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Abstract. Housing allocation problems deal with assigning indivisible
objects (houses) to agents who have preferences over these objects. We
examine the housing allocation problem with existing tenants, then with
both new and existing tenants. In both cases, we present and evaluate
an algorithm for assigning houses. We then consider a version of the
housing allocation problem where agents are grouped into groups of size
k and houses can be occupied by k agents. We present an algorithm to
assign houses to agents in this case, and evaluate this algorithm.

1. Introduction

Housing allocation problems deal with assigning indivisible objects (houses)
to agents who have preferences over these objects. In general, housing allo-
cation problems consist of

(1) a set of agents A,
(2) a set of indivisible objects (houses) H,
(3) a preference profile� = (�a)a∈A, that is, a list of preference relations

of agents over houses.

For simplicity, we restrict our attention to strict preference profiles where
each agent defines a strict total order over houses. An important charac-
teristic of housing allocation problems, is that it is assumed that housing
comes with no externalities. That is, there is no medium of exchange for
agents (for example, money) outside of houses.

These types of problems have a number of applications. In this paper, we
contextualize variants of the housing allocation problem through the scope
of college dormitory housing. Consider a college dormitory that must assign
rooms to students. We begin by considering only single-occupancy rooms
(at most one student per room). In Section 3 we consider the constrained
case where all students to be allocated a room begin the allocation process
with a room. In Section 4 we consider the case where there may be both
new and existing tenants entering the allocation process. For both of these
cases, we cite and evaluate algorithms based upon Gale’s Top Trading Cycles
algorithm [5].
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In Section 5 we consider the case where rooms have a fixed occupancy k,
and students enter the allocation process in groups of k. We allow for both
new and existing students, as well as students who previously lived with
different groups. We present and evaluate a novel algorithm for allocating
rooms to students, that also resembles Gale’s Top Trading Cycles algorithm.

2. Definitions

In this section we present some definitions that will allow us to evalu-
ate the outcomes of housing allocation problems, and the algorithms that
produce them.

2.1. Matchings. The outcome of the housing allocation problem (A,H,�)
is a matching µ : A 7→ H. The interpretation of a matching µ is that each
agent a is allocated the house µ(a). For a fixed housing problem, we will
use M to denote the set of all possible matchings.

In addition having preference relations over houses, agents can also be
thought to have preference relations over matchings. Suppose µ, ν are
matchings in M, then

µ �a ν ←→ µ(a) �a ν(a),

µ �a ν ←→ ν 6�a µ

µ ∼a ν ←→ µ(a) = ν(a).

This preference relation defines a weak total order on M.
It is natural to ask whether some matchings are more desirable than

others. It seems obvious that this is the case. Ideally, we could always
produce a matching such that

(1) there is no other matching that makes some agents strictly happier,
and all other agents no less happy,

(2) all agents weakly prefer their newly allocated house to their initial
house.

We provide Definitions 1, 2 and 3 to formalize these notions.

Definition 1 (Pareto domination). Suppose µ, ν are matchings. Then µ
Pareto dominates ν if and only if

(1) µ �a ν for all a ∈ A,
(2) µ �a ν for some a ∈ A.

Definition 2 (Pareto efficiency). Suppose µ is a matching. Then µ is Pareto
efficient if and only if it is not Pareto dominated by any matching ν ∈M.

Definition 3 (Individually rational). Suppose µ is a matching resulting
from the housing problem (A,H,�, µ0). Then µ is individually rational if
µ(a) �a µ0(a) for all a ∈ A.
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2.2. Matching Mechanisms. Given a housing allocation problem, agents
may announce any strict preference relation over houses. That is, we do not
assume that agents are truthful when announcing their preferences to some
mechanism that allocates houses. Fix some housing allocation problem. We
use P to denote the set of all preference profiles of all agents over houses.
Like above, we useM to denote the set of all matchings of agents to houses.

A matching mechanism is a procedure for determining a matching given
a housing allocation problem. Formally, a mechanism is a function

ϕ : P 7→M.

A mechanism is Pareto efficient if it always produces a matching that is
Pareto efficient on the announced preference profile. Similarly, a mechanism
is individually rational if it always selects a matching that is individually
rational on the announced preference profile.

Another desirable property of a matching mechanism is that it induces
agents to be truthful in reporting their preferences. We call such a mecha-
nism strategy proof, and formalize this notion in Definition 4.

Definition 4 (Strategy proof). Suppose ϕ is a matching mechanism that
induces agents to announce the preference profile ρ ∈ P. Then ϕ is strategy
proof if and only if every agent a ∈ A has weakly prefers their allocation
(under �) when they choose ρa over their allocation when they choose some
other preference relation, regardless of the preference relations of all other
agents in A.

3. Housing Markets

We now turn our attention to housing allocation problems where houses
are single-occupancy, and there is an initial endowment of houses to agents.
These problems are known as housing market problems. In the context
of assigning college students to dormitory rooms, this is the situation of
reorganizing the existing students of a dormitory (with single-occupancy
rooms). Formally, a housing market problem consists of a tuple (A,H,�
, µ0), where A is a set of agents, H is a set of (indivisible) houses, � is a
list of preferences over houses, and µ0 is an initial endowment. Specifically,
each agent a ∈ A has a strict total order on H, where hi �a hj means that
agent a strictly prefers hi over hj . Here we assume that |A| = |H|. The
initial endowment µ0 : A 7→ H is a bijection from agents to houses such that
each agent a is endowed with house µ0(a) at the beginning of the allocation
problem.

The outcome of a housing allocation problem is a matching µ : A 7→ H,
where µ defines a bijection from A to H. The interpretation of a matching
µ is that each agent a is assigned to the house µ(a). We define M be the
set of all possible matchings.

We now present an abstract object known as the “core” of a housing
market.
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Definition 5 (Housing market core). The core of a housing market problem
(A,H,�, µ0) is a set of matchings C. Some matching µ ∈ M is in C if and
only if there in not a “coalition” A′ ⊆ A and some other matching ν ∈ M
such that

(1) ν(a) ∈ {µ0(b) | b ∈ A′} ∀ a ∈ A′
(2) ν(a) �a µ(a) ∀ a ∈ A′
(3) ∃ a ∈ A′ such that ν(a) �a µ(a)

3.1. Gale’s Top Trading Cycles (TTC) Algorithm. Gale’s Top Trad-
ing Cycles (TTC) algorithm is one example of a matching mechanism, and
works as follows [5].

Step 1: Each agent points to the owner of their most preferred house.
If a cycle of agents exists, then match all agents in the cycle with
the house of the agent he points to. Remove the matched agents and
houses from the problem. If any agents or houses remain unmatched,
continue to the next step.

Step t: Each agent points to the owner of their most preferred remain-
ing house. If a cycle of agents exists, then match all agents in the
cycle with the house of the agent he points to. Remove the matched
agents and houses from the problem. If any agents or houses remain
unmatched, continue to the next step.

Example. Suppose A = {a1, a2, a3} and H = {h1, h2, h3}, with µ0(ai) = hi
for i ∈ {1, 2, 3}, and the agents have the following preferences over houses:

a1 : h1 �a1 h2 �a1 h3

a2 : h3 �a2 h1 �a2 h2

a3 : h1 �a3 h2 �a3 h3

The progression of the algorithm is shown graphically in Figure 1.

Figure 1. Gale’s Top Trading Cycles Algorithm Progression

The algorithm terminates with the matching µ such that

µ (a1) = h1, µ (a2) = h3, µ (a3) = h2.

Proposition 1. Gale’s Top Trading Cycles algorithm terminates with a
matching.
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Proof. At each iteration, there are a finite number of agents. Hence, there
exists a cycle of agents. Thus, at each step, the number of remaining houses
strictly decreases, so the algorithm terminates.

A house is only assigned to one agent before it is removed from the list of
unassigned houses. Thus, all houses are assigned to distinct agents, and we
get a bijection µ : A 7→ H and hence the algorithm finds a matching. �

Theorem 1 (Theorem 2 in [4]). The outcome of Gale’s TTC algorithm is
the unique matching in the core of each housing market.

Theorem 2 (Theorem 1 in [3]). A mechanism that provides the matching in
the core is the only mechanism that is Pareto efficient, individually rational,
and strategy-proof.

Together, Theorems 1 and 2 show that any mechanism that is Pareto
efficient, individually rational, and strategy proof provides the outcome of
Gale’s TTC algorithm. Hence, Gale’s TTC algorithm provides a method to
realize a desirable (as discussed above) allocation of houses in this contained
case of the housing allocation problem.

4. Housing Allocation with Existing Tenants

We now generalize the housing allocation problem to include both new
and existing tenants. Formally, a housing allocation problem with existing
tenants consists of a tuple (IE , IN , HO, HV ,�, µ0) where

(1) AE is the set of existing agents (agents who begin with a house),
(2) AN is the set of new agents (agents who begin without a house),
(3) HO is the set of occupied houses, with |HO| = |IE |,
(4) HV is the set of vacant houses,
(5) � = (�a)a∈AE∪AN

is a preference profile: a list of strict preference
relations of agents over all houses,

(6) µ0 : AE 7→ HO is a bijection from existing agents to occupied houses,
which defines the initial house allocation for each existing tenant.

For simplicity, we will henceforth use

A = AE ∪AN

H = HO ∪HV ∪ {h0},
where h0 denotes the “null house”. In context, being assigned the null house
is equivalent to not being allocated any real house. For simplicity, we assume
that h0 is the least preferred house for each agent. The outcome of such a
problem is a matching µ : A 7→ H such that µ is a total function such that
there is no h ∈ HO ∪HV with |µ−1(h)| > 1. In other words, µ satisfies

(1) every agent in A is assigned exactly one house,
(2) only h0 may be assigned more than one house.

The definitions of a matching being Pareto efficient and individually rational
extend naturally from Definitions 2 and 3.
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Once again, agents may report any preference relation they desire. Let P
denote the set of all preference profiles for all agents. A mechanism is some
function that for a fixed housing allocation problem, takes a reported prefer-
ence profile for all agents and produces a matching. Formally, a mechanism
is a mapping ϕ : P 7→ M where M is the set of all possible matchings for
the housing allocation problem.

Similar to before, a mechanism is Pareto efficient and individually rational
if it always results in Pareto efficient and individually rational matchings,
respectively. A mechanism is strategy proof if it induces agents to be truthful
in reporting their preferences over houses (Definition 4).

4.1. Agent Priority. In many situations, a natural strict priority exists
over the agents. For example, in the context of college dormitory room
assignment, priority may be a function of students’ seniority and contri-
bution to the dormitory. We formalize agent priority as some bijection
f : {1, 2, . . . , |A|} 7→ A that assigns a ranking to each agents, where agent
f(1) has the highest priority, and so on.

We can talk about mechanisms that produce matchings for some fixed
priority, and use ϕf to denote the mechanism under priority f .

4.2. Top Trading Cycles Mechanism. Abdulkadiroğlu and Sönmez [1]
introduce a mechanism for assigning matchings given a housing allocation
problem with existing tenants (AE , AN , HO, HV ,�, µ0), an announced pref-
erence profile ρ = (ρa)a∈A, and a fixed agent priority f . We will refer to
this mechanism as ψf and an algorithm to find the matching given by ψf is
given below. Note this this mechanism and algorithm resembles Gales TTC
algorithm, presented in section 3.1.

Step 1: Each agent a ∈ A points to their favorite house under their
announced preference relation ρa. Each house h ∈ HO points to
µ−10 (h), that is, each house that is occupied points to its occupant.
Each available (vacant) house points to agent with the highest prior-
ity, that is, agent f(1). If a cycle (of alternating agents and houses)
exists, then assign each agent the house that they point to. Remove
all assigned houses and the agents they are assigned to for the pur-
pose of future steps. If there are remaining agents and houses, then
continue to the next step.

Step t: Each agent a ∈ A points to their favorite remaining house un-
der their announced preference relation ρa. Each remaining occupied
house points to its occupant. Each remaining vacant house points to
the remaining agent with the highest priority. If a cycle (of alternat-
ing agents and houses) exists, then assign each agent the house that
they point to. Remove all assigned houses and the agents they are
assigned to for the purpose of future steps. If there are remaining
agents and houses, then continue to the next step.

Finally: Assign the null house to any remaining agents.
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Note that if AE = HV = ∅, then this algorithm is equivalent to Gale’s
TTC. We give an example with new and existing tenants below.

Example. Suppose AE = {a1, a2}, AN = {a3, a4, a5}, HO = {h1, h2}, HV =
{h3, h4}, and µ0 (ai) = hi for i ∈ {1, 2}. Suppose that agents announce the
preference profile ρ over houses as follows

a1 : h1 h2 h3 h4

a2 : h1 h3 h2 h4

a3 : h1 h2 h3 h4

a4 : h1 h3 h2 h4

a5 : h4 h1 h2 h3

and suppose that f defines the following priority over agents

f : a3 a1 a2 a4 a5

where a3 has the highest priority and a5 has the lowest priority. The pro-
gression of the algorithm is shown graphically in Figure 2.

Figure 2. Top Trading Cycles With Existing Tenants Example

The algorithm terminates with the matching µ such that

µ (a1) = h1, µ (a2) = h3, µ (a3) = h2, µ (a4) = h4, µ (a5) = h0.

Proposition 2. This top trading cycles mechanism always terminates with
a matching.

Proof. At each iteration, there are a finite number of agents and houses.
Hence, there exists a cycle. Thus, at each step, the number of remaining
agents and houses strictly decreases, so the algorithm terminates. Any house
may only be in one cycle per step, so any house that is not the null house is
assigned to at most one agent, and the null house is assigned to all agents
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not assigned a house in HO ∪ HV . Thus, the result of this algorithm is a
matching. �

For any agent priority f , the corresponding top trading cycles mechanism
ψf has some very desirable properties. In particular, ψf is

(1) Pareto efficient [1, Proposition 1],
(2) individually rational [1, Proposition 2], and
(3) strategy proof [1, Theorem 1].

This mechanism also has the property that it respects seniority [1, Theo-
rem 2]. A mechanism ϕf that respects seniority meets the following criteria:

(1) as far as agent f(1) is concerned, ϕf assigns them a house that is
weakly preferred to the house assigns by any other mechanism that
is Pareto efficient, individually rational and strategy proof,

(2) out of all mechanisms that perform equally well for agent f(1), ϕf

assigns f(2) a house that is weakly preferred to the house assigns by
any other mechanism that is Pareto efficient, individually rational
and strategy proof,

(3) and so on, for all agents f(3), f(4), . . ..

Hence, the top trading cycles mechanism for housing allocation problems
with existing tenants meets the criteria that we outlined in Section 2.

5. Housing Allocation with Multiple-Occupancy Houses

In many practical settings, houses can be occupied by more than one agent
simultaneously. Consider the case where all houses have fixed occupancy k,
and agents are exogenously grouped together, in groups of size k. Groups
may comprise of new and existing students, including existing students who
previously lived in separate houses. Formally, we define a housing allocation
problem with multiple-occupancy houses as

(AE , AN , G,HO, HV ,�, µ0, r)
where

(1) AE is the set of existing agents (agents who begin with a house),
(2) AN is the set of new agents (agents who begin without a house),
(3) G is a list of groups of agents,
(4) HO is the set of occupied houses (houses with at least one agent in

AE living there previously)
(5) HV is the set of vacant houses,
(6) � = (�a)a∈AE∪AN

is a preference profile: a list of strict preference
relations of agents over all houses,

(7) µ0 : AE 7→ HO is a bijection from existing agents to occupied houses,
which defines the initial house allocation for each existing tenant,

(8) r : AE∪AN 7→ R is a function that maps agents to their correspond-
ing housing group.

Furthermore, we place the following restrictions on these inputs
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(1) all groups in G must have size k,
(2) all agents in the same group must have the same preference relation

over houses.

For some group g ∈ G, we may use �g to refer to the preference relation of
any agent in group g. As before, we assume some natural priority f on the
agents.

Below we present a novel algorithm that provides a mechanism similar to
the top trading cycles mechanism shown above. The algorithm proceeds as
follows.

Step t: Each agents a ∈ A points to group r(a). Each group points
to their favorite remaining house. For every remaining occupied
house h ∈ HO, if µ−1(h) contains remaining agents, h points to
the remaining agent with the highest priority; otherwise h points
to the remaining agent in A with the highest priority. Each vacant
house points to the remaining agent in A with the highest priority.
If a cycle exists, then for every group g in the cycle that points to
h, assign all agents in g the house h. Remove all assigned agents,
groups and houses. If there are remaining agents and houses, then
continue to the next step.

Finally: Assign the null house to any remaining agents.

Proposition 3. This mechanism terminates with a matching.

Proof. The proof is almost identical to the proof of Proposition 2 and is
omitted here. �

Theorem 3. This mechanism is Pareto efficient.

Proof. Consider the algorithm given. Any agent who leaves at step 1 is
assigned their top choice and cannot be strictly happier. Any agent who
leaves at step 2 is assigned their top choice among the remaining houses,
and cannot be made strictly happier without making an agent assigned in
step 1 strictly less happy. Proceeding in a similar way, no agent can be made
strictly happier without making another agent who was assigned at an earlier
step strictly less happy. Therefore, the mechanism always produces a Pareto
efficient matching. �

Theorem 4. No mechanism exists for this problem that is individually
rational.
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Proof. Consider the following counterexample.

AE = {a1, a3}
AN = {a2, a4}
G = {g1, g2}

HO = {h1}
HV = ∅

µ0 (a1) = h1

µ0 (a3) = h1

r(a) =


g1 if a = a1

g1 if a = a2

g2 if a = a3

g2 if a = a4

with the preference profile where h1 is the only house in each agents’ pref-
erence relation.

There are exactly two possible matchings,

µ1(a) =


h1 if a = a1

h1 if a = a2

h0 if a = a3

h0 if a = a4

, and

µ2(a) =


h0 if a = a1

h0 if a = a2

h1 if a = a3

h1 if a = a4

.

In the case of µ1, we have µ0 (a3) �a3 µ1 (a3), and in the case of µ2, we
have µ0 (a1) �a1 µ2 (a1). Thus, there is no possible individually rational
matching.

Hence, no individually rational mechanism can exist for this problem.
�

However, we conjecture that a weaker form of the individual rationality
constraint is satisfied by this mechanism, formalized in Conjecture 1.

Conjecture 1. Suppose µ is the matching produced by this mechanism.
For every a ∈ A, if µ(a) ≺a µ0(a), then for any other matching ν with
ν(a) �a µ(a), there exists some b ∈ A such that

(1) µ(b) �b ν(b) (b is strictly happier under µ)
(2) f(b) < f(a) (b has higher priority than a)
(3) µ0(a) = µ0(b) (a and b used to live together)
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This conjecture essentially states that the only way that the individual
rationality constraint can be broken for some a, is if it allows some previous
roommate with higher priority than a to be assigned a more preferable room.
Furthermore, we conjecture that it is individually rational for all agents a
who have the highest priority amounts agents who previously lived in µ(a).

Conjecture 2. This mechanism is strategy proof.

Conjecture 3. We define a priority h on the groups in G as

h (gi) < h (gj) ←→ ∃ a ∈ gi such that f(a) < f(b) for all b in group gj .

Then the mechanism respects the seniority of groups under h.

6. Final Remarks

We provided algorithms for a number of variants of the housing alloca-
tion problem. The novel algorithm presented in Section 5 has a number of
unproved conjectures about the mechanism that it provides, which we hope
to prove at a later stage.
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