, t) > R(s−1, t)+R(s, t−1) for some
values of s,t. Let n = R(s− 1, t) +R(s, t− 1) and consider a complete graph
of n vertices and a reb-blue coloring such that there is no red Ks or blue Kt.
Pick a random vertex v. Let NR be the set of vertices which are connected
to v with a red edge and NB be the set of vertices which are connected to v
with a blue edge. It holds that |NR|+ |NB| = n− 1.

By assumptions for the graph, there should be no blue Kt in NR. Also,
if there exists a red Ks−1 in NR, then the set NR ∪ {v} has a red Ks, con-
tradiction. Thus |NR| ≤ R(s − 1, t) − 1. Using the same argument, we get
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|NB| ≤ R(s, t− 1)− 1, so

n− 1 = |NR|+ |NB| ≤ R(s− 1, t) + R(s, t− 1)− 2 = n− 2,

contradiction, and we showed that R(s, t) ≤ R(s− 1, t) + R(s, t− 1).

Since R(n, 2) = R(2, n) =
(
n
1

)
, we get the following result using induction:

Corollary 1. R(s, t) ≤
(
s+t−2
s−1

)
.

A particularly interesting case is the diagonal Ramsey numbers, that is,
those of the form R(k, k). Using corollary 1 we get that R(k, k) ≤

(
2k−2
k−1

)
.

This bound has complexity O( 4k−1
√
k−1), so it grows exponentially fast. However,

even for small k’s this bound is not very tight.
If R(s − 1, t) and R(s, t − 1) are both even, then we have the following

theorem:

Theorem 4. R(s, t) ≤ R(s− 1, t) + R(s, t− 1)− 1

Proof. Suppose R(s − 1, t) = 2p and R(s, t − 1) = 2q. Take a graph of
2p + 2q − 1 vertices and a vertex A. There are 2p + 2q − 2 edges ending at
A. Then, consider the following cases:

1. 2p or more edges end at A

2. 2q or more edges end at A

3. 2p− 1 red edges end at A and 2q − 1 blue edges end at A

For first case, consider the set T1 of the vertices at the farther ends of the
2p or more segments. Since the numbers of vertices in T1 is greater than or
equal to R(s−1, t), there is either a red Ks−1 or a blue Kt. However, if there
is a red Ks−1, then the set T1 ∪ {A} is a red Ks. Thus, the theorem holds in
this case.

The same argument shows that the theorem holds for second case as well.
The third case cannot hold for every vertex A of the graph. Indeed, if

it did, there would be (2p + 2q − 1)(2p − 1) red endpoints, which is an odd
number. However, every edge has two endpoints, so this number should be
even. This means that there exists at least one vertex for which either case
1 or case 2 holds. Since theorem was shown for these two cases, it holds for
the third case, too.

In section 3.2 we present a lower bound for diagonal Ramsey numbers.
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3.2 A lower bound using probabilistic method

The following theorem is due to Erdos [Erd47].

Theorem 5. Let k, n ∈ N be such that
(
n
k

)
21−(k

2) < 1. Then R(k, k) > n.

Proof. In order to show that R(k, k) > n, it is sufficient to show that there
exists a colouring of the edges of Kn that contains no monochromatic Kk.
Consider an edge colouring of Kn in which colours are assigned rabdomly.
Let each edge be coloured independently, and such that for all edges e it is

P(edge e is red) = P(edge e is blue) =
1

2
.

There are
(
n
k

)
copies of Kk in Kn. Let Ai be the event that the ith Kk is

monochromatic. Then:

P(Ai) = 2 ·
(

1

2

)(k
2)

= 21−(k
2),

where the leading 2 is because there are two colours from which to choose.
Then:

P(∃ a monochromatic Kk) = P(∪iAi) =

(
n

k

)
21−(k

2).

However,
(
n
k

)
21−(k

2) < 1 by the assumption of the theorm, so

P(∃ a colouring with no monochromatic Kk) > 0.

Hence, there exists a colouring with no monochromatic Kk.

We can use the result proved above to show another useful bound:

Corollary 2. For k ≥ 3, R(k, k) > 2
k
2 .

Proof. Given k ≥ 3, define n := b2 k
2 c. Then(

n

k

)
21−(k

2) ≤ nk

k!
21− k(k−1)

2 ≤

(
2

k
2

)k

k!
· 21− k2

2
+ k

2 =
21+ k

2

k!
.

However, 21+
k
2

k!
< 1 if k ≥ 3, so Theorem 5 applies.

Corollary 2 is particularly interesting because it provides an insight into
how diagonal Ramsey numbers grow. Specifically, it shows that they grow
exponentially in k.
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3.3 A special case: no red triangles

When we deal with the case of R(3, t), one would expect that computations
would be easier, since we can have a fairly limited number of red edges. As
it turns out, we still don’t know the exact numbers for most values of t (we
only know for t ≤ 9). However, this cases allows for stricter bounds.

It was shown very early [GY68] that the upper bound ofR(3, t) isO(t2 log log t/ log t).
Erdos had also shown the lower bound R(3, t) = Ω(t2/(log t)2) [Erd61].
Later, both of these bounds were improved. Ajtai, Komlós and Szemerédi
[AKS80] showed that R(3, t) = O(t2/ log t), while Kim [Kim95] showed that
R(3, t) = Ω(t2/ log t).

The above results show that R(3, t) = Θ(t2/ log t), which is much better
than the exponential bounds found in previous subsections.

4 Obtaining other Ramsey numbers
In this section we compute the values R(3, 4), R(3, 5) and R(4, 4). The
theorems and proofs that follow were first shown in [GG55].

Theorem 6. R(3, 4) = 9 and R(3, 5) = 14.

Proof. From Theorem 4 it follows that

R(3, 4) ≤ R(2, 4) + R(3, 3)− 1 = 4 + 6− 1 = 9.

Then, we claim that R(3, 5) > 13. Indeed, we consider a K13 in which we
number vertices with numbers 0-12 and color the edges such that an edge is
red if and only if the difference of the numbers of the two adjacent vertices
is 1, 5, 8 or 12 (assume all operations happen modulo 13). The red edges as
shown in Figure 2. Then, the graph contains no red triangle and no blue K5.
It is easy to see that there is no red triangle.

We can also show that there is no blue K5. Assume on the contary that
a blue K5 exists. By symmetry, assume that a vertex of the k5 is the 0.
Then, the other vertices must be in the "clusters" 2, 3, 4, or 6, 7, or 9, 10, 11.
By pidgeon hall principle, at least two are in the same cluster. Since the
edge between them is not blue, they are in a cluster of three total numbers.
Without loss of generality assume they are 2 and 4. Then the others can
only be 6 and 11. But these two differ by 5, contadiction.
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Figure 2: The red edges of the tridecagon. No red triangle exists
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Thus R(3, 5) > 13⇒ R(3, 5) ≥ 14. However,

R(3, 5) ≤ R(2, 5) + R(3, 4) ≤ 5 + 9 = 14.

This means that we must have R(3, 4) = 9 and R(3, 5) = 14.

Theorem 7. R(4, 4) = 18.

Proof. First, using Theorem 3 we get that

R(4, 4) ≤ 2R(3, 4) = 18.

It is enough to show that R(4, 4) > 17. We consider a K17 in which we
number vertices with numbers 0-16 and color the edges such that an edge is
if and only if the difference of the numbers of the two adjacent vertices is
1, 2, 4, 8, 9, 13, 15, 16 (all operations are modulo 17). By symmetry, it is
enough to show that vertex 0 cannot be in a red K4 or a blue K4.

Vertex 0 is connected by red edges with the vertices 1, 2, 4, 8, 9, 13, 15
and 16. Assume there is a red K4. If 1 is in that, the remaining vertices
must be in the set {2, 9, 16}, but no two of them are connected with red
vertices. Similarly, for 2, the set of remaining vertices should be in {1, 4, 15},
for 4, the set of remaining vertices should be in {2, 8, 13}, and for 8, the
set of remaining vertices should be in {4, 9, 16}. No red edges are contained
in these sets. The rest are symmetric. Thus there can be no red K4 that
contains 0.

What about a blue K4? Vertex 0 is connected by red edges with the
vertices 3, 5, 6, 7, 10, 11, 12 and 14. Assume there is a blue K4. If 3 is
in that, the remaining vertices must be in the set {6, 10, 14}, but no two of
them are connected with blue vertices. Similarly, for 5, the set of remaining
vertices should be in {10, 11, 12}, for 6, the set of remaining vertices should be
in {3, 11, 12}, and for 7, the set of remaining values should be in {10, 12, 14}.
No blue edges are contained in these sets. The rest are symmetric. Thus
there can be no blue K4 that contains 0.

Hence R(4, 4) > 17⇒ R(4, 4) = 18

4.1 Computation based research and future work

There are five more numbers which are known: R(3, 6) = 18, R(3, 7) = 23,
R(3, 8) = 28, R(3, 9) = 36 and R(4, 5) = 25. They were discovered in [GY68],
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[GR82] and [MR95]. For all of those numbers the researchers need not only a
great amount of ingenuity, but also a great amount of computational power.
The methods and bounds presented before are no longer very useful, as one
needs to check a large number of cases and graphs.

After investigating the basic theory behind Ramsey Theory, it becomes
obvious that it is a field that currently goes beyond the theoretical graph
theory techniques. As numbers grow on an exponential scale, so does the
number of cases to be checked or enumerated, and researchers should either
increase their computational powers, or search for answers on techniques from
different fields.
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