Introduction to the general case of the 100
Prisoners Problem

Timothee Schoen

May 17th 2018

Abstract

The 100 prisoners problem is a pretty famous problem in probability
theory and combinatorics. It has grown in popularity since 2003, because
of its elegant and surprisingly efficient solution to a seemingly impossible
riddle. In this paper, we present an introduction to the general case
of the 100 prisoners problem. We first introduce for the classic riddle,
then we then present a strategy for the general case of the problem and
demonstrate the best lower bounds associated with that strategy
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1 The Original Riddle

This problem was first thought of in 2003 by Danish computer scientist Peter
Bro Miltersen who published it.

The 100 prisoners problem has different renditions in mathematical literature,
but the principle is always the same. Here is the version from Analytic Combi-
natorics (1) :

The director of a prison offers 100 death row prisoners, who are num-
bered from 1 to 100, a last chance. A room contains a cupboard with
100 drawers. The director randomly puts one prisoner’s number in
each closed drawer. The prisoners enter the room, one after another.
Each prisoner may open and look into 50 drawers in any order. The
drawers are closed again afterwards. If, during this search, every
prisoner finds his number in one of the drawers, all prisoners are
pardoned. If just one prisoner does not find his number, all prison-
ers die. Before the first prisoner enters the room, the prisoners may
discuss strategy—but may not communicate once the first prisoner
enters to look in the drawers. What is the prisoners’ best strategy?

2 Solution to the Original Problem

If every prisoners were to choose 50 drawers randomly, then each prisoners would
have a probability 0.5 to find their own number and all the prisoners would have
a combined probability (1/2)'°° to be pardoned.

However, there exists a strategy that offers the prisoners a probability of success
of more than 30%. The key to that strategy is that each prisoners can use the
information from the previous drawers to choose which next drawer to open.
The key to this strategy is the probability of success of each prisoner is not
independent anymore from the probability of success of the other prisoners.

2.1 Algorithm

The strategy goes as follow:

1. Each prisoner opens the drawer with with its own number.
2. If the prisoner finds its own number in the drawer, he is done.

3. Otherwise, he find an other number in the drawer and he opens the drawer
with that number

4. He repeats step 2 and 3 until he is done.



2.2 Analysis of the algorithm

The important part of this special case is that, since every box contains a slip
of paper, then each box is going to point to point to exactly one box. By
consequence, the boxes can be thought as vertices in a oriented graph, where an
edge exists between vertex i and j if only and if the slip of paper in box i points
to box j. The distribution of the tickets to the boxes correspond to a random
permutation of the numbers from 1 to 100.

Then, we know that the graph will be constituted of only cycles, since every box
point to exactly one other box and 2 boxes can not point to the same box. Since
the prisoner starts on the box of with his own number, he will be by definition
on the cycle that contains his slip of paper. By consequence, he is guaranteed to
find his paper after a sufficient number of steps, but he will have to go through
the whole cycle before finding his number. By consequence, if the length of the
cycle is longer than 50, then the prisoner will fail to find his slip of papers in 50
steps or less.

We now know that the strategy only fails if there is a cycle of length of bigger
than 50, because all the prisoners in this cycle will not find their slips of paper
in 50 steps or less. Hopefully, since the warden distributed the slip of papers
uniformly at random between the boxes (random permutation), then calculating
the probability of success is not too hard.

A permutation of the numbers of the numbers from 1 to 100 can only contain
at most one cycle of length [ > 50, where [ is the length of the longest cycle.
We want to calculate how many different permutations would have a cycle of
length [, in order to calculate the probability of having a cycle of that length.

There are (1?0) ways to select which numbers are in the cycle. Within the
cycle, there are (I — 1)! ways of organizing the numbers because of the cyclic
symmetry. Lastly, the remaining numbers can be arranged in (100 — [)! ways.
By consequence, the numbers of permutations of the numbers from 1 to 100
with a cycle of length [ > 50 is

(1(;0) (I —1)!(100 = )! = %O'

Since there are a total of 100! possible permutations, then the probability of
success of this strategy is

1 /100! 100! 1 1
1-—(— 4. 4=—)=1-(=+..4+ — | ~0311
100!(51 * +1oo> (51+ +100> 03

Even if we increase the number of prisoners to 2n and each prisoners can open



n boxes each, the probability of success will still always be lower bounded by
1 —In2 =~ 0.306.

2.3 Optimality of the cycle-following strategy

In 2006, Curtin and Warshauer (2) proved the optimiality of the strategy in 2.1
and that the bound in 4.6 could not be improved. Their proof is based on similar
game in which the first prisoner opens boxes until he find his slip of paper, then
the next prisoner whose slip of paper has not be uncovered open the next boxes
and so on. The authors prove that the probability of success in this game is
independent of the chosen strategy and is equal to the survival probability in
the original problem with the cycle-following strategy. Then, they relate this
game to the original riddle through Foata’s transition lemma (3) and prove that
the cycle-following strategy has to be optimal.

3 The problem of the General Case

This problem was first introduced by Gal and Miltersen (4):

We have b boxes, labeled 0,1,..., b-1 and a (with a < b) slips of
paper labeled 0,1,..., a-1.The game is played between Player 1 and
a team consisting of players Py, Py, ..., P,_1. Player 1 secretly puts
each slip of paper in a different box uniformly at random. Player P;
has to find the slip labeled by at most checking b/k boxes, without
communication with any other players (they can still decide on a
strategy beforehand, but they can’t communicate once they start
checking the boxes). The team wins if every player P; in the team
finds the slip labeled with its number.

The 100 prisoners problem is just a specific case of this problem where a = b
and k = 2. Clearly, we cannot use the same strategy as in part 2.1 if a # b,
because there will be boxes without slips of paper inside.

4 Solution to the General Case

This solution to this general case is inspired by the work of Goyal and Saks (5).
The theme of this strategy is to group together boxes in a different bins, then
associate each of the a bins to a different slip of paper and finally use a modified
version of the algorithm in part 2.1 so that the players can find the slip of paper
with their numbers on it.



4.1 Definitions

Definition 4.1. We are going to imagine that the bozes are organized in a
cycle, by consequence, in the rest of this paper, we are going to use the + and
— signs as an arithmetic equivalent to + and — mod b.

Definition 4.2. Fors,t € 0,...,b — 1, we define [s,t] to be the set {s,s+1,...,t}
if s <t and[s,b—1]U][0,t] if s > t, as if the boxes were again organized in a
cycle.

Definition 4.3. We are going to assume that b/a for simplicity purposes and
let d =b/a. d is the ratio of the number of occupied boxes to the total number
of boxes.

Definition 4.4. We define surplus[s,t] to be the number of slips in the boxes
[s,t] minus |[s,t]|/d. It is the difference between the number of occupied bozes
in [s,t] and the expected number of expected boxes [s,t].

Properties:

1. For s € [0,b—1],
surplus[s,s —1] =0

Proof. If we start at box s and go around the full cycle back to s-1, then
the surplus will be 0 since the total number of slips is equal to the expected
total number of slips.

2. For s,t,u € [0,b— 1],

surplus(s,u] = surplus[s,t] + surplus[t + 1, u]

Proof. Tt is true because of the additive properties of surplus

3. Fori,j € [0,a — 1],
surplus|di,dj — 1] is an integer

Proof. Since |[di,dj — 1]| is a number divisible by d, then |[di,dj — 1]|/d
and surplus|di,dj — 1] will be integers.



4.2 General Strategy

First we partition the set of boxes into a sets called bins: By, ..., B,_1 of size d
where each bin B; contains boxes [di, (d+ 1)i — 1]. The goal will be to associate
each one of these bins to a slip of paper.

For i € [0,a — 1], let m(i) be the first integer, such that surplus[di, m(i)] is non
negative. The integer m(i) exists as a consequence of Property 1 of surplus.

Since m(4) is the first box where surplus|[di, m(i)] is non negative, then we know
that the box m(i) has a slip of paper inside, because the surplus changed sign.
We define 7 (i) to be the number on the slip of paper found in box m(i).

Lemma 4.5. 7 is a permutation of {0,...,a — 1}
Proof. By contradiction, let’s suppose that there are distinct 4,j € [0,a — 1]

such that (i) = 7(j) and by consequencem(i) = m(j) = m. We can assume
without loss of generality that di precedes dj.

From Proprety 2 of surplus, we have that:
surplus|di, m] = surplus|di,dj — 1] + surplus|dj, m|

surplus[di, dj — 1] < —1, because surplus|di,dj — 1] is negative by the definition
of m(i) and is an integer by Property 3 of surplus.

Furthermore, surplus|dj, m] < 1, because surplus|dj, m| = surplus[dj, m — 1] +
surplusim, m] < surplus[m,m] < 1.

Then, surplus|di,dj — 1] + surplus|dj, m] < 0 but surplus|di, m] has to be non
negative by the definition of m, by consequence there is a contradiction and m
is a permutation of {0, ...,a — 1}. This means that every bin is associated to a
different slip of paper, we can then use a modified version of the algorithm for
the original problem, because we can now find cycles among the bins.

4.3 Algorithm

The algorithm goes as follow:

1. Player P; starts at the beginning of the bin B; at box di.

2. P; sequentially checks the next boxes, keeping tack of the surplus since di
until the surplus becomes non negative (at box m(7)).

3. P; opens box m(i), if w(i) = 4, then the player is done.



4. Otherwise, P; starts again at the beginning of the bin By ;) at box d(m)i),
resets the surplus and does step 2 and 3 until he finds his number or has
opened b/k boxes.

The general idea behind that strategy is close to the special case in part 2.1,
where we use the cycles between the slips of papers to get a better solution. This
algorithm works, because we use the same principle as in 2.1, where we increase
our total probability of success by creating a dependence between the probability
of success of each prisoner. However, instead of finding cycles between the boxes
like in 2.1, we have to find cycles between bins by sequentially looking for the
slip of paper associated with each bin.

4.4 Analysis of the algorithm

Let positive integers a,b,k be the parameters of the game from part 3 such that
b = da and a = 2kn? for some positive integers d and n. Those requirements
are not important for the actual analysis, but they help making the proof much
cleaner.

Theorem 4.6. If player 1 randomly assigns the slips of papers to the bozes,
then the team of players Py, ..., P,_1 have a probability of winning of at least

2-9Vkalog(a—k) if they follow the strategy from 4.3.

Proof. To find each of the (i), |[di, m(%)]| boxes need to be opened. Let M be
the maximum of |[di, m(4)]| for each i € [0,a — 1]. The number of boxes opened
for any player is upper bounded by M times the length of the longest cycle,
because the players are using the cycles in 7 to find their own slip of paper, like
they did in the original riddle.

Since M only depends on the set of occupied boxes (not the actual slips of
paper) and the longest cycle in 7 only depends on the distribution of the slips
of paper among the occupied box, then if Player 1 distributed the slip of papers
uniformly at random, then M) 7 are independent. By consequence, we will
evaluate independently the probabilities that M and the longest cycle in 7 are
relatively small and multiply those probabilities together to get the lower bound
in theorem 4.6.

4.4.1 Bounding the length of the longest cycle

Let p1(a) be the probability that all cycles in 7 have length < a.. p1(a) is triv-
ially at least the probability that all cycles in 7 have length exactly « (assuming
for simplicity that « divides a). Clearly, this new bound is much lower than
p1(a), but it seems difficult to improve it without to many complications.



Lemma 4.7. The number of random permutation with a/a cycles of length

eractly « is:
al

(B ol

Proof. We choose « elements of the set without ordering a/a times (hence the
al), but then since we are working with cycles, we need to divide by « for every
subset. Finally we also divide by (&)! because we do not care about the order
of the cycles.

By consequence,

1 ea/a

>
(%)' a®/® T o\ /21 qale aa

p1(a) >

The second part of the equation is obtained by using Stirling’s approximation
of the factorials (6).

4.4.2 Bounding the number of boxes needed to find 7 (i)

Let p2(8) be the probability that M < 2dg3, with 8 an integer and 8 < a. M
does not depend on 7 but only depends on the distribution of the a slips in the
b boxes. We now are going to partition the of boxes into a//5 sets (we again for
simplicity that 8 divides a) of size d8 which we are calling groups. We are going
to restrict the placement of slips in the boxes such that each group get exactly
B slips of paper. This restriction will create a lower bound on ps () that could
be improved, but it also appears to be difficult to find a better bound.

There are (dﬁﬁ) possible ways to place 8 unlabeled slips in the dfS boxes of a
specific group, that we are going to call G for simplicity. We are going to group
the different ways to place the slips in G by the maximum of the surplus[dfi, dj—
1], where j € [8i, 8(i+1)]. In words, it means that we want to find the maximum
surplus from the first box in the first bin in the group G, to the last box of a
bin in the same group G (we maximize the surplus by choosing which bin) and
then group those assignments of slips by the maximum surplus that we found.

Since there are § slips, then the maximum of the surplus of those sets will be
at most 8 — 1 and at least 0. By consequence, by the the pigeonhole principle,
there will be at least % (dg ) different ways of organizing the slips in G that will
be associated to the same maximum surplus. We are going to call this set of
the different ways of organizing the slips S, and the maximum surplus reached
in this set is going to be called s. We are now going to restrict the placement
of slips even more, by forcing the slips in boxes such that the placement is in S

(there are at least of such placements %(dﬁﬂ ))-



Lemma 4.8. If the placement of slips in every groups comes from the set S,
then each slip associated with a bin is either in its group or the next one.

Proof. For a bin B in group G;, we want to prove that the slip associated
with B is either in G; or G;11. Let dfi and dB(i + 1) be respectively the
index of first box in groups G; and G;;1. Let j be the index in box in G;41
such that surplus[dB(i 4+ 1),j] = s. We know that such j exists, because G;41
was constructed such that the placement of slips is in S, by consequence, the
maximum surplus reached is s.

Let dx be the index of a box B, located in group G;. We want to show that
surplus[dz, j] > 0, by consequence the slip associated with bin B, is located in
[dz, j].

By property 2 of surplus,

surplusldfi, j| = surplus[dfi,dx — 1] + surplus|[dz, j] =
surplus[dfBi,dB(i + 1) — 1] + surplus[dB(i + 1), 7]

= surplus[dx, j] = surplus[dBi,df(i + 1) — 1] + surplus[dB(i + 1), j]
— surplus[dfi,dx — 1]

We know that surplus[dfi,dS(i + 1) — 1] = 0 because there are exactly [ slips
in this interval by construction (because this placement of slips is in S).

We also know that surplus[dB(i 4+ 1), j] by construction of j.

Finally, surplus[dfi,dx — 1] < s, because the maximum of the surplus is s by
construction.

By consequence, since surplus[dz, j] > 0, then the slip associated with bin B,
is located in the range [dz, j]. This lemma is then proved because j is in G;11.

Since, with those restrictions, the slip associated with a bin is either in its group
or the next one, then we know that no bins will required more than 23d boxes
to be opened to find the associated slip of paper (|[di, m(i)]| < 28d). Now we
want to find the number of assignments of slips that fit with our restrictions. We
already know that for each of the a/8 groups, they are at least %(dﬁ'g ) placements
for each group that are in S. Since we have a/f groups, we have a total of

1 <dﬂ> o/
B\B
possible assignments that fit our restrictions.

Since they are a total of (da“) possible assignments without restriction, because



there are b = da boxes and a slips of papers.

1¢dp a/B 1/2 a1
5(5> a d 26 2 a
pz(ﬁ) > (dﬂﬂ) = 53a/26 27(03_ 1) €

The right side of the equation is obtained by using Stirling’s approximation of
the factorials (6) and with a lot of algebra.

4.4.3 Putting the bounds together

We know that the biggest cycle of m has length at most o with probability
at least p;(a). We also know that no bins will required more than 25d boxes
to be opened to find the associated slip of paper with probability p2(3). By
consequence, each player needs to open at most 2daf with probability at least
p1(a)p2(B) (since the probabilities are independent). If 2daf < b/k, then team
wins with probability > p;(a)p2(8). We assume that d = b/a in part 4.4. We
then choose v = /a/2k and o = \/a/2k (for optimality of the bound), which
are integers as we also assumed that a = 2kn? in part 4.4.

1 (Va/2k)p2(y/a/2k) > 9—9vkalog(a—Fk)

This completes the proof.

The right part of the equation can be obtained with a few steps of algebra that
you can find in Goyal’s and Saks’s paper (5).

5 Discussion

In this paper, we tried to expose the readers to an introduction to the general
case of the 100 prisoners problem. Even with the same strategy that we used
in part 4.3, we could find some better bonds by tweaking the calculation as Y.
Wang did in his paper (7) by finding a new lower bound of 9—3Vaklog(a) - 215k
on the probability of success.

We might also want to consider other strategies. For instance, it might more
natural for player B; to start at box di and continue looking at the boxes until
he finds a slip of paper. But with this strategy, some slip will be hit and the
team will by consequence always lose.
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