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Exploitability and Game Theory Optimal Play

in Poker

Jen (Jingyu) Li1,a

Abstract. When first learning to play poker, players are told to avoid betting

outside the range of half pot to full pot, to consider the pot odds, implied odds,

fold equity from bluffing, and the key concept of balance. Any play outside

of what is seen as standard can quickly give away a novice player. But where

did these standards come from and what happens when a player strays from

standard play? This paper will explore the key considerations of making game

theory optimal (GTO) plays in heads-up (two player) no limit Texas hold’em.

To those new to the game, it involves dealing two cards that are revealed only

to the player they are dealt to (hole cards), and five community cards that are

revealed with rounds of betting in between. Hands are compared by looking at

the highest five card poker hand that can be made with a player’s hole cards

combined with the community cards. This paper will focus on exploitative

strategies and game theory optimal play in heads-up poker based on examples

of game scenarios from [1].
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1. Introduction

Poker is a game that has been extensively studied from a mathematical stand-

point, as it is interesting from a game theory standpoint and highlights con-

siderations that must be made when making decisions under uncertainty and
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deals with expected value of strategies over time. It is a game with strategies

that are not immediately intuitive and the value of those strategies are only

seen over a large number of hands. To reduce complexity, this paper will focus

on heads-up (two player) poker. To those new to the game, the game begins

with each player being dealt two cards which are hidden from the other player.

A round of betting takes place, where there are four actions available to the

players: check, bet, call, raise. A player can check or bet if no amount has yet

been made in the current round of betting and a player can call (match the

amount bet by the opponent) or raise (bet an additional amount on top of op-

ponent’s bet) if the opponent bets. After the initial round of betting (pre-flop),

the first three community cards (visible to both players) come out (flop). An-

other round of betting proceeds before the fourth card comes out and likewise

before the fifth and final card. After all cards are out, there is one last round of

betting before the players’ hands are compared (showdown). The complexity

of poker arises from inferring probabilities through the many rounds of betting

and making decisions that consider events in the future. To understand the

mathematics behind playing optimally, we dissect the game into constrained

sub-problems, but the concepts derived through these examples are relevant in

real play.

2. Pot Odds

Definition 2.1. We refer to a made hand as a poker hand that is already

guaranteed given a player’s hole cards and currently revealed community cards.

Definition 2.2. We refer to a draw as a hand that can be made given certain

community cards come out.

Example 2.1.

Suppose Alice has A♦A♠ and Bob has 5♥6♥. The community cards on

the turn (stage of game where 4 community cards have been revealed) are

K♦9♥2♣Q♥. Alice has a made hand of a pair of aces and Alice has a draw

to a straight. Now if both players knew each other’s cards, they would agree

that if the last card is a 3 or 8 of any suit, Bob wins, otherwise Alice wins. In

this world of perfect information, neither Alice nor Bob would bet on the river

(when the last card comes out), because the winner would be clear.

Now suppose there is already $100 in the pot and Alice can either check
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or bet before the river card comes out. If Alice bets, Bob has the option to

re-raise. There are 9 hearts remaining in the deck, which would give Bob a

flush, beating Alice. The remaining 35 cards would allow Bob’s aces to hold.

Suppose Alice is to act first. Since Alice is favored to win the hand, Alice has

reason to bet here. The amount she should bet is derived from calculating

expected value (EV).

The expected value is calculated as the probability of Alice winning the pot

times the new pot amount, deducted by the amount she bets. Note that this

calculation emphasizes that as soon as Alice places a bet, she should no longer

consider that money to be her’s to lose, but rather part of the pot that she can

win (sunk cost).

E(A) =
35

44
(100 + 2x)− x

≈ 80 + 0.6x

Note that if the probability of winning here is less than 1
2 , it is not profitable

to bet. This however is complicated when we consider a real game where both

players do not have complete information and bluffing is a valid strategy.

Also note that Alice’s EV is strictly increasing as her bet increases if Bob

always calls. Bob however, should only call if it is positive EV for him.

E(B) =
9

44
(100 + 2x)− x

≈ 20− 0.6x

Bob should thus only call if Alice’s bet is below around $33 or 1
3 of the pot

pre-betting. This 1
3 is what we refer to as pot odds. It is important to keep

in mind that Bob can call larger bets or even re-raise because of something we

refer to as implied odds, which take into consideration further betting on the

river due to it being unknown who has the better hand.

3. Implied Odds

Implied odds refer to the potential to make more money when a draw hits.

Remember that we previously assumed both players had complete information.

This is not true in a real game, which means betting on the river can be

profitable. In the case of our previous example, Alice does not know what Bob
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has, so if Bob hits his flush, he can potentially make more off Alice than was

estimated by our EV calculations on the turn.

Example 3.1.

Let us continue with our previous example. If Bob hits a flush on the river, we

will assume that he knows correctly that he has the better hand (for now we

will ignore the possibility Alice has a higher flush, because the probability is

relatively low). Suppose Alice bet $50 on the turn and Bob called. The final

card comes 7♥. Now the pot is $200 and Alice acts first. Recall that the board

currently shows K♦9♥2♣Q♥7♥. Now Alice doesn’t know what Bob has and

believes it’s likely he has top pair (a king that pairs with the king showing on

the board). Alice thinks she can bet again to get value off of Bob. Here Bob

can fairly safely call or re-raise Alice’s bet.

Let’s look at what Alice should do when the river card comes out. Suppose

she’s fairly certain Bob either hit his flush or just has the top pair on the

board. Estimating the probabilities of these two cases is more complicated

(has to take into account what kinds of hands Bob generally plays and the

history of actions on the current hand), but it’s fair to assume Bob has more

hands involving kings in his range than two hearts.

This means that if Bob knows Alice will bet on the river even if he hits his

flush, he is willing to call larger bets from Alice on the turn or even re-raise or

bet if Alice checks.

Definition 3.2. We refer to a player’s range as the hands he plays in a given

situation. In general, a player’s range does not change from hand to hand. That

is not to say that the player should be predictable (see Section 4.2 regarding

balancing range).

4. Game Theory Optimal Strategies

4.1. Exploiting the Opponent

In actuality, the size of bets should not be proportional to how good your hand

is, nor should you only bet when you have a good hand, as that is exploitable

by the opponent over time. In the previous sections, we looked at examples

constrained to a single hand, in which case we only care about maximizing EV

on that hand. However, poker is all about beating the odds over time, so it’s
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important to realize that a strategy optimized for a single hand may not be

optimal or even profitable in the long run.

As a simple but realistic example, suppose your opponent only bets and

raises hands that they think will win the pot, but still calls some of your bets

with weaker hands (this is not an uncommon type of play from risk-adverse

beginners). It’s easy to exploit a player like this by simply using a strategy

which folds to every bet or raise the opponent makes and still betting our good

hands. Of course, eventually the opponent will catch on and counter-exploit

by bluffing their hands if they know we will fold. On this end of the spectrum,

suppose a player bluffs too many hands. To exploit this play style, we can

afford to play a larger portion of hands and make large profits when we hit a

top hand.

This leads us to the idea of balancing our range, or deciding the hands we

play in a given situation such that an opponent cannot exploit our strategy.

4.2. Balance

To play non-exploitable game theory optimal (GTO) poker, ranges should be

“balanced”, meaning Often this means that we have a variety of possible hands

in the eyes of the opponent in any situation. This means adding in a range of

hands with which you bluff and not betting only when you have a good hand

or betting a larger amount when you have the winning hand.

Definition 4.1. We define defensive value as the expected value of a strat-

egy against the opponent’s most exploitative strategy. Note the difference

between this value and EV as we’ve previously looked at is that this assumes

the opponent knows how we play and can exploit any patterns over time in our

strategy.

A more rigorous definition of balanced strategy is minimizing the gap be-

tween defensive value (Definition 4.1) and expected value. In other words, the

expected payoff of the strategy in a given hand should not change over time as

your strategy is gradually exposed to your opponent: your opponent plays the

same way regardless whether your strategy is known to them.

Definition 4.2. A pure strategy dictates a player’s action in any situation

i.e. the player will always make the same decision under given circumstances.
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Definition 4.3. A mixed strategy is one in which the player assigns a prob-

ability distribution over all pure strategies (Definition 4.2).

Definition 4.4. Nash equilibrium is a strategy set in a multi-player game

where neither player alone can increase their payoff. Because of this, it is a

stable point where neither player wants to deviate from their current strategy.

Definition 4.5. A game in which the sum of all players’ scores is equal to 0

is called a zero-sum game .

Definition 4.6. Indifference refers to a game state where a player gets the

same expected payoff regardless what strategy is chosen.

Definition 4.7. An indifference threshold is a value for a parameter that

a player can choose to force indifference (Definition 4.6) on the opponent.

It is a known fact of game theory that all multi-player games with finite

payout matrices have at least one Nash equilibrium (Definition 4.4). Addition-

ally, poker is a zero-sum game (Definition 4.5) and it is known that all zero-sum

two-player games have an optimal strategy as long as mixed strategies (Defini-

tion 4.3) are allowed. This leads to the concept of indifference (Definition 4.6.

By setting expected payoff equations equal to each other, we can obtain val-

ues for parameters that force a player to be indifferent to choosing among

strategies. The value of the parameter found by solving these equations is an

indifference threshold (Definition 4.7). Let us take a look at the following

example.

Example 4.8.

Suppose Bob has three of a kind and on a particular board is only scared of

Alice having a flush. Let us assume that Alice has a flush here 20% of the time.

How often can Alice bluff? For this example suppose there is $300 in the pot

and Alice can choose to bet a fixed amount of $100. To keep it simple, we will

say Bob either calls or folds when Alice bets.

How often should Alice bluff here? If Alice bets $100, Bob can pay $100

to potentially win $400. Suppose Alice only bets when she has the flush. Bob

can exploit this strategy by folding every time Bob bets, preventing him from

getting any additional value from hitting his flush and taking the pot 80% of

the time. Alice has a defensive value of 0.2 · $300 = $60 with this strategy,

where she only profits when she has the flush. Now suppose Alice bets all her
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hands here. 20% of the time she has the flush and the other 80% of the time

she has nothing. If Bob calls, his EV is 0.8 ·$400−$100 = $220 and if he folds,

his EV is 0, so Bob will exploit Alice’s strategy here by always calling. The

defensive value of Alice’s strategy is 0.2 · $400− $100 = −$20.

The two strategies mentioned so far (always checking a dead hand and

always betting a dead hand) are what are known as pure strategies (Defini-

tion 4.2) and neither is optimal for Alice in this situation. We know this,

because both are exploitable – Bob alone can change his strategy and increase

his payoff. This indicates we are not at a equilibrium point.

Now, we explore mixed strategies. Let P 〈A,bluff〉 be faction of all hands

Alice has on the river that she bluffs with. Bob’s EV for calling when Alice

bets can be computed as

EB〈B, call〉 =
P 〈A,bluff〉

0.2 + P 〈A,bluff〉
· $400− $100

Alternatively, Bob can fold when Alice bets.

EB〈B, fold〉 = $0

Alice’s EV can be computed as

EA〈B, call〉 =
0.2

0.2 + P 〈A,bluff〉
· $400− $100

EA〈B, fold〉 = (0.2 + P 〈A,bluff〉) · $300

Alice’s strategy is least exploitable when Bob’s EV for calling and folding are

equal (i.e. Bob is not able to change his strategy to exploit Alice even if

over time he figures out how often Alice bluffs). By setting EB〈B, call〉 =

EB〈B, fold〉, we can solve for Alice’s optimal bluff frequency such that Bob is

indifferent to calling versus folding. It turns out that it is optimal for Alice to

bluff around 6.7% of her hands.

Example 4.9.

Consider the general scenario where we only have one round of betting, the pot

has B bets, Alice can make a bet of size 1, and Bob can call or fold if Alice

bets. The payout matrix is as follows
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Bob Check-call Check-fold

Alice

Winning hand Bet P + 1 P

Check P P

Dead hand Bet -1 P

Check 0 0

As we can see from the payout matrix, it is always in Alice’s favor to bet when

she has a winning hand. It is less obvious what Alice should do when she has

a dead hand. Depending on Bob’s calling versus folding frequency, it can be

beneficial for Alice to bluff a percentage of her dead hands.

According to the concept of indifference, Alice wants to choose a bluffing

frequency such that Bob’s EV for calling is equal to his EV for folding. Let b

represent bluffs
bluffs+value bets .

EB〈call〉 = b(P + 1)− 1

EB〈fold〉 = 0

We have EB〈call = EB〉fold when

b =
1

P + 1

Likewise, Bob should choose a calling frequency such that Alice is indifferent

to checking versus bluffing her dead hands. Let c be the frequency with which

Bob calls.

EA〈check〉 = 0

EA〈bluff〉 = (1− c)(P + 1)− 1

By setting these two EVs equal to each other, we find the value c with which

Bob should call when Alice bets.

c =
P

P + 1

It turns out these two quantities are quite useful, so we will give the quantity
1

P+1 its own letter, α. Alice’s optimal bluff to bet ratio is equal to α and Bob’s

optimal calling frequency is equal to 1− α.
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This can be generalized to different bet sizes. Bets are generally thought

about as a fraction of the pot (according to pot odds). Suppose Alice can bet

any fraction of the pot xP .

b =
xP

P + xP

=
x

1 + x

5. Multi-street Games

Thus far we have mainly discussed single street (one round of action) scenarios,

but in reality, action on a given street depends on everything that has happened

before. In Example 4.8, we assumed that Alice has a flush 20% of the time. In

reality, this probability depends on everything that happened before the river.

Example 5.1.

Let’s set up the following scenario:

• The board shows K♦9♥2♣Q♥.

• Alice has a pair of aces.

• Bob has a hand from a distribution which contains 1
10 hands with two

hearts and 9
10 dead hands.

• The pot contains $4, and players can either check or bet $1.

• Alice is first to act.

• Bob is confident he has the winning hand if he hits his flush and a dead

hand otherwise.

The flush comes around 20% of the time (in actuality, it’s a little less but for

simplicity’s sake we will use 20%). From what we studied before, Alice should

bet and Bob should call if he has the odds. Note that implied odds should be

considered here rather than just pot odds, because Bob can get more value on

the river by hitting his flush.

Assume Alice and Bob make it to the river, and now there is $6 in the pot

(Alice bets on the turn and Bob calls). Now Alice has no reason to bet here,
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because we have assumed Bob knows whether he has the winning hand at this

point. Thus Alice checks and Bob can choose to either bet or check. According

to Example 4.9, Bob should bluff with α = 1
7 as many hands as she value bets

with and Alice should call with a frequency of 1− α = 6
7 .

However, this is actually incorrect, because our prior calculations relied on

a single street game. Consider how this situation is different. Suppose Bob

wants to bluff on the river. This means he had to have called Alice’s bet on

the turn with a dead hand. Also note that Bob can only bluff on the river if a

heart comes out. Thus in this multi-street game, Alice should be considering

indifference of Bob folding versus playing a dead hand through both streets.

Let c be Alice’s optimal calling frequency on the river.

EB〈dead hand, fold〉 = 0

EB〈dead hand, play〉 = P (flush)P (Alice calls)(−2)

+ P (flush)P (Alice folds)(5)

+ P (no flush)(−1)

= (0.2)(−2)c+ (0.2)(5)(1− c) + (0.8)(−1)

c =
1

7

So we see that it turns out Alice’s optimal calling frequency is actually 1
7

rather than 6
7 from analysis of a single street game. By analyzing a single street

game, we are able to reason about strategies, but the determined frequencies

cannot be blindly applied to multi-street games where there are added layers

of complexity.

6. Conclusion

GTO strategy explores the concepts of balance and indifference which min-

imizes exploitability. When you have minimal knowledge of the opponent’s

play style, it is a good defensive strategy to play close to GTO, which aims to

optimize for the worst case by minimizing your own exploitability. GTO strat-

egy assumes an opponent who also plays optimally, or knows how to exploit

weaknesses in any strategy.

However, the assumption that the opponent is always perfectly rational and

plays according to GTO strategy is rarely true and the discrepancy is what

Bolet́ın de Matemáticas 0(0) 1-11 (2018)



Exploitability and Game Theory Optimal Play in Poker 11

allows players who know how to take advantage profit. Even good players do

not play a perfectly balanced game and open themselves up to exploitability

in which case it is beneficial to play to their weaknesses whenever you have the

information to do so.

To play exploitative poker, it is important to consider past information

about the opponent’s overall play style, ranges, and strategy as well as what

actions took place on earlier streets of a given hand. However, keep in mind that

strategies that stray too far from GTO can be counter-exploited. Suppose we

have two perfectly rational players who start off with very different exploitable

strategies. In theory, over time the two players would learn to exploit and

counter-exploit each others’ strategies and eventually their strategies would

converge to near GTO.

In conclusion, depending on the opponent, playing GTO may not always be

the most profitable, but it minimizes exploitability, making it a safe strategy

to play against any opponent.
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