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The Spectral Characterization of Simply-Laced Dynkin Diagrams

Abstract

Simply-laced Dynkin diagrams appear in the classification of many mathematical objects, such as root systems
of simple Lie algebras, representations of Lie groups, Gabriel’s classification of quivers of finite type, symmetries
of regular polytopes, and chip-firing games. In this paper, we characterize the simply-laced Dynkin diagrams as
the simple undirected graphs with eigenvalues less than two and describe connections to a few appearances of
Dynkin diagrams.

1 Introduction

For any undirected graph G, the resulting adjacency matrix A is symmetric with nonnegative entries. By the spec-
tral theorem for symmetric matrices, we know that we can diagonalize this matrix with respect to an orthonormal
basis, and in particular, the eigenvalues are all real. We can show that the maximal eigenvalue λ1 is nonnegative
and can be computed from the Rayleigh quotient

λ1 = max
|x|=1

xTAx

In addition, multiplying a vector by this matrix is equivalent to placing values at the vertices of the graph, and
then replacing the value of each vertex by the sum of the values of its neighbors, accounting for edge multiplicity.
From this interpretation, certain objects, such as the Sponsor Game and Kostant’s Game, described in Sections 4
and 5, respectively, naturally lead to the question of which graphs have maximal eigenvalues at most 2. One can
also construct graphs from the Cartan matrices for simple simply-laced Lie algebras, and one discovers that the
resulting extended Dynkin diagrams have maximal eigenvalue exactly 2. Thus, a classification of which graphs
have eigenvalue (less than) 2 provides insight into the classification of these objects.

2 Introduction to Spectral Graph Theory

For an undirected graph G, one can construct a matrix A, called an adjacency matrix, by labeling the vertices
with distinct numbers 1, 2, . . . , |V | where V is the set of vertices of G, and we let the matrix entry Aij = u(i→ j)
where u(i→ j) is the number of edges from vertex i to vertex j with 1 ≤ i, j ≤ |V |. Since our graph is undirected,
we have that Aij = Aji so the matrix is symmetric, and by the spectral theorem, A can be diagonalized with real
eigenvalues using some orthogonal basis. For this paper, we will also assume that G has no self-loops, so all the
terms on the diagonal of A will be zero.

Remark 2.1. One may note that the labeling of the vertices was arbitrary, but this does not make a difference to
us since a different labeling is simply conjugation by some permutation matrix and conjugation does not change
the eigenvalues.

From this, we can prove the following theorem.

Theorem 2.1. Let λ1 be the largest eigenvalue of A. Then

λ1 = max
|x|=1

xTAx

The term on the right-hand side is called the Rayleigh quotient.
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Proof. By the Spectral Theorem, we know there exists some orthogonal matrix γ ∈ O(|V |) such that γAγT = D
where D is diagonal. Then we have

max
|x|=1

xTAx = max
|x|=1

xTγTDγx = max
|y|=1

yTDy

where the last equality follows from the fact that γ is orthogonal and so |γx| = |x| = 1. Then if yi is the ith

component of y, we have

yTDy =

|V |∑
i=1

Diiy
2
i

Since we have the constraint
∑|V |

i=1 y
2
i = 1, we see that the above sum of maximized when y2i = 1 for the maximal

Dii and yi = 0 for everything else. Since maxiDii = λ1, we see that λ1 is the maximum value of the Rayleigh
quotient.

Corollary 2.1.1. Any x with |x| = 1 such that xTAx = λ1 must be an eigenvector of A with eigenvalue λ1.

Proof. In the proof of the previous theorem, we show that yTDy =
∑|V |

i=1Diiy
2
i . In order to maximize this, we

need the only yi which are nonzero must have Dii = λ1. Thus, if x maximizes the Rayleigh quotient, it must be a
linear combination of eigenvectors of λ1, so it also has eigenvalue λ1.

For a disconnected graph, by picking the labels appropriately, we find that the adjecency matrix is a block
diagonal matrix, so the eigenvalues can be found separately for each block. Because of this, we can work with
each of the connected components and piece them back afterwards.

Theorem 2.2. Let G be connected. Then the eigenspace of λ1 is 1-dimensional and it is spanned by a vector with
only positive entries.

Proof. Let v be an eigenvector with eigenvalue λ1, and let P be the indices of v with positive entries and N be
the indices of v with negative entries. If N is nonempty, then we then have

vTAv =
∑

1≤i,j≤n
Aijvivj

=
n∑
i=1

Aiiv
2
i +

∑
i,j∈P
i<j

2Aijvivj +
∑
i,j∈N
i<j

2Aijvivj +
∑
i∈P
j∈N

2Aijvivj

<

n∑
i=1

Aiiv
2
i +

∑
i,j∈P
i<j

2Aijvivj +
∑
i,j∈N
i<j

2Aijvivj +
∑
i∈P
j∈N

2Aijvi(−vj)

Thus, all the entries of v must be non-negative.
Now suppose any of the entries of v are zero. Then there must be some i, j such that vi = 0, vj 6= 0, and

Aij 6= 0. Then considering the vector v(θ) with v
(θ)
k = sin θ if k = i and v

(θ)
k = vk cos θ if k 6= i, we have

(v(θ))TAijv
(θ) =

n∑
k 6=i

Akkv
2
k cos2 θ +

∑
k 6=i

2Aikvk cos θ sin θ +
∑

k1,k2 6=i
k1<k2

2Ak1k2vk1vk2 cos2 θ + sin2 θ
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Differentiating with respect to θ, we get

∂

∂θ
(v(θ))TAijv

(θ) = −(

n∑
k 6=i

Akkv
2
k

∑
k1,k2 6=i
k1<k2

2Ak1k2vk1vk2)2 cos θ sin θ +
∑
k 6=i

2Aikvk(cos θ2 − sin θ2) + 2 sin θ cos θ

At θ = 0, we see that this function is increasing since sin θ = 0 and Aikvk > 0 for some k. Thus, the Rayleigh
quotient is larger for some θ > 0 so v must have purely positive entries.

To see that the eigenspace of λ1 has dimension one, we note that the eigenvectors of A are orthogonal. Since
the above argument shows that all eigenvectors of λ1 can be scaled to have all positive entries, and since vectors
with only positive entries cannot be orthogonal, we see that the eigenspace must be one-dimensional.

Lemma 2.1. Let G be connected and H ⊂ G be a proper subgraph. If λ1 is the largest eigenvalue of G and λ′1 is
the largest eigenvalue of H, then λ′1 < λ1.

Proof. Let v be a vector with norm 1 and positive entries which maximizes vTAHv where AH is the adjacency
matrix of H. Then consider the vector vG which is equal to v on the vertices of G which are on H and zero
everywhere else. Then vG is a vector with norm one as well and vTGAGvG ≥ vTAHv where equality happens if and
only if (AH)ij = (AG)ij for i, j ∈ H. If H does not contain every vertex of G, then vG has an entry which is zero
so from the proof of the previous lemma, we know that there is another vector v′ which achieves a higher Rayleigh
quotient. Thus, we see that any proper subgraph of G has strictly smaller λ1.

For a more in-depth discussion of spectral graph theory, one can check Péter Csikvári’s lecture notes [2].

3 Graphs with Eigenvalue at most 2

3.1 λ1 = 2

To find the graphs with maximum eigenvalue at most 2, it suffices to look at connected graphs since we know
that the set of eigenvalues is the disjoint union of the eigenvalues of each connected component. In addition, from
Lemma 2.1, we know that any graph with maximal eigenvalue less than 2 cannot contain a graph with maximum
eigenvalue 2, so we can start by classifying the graphs with eigenvalue 2.

First, we know that a cycle has maximum eigenvalue 2 since any cycle has an eigenvector consisting of only
ones.

1

111 1 1

Figure 1: Graph of type Ãn.

Because of this, the other connected graphs with λ1 = 2 must be acyclic, so we just need to look at trees.
We can also show that no node can have degree four or higher unless it is a star of degree four because the

following graph has an eigenvector with eigenvalue 2.
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2

1

1

1

1

Figure 2: Graph D̃1.

In fact, we can generalize the above eigenvector to a larger class of graphs, which shows that any tree with two
nodes of degree three must be of the following form.

2 2 2 2 2

1

1

1

1

Figure 3: Graph of type D̃n.

Finally, the three following exceptional graphs also have maximum eigenvalue two.

3

2

1

21 2 1

Figure 4: Graph Ẽ6.
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4 3 2 1

2

321

Figure 5: Graph Ẽ7.

6 5 4 3 2 1

3

42

Figure 6: Graph Ẽ8.

By performing some casework, one can show that any other tree with a node of degree three not containing
any of the above graphs is strictly contained in a graph of type D̃n, Ẽ6, Ẽ7, or Ẽ8, so we have found all of the
graphs with maximum eigenvalue two.

3.2 λ1 < 2

From Lemma 2.1, we know that the graphs with eigenvalues less than two must not contain any of the above
graphs. From Figure 1, we know that these graphs must be acyclic, and from Figures 2 and 3, we know that no
node can have degree four and at most one node has degree three. If the tree has no nodes of degree three, then
it must be of the following form.

Figure 7: Graph of type An.

If the graph has a node of degree 3, and two of the branches going out have length one, then it is a subgraph
of some D̃n so all such graphs work and are of the following form.

Figure 8: Graph of type Dn.

If the graph has one branch of length two and one branch of length one, the remaining branch can have length
up to four before it becomes Ẽ8. This gives three more diagrams of the following form.
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Figure 9: Graph E6.

Figure 10: Graph E7.

Figure 11: Graph E8.

By doing some casework, one can see that any graph with a node of degree three not containing any extended
Dynkin diagrams must be of the form Dn, E6, E7 or E8 so we have found all the graphs with eigenvalue less than
two. Thus, we arrive at the following theorem.

Theorem 3.1 (Main Theorem). The only graphs with eigenvalues less than two are the finite simply-laced Dynkin
diagrams. The only graphs with maximum eigenvalue equal to two are the extended simply-laced Dynkin diagrams.

4 The Sponsor Game

We now apply the Main Theorem to the following game, which is described in [1]. Suppose we have an undirected,
connected graph G with no self-loops, and assume we have labeled the vertices with distinct integers between 1
and n where n is the number of vertices in G. A configuration is an assignment of non-negative integers c1, . . . , cn
to each vertex of G, where ci is the value on the ith vertex. A vertex i of G is unhappy if

ci <
1

2

∑
(i,j)∈E

cj

where E is the set of edges of G. A vertex i of G is excited if

ci >
1

2

∑
(i,j)∈E

cj
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The Sponsor Game is the following game on configurations:

• Start with a configuration (c1, . . . , cn) such that the ci are not all zero.

• Pick any vertex of i which is unhappy and add 1 to ci.

• Stop if there are no unhappy vertices.

The Excited Sponsor Game is the following variant:

• Start with the configuration (c1, . . . , cn).

• Pick any vertex of i which is not excited and add 1 to ci.

• Stop if all vertices are excited.

For this game, we can prove the following theorem.

Theorem 4.1. The graphs G where the Sponsor Game terminates are the simply-laced Dynkin diagrams and
extended simply-laced Dynkin diagrams, and the Sponsor Game will terminate regardless of starting configuration.
The graphs G where the Excited Sponsor Game terminates are the simply-laced Dynkin diagrams, and the Spon-
sor Game will terminate regardless of starting configuration. In addition, in either of these games, the ending
configuration does not depend on the moves taken.

We first define some notation. We denote the vector with all ones by 1, and we say v1 > v2 or v1 ≥ v2 for
two vectors v1, v2 when each coordinate of v1 is larger than the corresponding coordinate of v2. We define v1 ≥ v2
similarly. In addition, min(v1, v2) is the vector where each coordinate is the minimum of the two corresponding
coordinates of v1 and v2 and dve is the vector where each coordinate is the ceiling of the corresponding coordinate
in v.

Lemma 4.1. Any graph with a terminating Sponsor Game must have all its eigenvalues at most 2. Any graph
with a terminating Excited Sponsor Game must have all its eigenvalues strictly less than 2.

Proof. We will prove the lemma for only the normal Sponsor Game since the proof for the excited Sponsor Game
is similar. Suppose we have a valid configuration v, and let v1 be an eigenvector for λ1 > 2. We know that v1 will
have all positive entries so we can scale it so that v1 > v. Then

A(v1 − v) = Av1 −Av ≥ λv1 − 2v > λ1(v1 − v)

Then we have
(v1 − v)TA(v1 − v)

|v1 − v|2
>

(v1 − v)Tλ1(v1 − v)

|v1 − v|2
= λ1

which contradicts the fact that λ1 maximizes the Rayleigh quotient. Thus, we must have λ1 ≤ 2.

Lemma 4.2. In both the Sponsor Game and Excited Sponsor Game, if the game terminates, the ending state is
unique. In particular, the ending configuration v will be the minimum configuration such that v ≥ c and 2v ≥ Av
for the Sponsor Game and v ≥ c and 2v > Av for the Excited Sponsor Game.
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Proof. Again, the proofs for both games are similar so we prove it only for the Sponsor Game. Suppose v(1)

and v(2) are vectors that both satisfy 2v(i) ≥ Av(i) and v(i) ≥ c, where c is the starting configuration. Then
v(i) ≥ Amin(v(1), v(2)) for i = 1, 2, so we have min(v(1), v(2)) ≥ Amin(v(1), v(2)) and min(v(1), v(2)) ≥ c. Thus,
there is a minimum vector v such that 2v ≥ Av and v ≥ c if any such vector exists. We now show that the
game will terminate with ending configuration v. Since v is the minimum possible terminating configuration, we
just need to show that we can never reach any v′ > v. Suppose there was some series of steps to reach v′. Then
there must have been an intermediate configuration c′ such that c′ and v have the same value at vertex i and we
incremented this vertex. We take the first such intermediate configuration, so that all vertices j have values at
most vj . Then

2c′i ≥
∑

(i,j)∈E

vj ≥
∑

(i,j)∈E

cj

Then i is not unhappy so we could not have made a move incrementing vertex i. Thus, our game must terminate
at v.

Proof of Theorem 4.1. We first prove the theorem for the Sponsor Game. We know that every graph with its
eigenvalues at most 2 is a simply-laced Dynkin diagram or an extended simply-laced Dynkin diagram. From
Lemma 4.2, it suffices to find some vector v with positive integer entries such that v ≥ c and 2v ≥ Av. If G is
an extended simply-laced Dynkin diagram, our argument in Section 3 show that the eigenvectors with eigenvalue
2 are multiples of a vector with positive integer entries. Then we can scale this vector to find some v ≥ c and
2v = Av. If G is a simply-laced Dynkin diagram, we can take the eigenvector from some extended simply-laced
Dynkin diagram G̃ containing G, and scale it to an eigenvector v with positive integer entries such that vi ≥ ci
for i ∈ G. Then we have

2vi =
∑

(i,j)∈Ẽ

vj ≥
∑

(i,j)∈E

vj

so the restriction of v to G gives us a good configuration. Thus, the Sponsor Game terminates if and only if G is
a simply-laced Dynkin Diagram or an extended simply-laced Dynkin diagram.

For the Excited Sponsor Game, we need to show that every simply-laced Dynkin diagram has some vector v
with positive integer entries such that v ≥ c and 2v ≥ Av. Take an eigenvector v1 of A with eigenvalue λ1 and
scale it so that

2v1 − λ1v1 ≥

 ∑
1≤i,j≤n

Aij

1

Then we have

Adv1e ≤ A(v1 + 1) ≤ Av1 +

 ∑
1≤i,j≤n

Aij

1 < 2v1 ≤ 2dv1e

This shows that dv1e gives a good configuration, so the Excited Sponsor Game terminates if and only if G is a
simply-laced Dynkin diagram.

5 Kostant’s Game

There’s another chip-firing game, described in [1] and [4], which is similar to the normal Sponsor Game above, but
instead of adding one to an unhappy vertex v, we replace with with −v +

∑
(v,w)∈E w. In other words, we replace

the value at v with the sum of the values of its neighbors minus itself. From the proofs used in the Sponsor Game,
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we know that any graph which is not an simply-laced Dynkin diagram automatically will not have a solution. Now
it remains to figure out which of these Dynkin diagrams terminate.

First, let’s deal with the extended Dynkin diagrams.

Lemma 5.1. Any stable configuration (one without any playable moves) on an simply-laced extended Dynkin
diagram must be an eigenvector with eigenvalue two.

Proof. Our proof will be very similar to the proofs in the previous section. Let v be our stable configuration, and
let v1 be an eigenvector with eigenvalue two such that v1 ≥ v. Then we have

Av1 −Av = 2v1 −Av ≥ 2v1 − 2v

which gives us
(v1 − v)TA(v1 − v)

|v1 − v|2
≥ 2(v1 − v)T (v1 − v)

|v1 − v|2
= 2

Since two is the maximum value of our Rayleigh quotient, we see that the Rayleigh quotient of v1 − v is two.
We know from Corollary 2.1.1 that any vector which maximizes the Rayleigh quotient is an eigenvector with
eigenvector two, so v1 − v is an eigenvector with eigenvalue two, and therefore v is an eigenvector with eigenvalue
two.

Now a quick computation shows that any steady configuration on an extended Dynkin diagram can only be
reached by itself. Thus, the game only terminates on these graphs if it started on a steady configuration.

For the regular Dynkin diagrams, we first note the following lemma as described in [1], which will be used to
describe our graph of configurations.

Lemma 5.2 (Roman Lemma). Let C be a connected directed graph without self-loops (possibly infinite!). Suppose
that for every vertex c and pair of two of its out-going edges, we can find 2 converging paths of the same length
using these edges to some other vertex. Then one of the following is true.

• C has no vertex with out-degree zero.

• C has exactly one vertex cend with out-degree zero and all directed paths from a vertex c eventually reach cend
and have the same length.

A proof of this statement can be found at [3]. For Kostant’s game, we can show that if we have two possible
moves at a configuration, which alter either node i or node j, we can find paths using both moves of equal length
such that we end up at the same configuration. If i and j are not adjacent, we have the paths

c

c′ c′′

clast

j

i

j

i

If i and j are adjacent, we have the paths
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c

c′ c′′

· ·

clast

j

i

j i

i

j

As a result, the requirements of the Roman Lemma hold on our graph of configurations, so we just need to
find a terminating sequence of moves for each configuration.

We do not have the space to fully prove that there is always a terminating sequence of moves, but here is a
short sketch. For graphs of the form An, one can find a sequence of moves so that the configuration is increasing
until a maximum, and then decreasing the rest of the graph. Then after this, one can show that this maximum
bounds the values of the nodes of the final configuration. For the graphs Dn, E6, E7, and E8, one can make a
sequence of moves so that the node of degree three has the maximum value, the values decrease along the branches
as one moves away from this node, and the only unhappy vertex (if there is one) is this node. If this central vertex
will gain k from the only available move, then one can show that one can always find a sequence of moves such
that each move increases the overall value by at most k. One can also find some group of configurations with some
“wiggle room,” where the vertices can vary by k in value and they will still by stable configuration. Thus, the
sequence of moves must terminate since this group gives an upper bound on what configurations one can reach.

To summarize, we have the following theorem.

Theorem 5.1. The only graphs for which a nonzero configuration terminates are the simply-laced (extended)
Dynkin diagrams. For simply-laced Dynkin diagrams, Kostant’s game terminates regardless of the starting configu-
ration, and for simply-laced extended Dynkin diagrams, the game terminates if and only if the starting configuration
is an eigenvector with eigenvalue two.
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