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ABSTRACT. Public-key cryptography has been at the center of online commu-
nication and information transfer for decades. With computing power growing
at an exponential rate, some of the most widely used encryption schemes are
starting to show their limits. The RSA algorithm, which is still widely used
around the world, now requires very large keys to ensure security. Since these
systems may appear on low computing power devices such as mobile phones,
or chips, it has become essential to create protocols for which we can reach the
same level of security without spending considerable computing power setting
up the system in the first place. Elliptic curve cryptography (ECC) provides an
exciting alternative to RSA, and has shown to be a lot more efficient in terms
of key size. In this paper, we provide a description of how elliptic curves are
used in modern cryptography, as well as their current limitations and future
prospects. Because quantum computers pose a serious threat to the currently
in use public-key systems, we also describe the recent progress on super singu-
lar elliptic curves isogenies, which may offer a quantum resistant cryptosystem
and a viable alternative for the future of elliptic curve based cryptography.

1. INTRODUCTION AND HISTORY

Up until the 1970’s, all the encryption in use around the world was based on sym-
metric ciphers, which means that in order for two parties to communicate securely,
they must have had to previously meet and agree on a shared secret. While such
methods provided all the security needed at the start of the 20" century, the second
World War and the rise of the internet and online information, motivated the idea
of a cryptographic protocol where two parties could create a secure communication
channel without any kind of previous communication.

This kind of cryptography is known as asymmetric, or public-key cryptography.
The first to demonstrate the existence of such methods were Diffie, Hellman and
Merkle in 1976 [9]. While their protocol is usually referred to as the Diffie-Helllman
Key Exchange, in 2002, Hellman suggested that it should be called the Diffie-
Helllman-Merkle Key Exchange, including Merkle in recognition of his contribution
to the invention of public key cryptography [14]. Because asymmetric protocols tend
to require relatively large amounts of computation, it is common to use them to
send a small key which can then be used to establish a secure symmetric channel.
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Definition 1.1. We denote the discrete logarithm problem on the multiplicative
group of the integers modulo p, Z,z,, as follows. Given g,a € Zz,, where a is a
member of the cyclic subgroup generated by g, find an integer k& such that:

(1.1) g* = amodp

The security of the Diffie-Hellman-Merkle protocol relies on the assumption that
while ¢g* can be computed easily using repeated squaring, its counterpart, the dis-
crete logarithm problem, is computationally hard. While there is no formal proof
of the hardness of the problem, this assumption is widely conjectured to be true.
In particular, there are groups under which the logarithm is easy but also groups
where it is believed to be particularly hard. Elliptic curves are believed to be part
of the latter, as is discussed see later in this paper, and to be considerably more
resistant than Diffie-Hellman-Merkle and prime groups, for which efficient methods
in practice exist, for instance, index calculus [4].

In 1977, Ron Rivest, Adi Shamir, and Leonard Adleman proposed another asym-
metric encryption scheme, known as RSA [24]. The security of RSA is based on an
similar problem to Diffie-Hellman-Merkle, namely, the discrete factoring problem.

Definition 1.2. We denote the discrete factoring problem as follows. Given a
number N, the factor of two large primes p and ¢, find p and gq.

RSA was the first public key algorithm to go in wide use, and is still adopted
in many modern protocols. It improves on Diffie-Hellman-Merkle by providing
signatures, and long term private keys. The factoring problem however, can be
solved in sub-exponential time [22]. With the increase in computational power, the
key sizes in the RSA protocol have had to grown at a similar rate, which raises
questions about the scalability of the protocol on low power devices [13].

Elliptic curve cryptography was introduced in 1985 by Victor Miller and Neal
Koblitz who both independently developed the idea of using elliptic curves as the
basis of a group for the discrete logarithm problem. [16, 20]. Believed to provide
more security than other groups and offering much smaller key sizes, elliptic curves
quickly gained interest. In the early 2000’s, the NSA made Elliptic curve its stan-
dard suite B algorithm for both encryption and signature and its use on low power
devices has been shown to be much more scalable [13]. Elliptic curves are the main
focus of this paper, which offers a primer to modern elliptic curve cryptography
and discusses the future prospects of the protocol, including a recently published
method of public key encryption based on elliptic curve isogenies, which is believed
to offer a quantum resistant scheme.

This is of particular interests since Peter Shor showed, in 1994, that using a
Quantum Computer, it would be possible to solve the integer factoring problem in
polynomial time, something which is believed to be impossible on classical com-
puters [28]. In his paper, Shor presented two similar algorithms, one for integer
factoring, and the other one for the discrete logarithm problem. It was then shown
that Shor’s algorithm could be extended to the discrete logarithm problem on any
abelian group [11]. While quantum computers remain mostly theoretical, the need
for post quantum cryptography is crucial, and has already attracted many in the
literature. Recently, in April 2016, numbers slightly larger than 200000 were fac-
tored using D-wave Quantum processors [10]. In August 2015, the NSA made a
announced that they would soon move to a quantum-resistant algorithms suite to
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replace ECC. Neal Koblitz, one of the founders of ECC, and Alfred J.Menezes
recently published a paper discussing the NSA’s decision [17].

As of 2016, it doesn’t seem as though quantum computers will be able to break
symmetric ciphers more efficiently than classical computers. In fact, most research
currently supports the limitations of quantum computers [3]. The only known
attack is based on Grover’s search algorithm where the speedup is small enough that
it can be compensated by doubling the key size of symmetric based cryptosystems
such as AES or most hash functions. For these reasons we omit in this paper
the discussion of symmetric cryptosystems, and focus on a public key method,
ECC, which is based on an interesting mathematical problem and will require more
attention from the cryptography community as Quantum Computers become a
practical reality. In particular, the next section of the paper covers some of the
core mathematical concepts needed to fully understand the elliptic curve based
cryptography. The third section covers the concepts behind modern elliptic curve
cryptography (ECC), including the Elliptic curve Diffie Hellman Key Exchange
(ECDH) protocol and the Elliptic curve Digital signature algorithm (ECDSA). The
fourth section summarizes some of the main classical attacks on ECC, and Shor’s
algorithm. Finally, the fifth section briefly describes a recently published method
of public key encryption based on Elliptic curve isogenies, and which is believed to
offer a quantum resistant scheme.

2. PRELIMINARIES

Before diving into Elliptic Curve Cryptography, we make a quick review of field
theory. Any familiar reader should feel comfortable moving to section 3.

Definition 2.1. A group is an algebraic structure composed of:

e A set of elements G

e A closed operation on the set G, which is associative. That is (a-b)-c =
a-(b-c), for a,b,ce G

e An identity element

e The existence of inverses under the set operation

A group where the set operation is also commutative (i.e a-b = b-a) is known
as an abelian group.

For instance, one might use + as the set operation and 0 as the identity element.
Using these and the set of integers Z, we get a valid group, where we use integers
of opposite signs as pairs of inverses. On the contrary, the set of natural numbers
N does not form a group as one cannot define inverses.

Definition 2.2. Let a be an element a group G with identity 1 and - as group
operation. The order of a, is the smallest integer n such that:

(2.1) a-a-a- ... a = 1

n

The set {a,a?, a® a*, ...,a"} forms a cyclic subgroup of G of order n, where a is
called a generator for that subgroup.
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Definition 2.3. A field is an algebraic structure composed of:

A set of elements G closed under multiplication and addition

Addition and multiplication are both associative under the set G.
Addition and multiplication are both commutative under the set G.
The existence of inverses under both addition and multiplication
Multiplication is distributive over addition: a- (b+¢) = (a-b) + (a - ¢).
Distinct identities for multiplication and addition.

We call the characteristic of a field F' the smallest number n such that summing n
copies of 1 is equal to 0. For instance, if the characteristic of F', char(F'), is 2 and
the identity in F is 1, then 1+ 1 =0. If char(F) =3, then 1+ 141 =0.

Galois fields are fields that consist of a finite number of elements. One example
of such filed is the integers modulo a prime number p, Z,z, . With p elements, 0
to p — 1, we denote this set as GF(p). Note that this field is the combination of
two abelian groups, one under addition with identity 0, and one with multiplication
and identity 1, where in the latter case 0 is not taken to be part of the group set
to preserve the existence of inverses.

For the rest of this paper, we will be mostly interested in prime fields GF(p),
and more generally GF(q) where ¢ = p™ is the power of a prime.

3. ELLipTic CURVE CRYPTOGRAPHY (ECC)

While the idea of using elliptic curves in cryptography protocols was first intro-
duced in the 1980’s, it took about 20 years to see them become widely adopted.
Cryptosystems based on elliptic curves follow a very similar construction to other
protocols based on abelian groups, such as Diffie-Hellman-Merkle. As was discussed
earlier, the discrete logarithm problem has an analog in elliptic curves groups on
finite fields. This problem lies at the heart of elliptic curve cryptography where it
is conjectured to be harder to solve than on the multiplicative group Z,,.

3.1. Basics. We define an elliptic curve E(F) as a set of points in a filed F, satis-
fying an equation of the form:

(3.1) vV tazy+ay = a4 asz? + asx + as

Where ay, as, ..a5 € F. If we assume that the characteristic of the field is different
than 2, then this equation can be simplified to:

(3.2) y? = 2®+asz? +auz +as

This equation can be simplified further if the characteristic of the field is also
different than 3, thus giving the more familiar equation, known as the Weierstrass
normal form:

(3.3) v = 2+ ar +b oz, bas
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The following figure shows an elliptic curve in R2.

—y? =23 -22-1

FIGURE 1. An elliptic curve E in R?

We can define a group G over the set of solutions to the curve equation as follows.
The set of points on the curve E are the elements of the group G. We add another
point, the "point at infinity” (oo, c0), as the identity, and call it O.

Note that for each point P = (z,y) on the curve, the point P’ = (z, —y) must
also be on the curve. We let P and P’ be inverses in the group G. In particular,
P+ P =0 if 4 is the group law.

All we need now is a closed operation '+’ over the group GG. Given points P
and @ on the curve E and members of G, let R = P + @, be the point such that
P+Q—R = O. In the field R?, there is an easy geometric construction for R which
we illustrate below.

‘73/2:.’10372171

—R

FIGURE 2. The group law of G in R?, : Given points P and Q on
the curve E, we draw a line between P and Q). The line crosses the
curve E in a third point, —R. Taking the inverse (i.e the symmetric
across the x-axis), we get the point R = P + Q.
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Note that such construction is always possible unless P = @ or @ = —P (i.e the
line through P and @ is vertical). In the first case, one simply takes the tangent
to the curve at the point P and use the second intersection with the curve as the
point —R. In the second case, we let P+ —P = 0, and similarly P4+ O = P.

If P(x1,y1) and Q(x2,y2) are distinct points of F, then we can express the
coordinates of the point R(xs,ys) by solving for the intersection between the line
going through P and @ and the curve E:

y = T2—XT1

(y2=y1) T+y1m2—y221
yv=x3+ar+0b

Then the coordinates of R(x3, —ys3) are given by:

2
(3.4) vy = <M> oy

To — I
Y2~
3.5 = — 4+ — (23—
(3.5) Y3 <y2 $2—l‘1( 3 2)>
If P = @, then we take the intersection of the tangent line and the curve F,
which gives a simpler expression for R(x2,y2):

3 2
(3.6) 22 = 95217” ~ 2
1
322 +a
(3.7) Y2 = - (yl + 721 (g — Il))
Y1

Note that this expression includes the parameter a of the curve and not b as we
take the derivative of the curve to get the slope of the tangent line, and b vanishes.
Using this operation, we define scalar multiplication on the group G, by repeatedly
adding a point to itself: nP = P+ P+ ...+ P. One can compute nP efficiently

n
using a variation of repeated squaring, the double and add method:

Algorithm 1 Double and Add

Input: n, P

QOutput: out = nP

out =0

m = loga(n) + 1

: for i = m to 0 do
out = 2 out
if the it" bit of n is 1 then

out = out + P

end if

end for

return out

With this algorithm, we can compute nP in O(m) or equivalently, O(log(n)),
which is exponentially better than the naive linear algorithm, which consists of
adding P to itself n times.

Using scalar multiplication, one can create subgroups of GG, where the elements
of the subgroup are the multiples of a point P on E(F'). Note that nP + mP =
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(P+P+P..+P)+(P+...+P)=(n+m)P. This implies that adding multiples of
P yields another multiple of P, hence the subgroup of G formed by the multiples
of a point P is closed under the group law. Furthermore, the multiples of P form
a cyclic subgroup with some order k. Here P is a generator for the subgroup.

We would like to know the order of the subgroup generated by a point P. La-
grange’s theorem states that the order of the subgroup generated by P must be a
divisor of the order of the group GG. This implies that, knowing the order of GG, one
could generate all its divisors and test each of them in increasing order and choose
the first n such that nP = 0.

Luckily, Schoof’s algorithm allows us to compute the order of the set of points
on the curve E(F), where F is a finite field, in polynomial time. This algorithm,
presented in 1985, improved on the previously exponential algorithms for count-
ing the number of points on en elliptic curve over a discrete field [26, 27]. From
there, Largrange’s theorem implies that if the order of the curve is prime, then
the subgroup order is either 1 or p. If the order is p, then all the points on E(F)
are multiples of each other, or put simply, all the points are generators for that
subgroup. Therefore, given a curve E, one can check efficiently that the order of F
is a prime number ¢ and that therefore all subgroups of G on E(F'), have order q.

3.2. Discrete Logarithm and Cryptography. While computing nP can be
done efficiently using the double and add algorithm, the opposite problem, namely
finding n given P and nP can be made a particularly hard problem when the el-
liptic curve is taken over a finite field. This is known as the elliptic curve discrete
logarithm problem for which no efficient algorithm is known. Furthermore, while
the discrete factoring problem, for instance, can be solve in sub exponential time,
the best algorithms known to solve the elliptic curve discrete logarithm are purely
exponential [5].

Definition 3.1. Let E be an elliptic curve on some finite field F', and G the group
containing the points of E, and with group law + defined as above. Given a point
P in the group G, and a multiple of P, call it Q = kP where k is a scalar, the
discrete logarithm problem on elliptic curve is stated as follows:

Given P and @, find k, the discrete logarithm of ) in base P. In other words,
find the smallest integer k such that kP = Q.

Consider the field ), of integers modulo p, where p is prime. This field, because
it is finite, is sometimes referred to as GF(p). In this field we can define division
by taking the multiplicative inverse and using the multiplicative law, such that
x/y = x -y~ !. Computing multiplicative inverses can be done in O(log(p)) using
the extended Euclidean algorithm. Now a point P(z,y),z,y € IE‘Z%, is on the curve
if and only if, for a,b €: Ff), parameters of the curve, the following relationship is
verified:

(3.8) v> = 2 +axr+b modp

We now define the group E(F2), as the set of points in F which are on the curve
E. E(F}) forms an abelian group in the finite field F2, and the formulas given in
section 2 still apply, though one needs to do all the computation mod p.
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For the discrete logarithm problem to be difficult on elliptic curves, the order
of the cyclic subgroup needs to be large. All this requires is that the order of the
group G be a non smooth integer (i.e it is divisible by a large prime), and to find an
appropriate base point P. Let h the cofactor of the group G be a positive integer
such that h -k = |E(F)|, where k is the order of the subgroup generated by P. In
cryptography protocols, we usually try to have h < 4.

We now have a complete method for constructing the domain parameters re-
quired to set up the Elliptic Curve protocol, namely (p,a,b, G, k, k).

Algorithm 2 Constructing domain parameters

Input: p
Output: out = (p,a,b, P,k, h)
1: Select a random curve E on the field IF,, that is find random a and b.
2: Define the group G on E(F'), and use Schoof’s algorithm to find the order of
G.
3: Compute the divisors of |G|, and ensure that one of them is a large prime k.
In other words, find hk = |G|, such that the cofactor h of the group G is small,
say < 4.

4: if the order of G is smooth then

5:  Select a new curve, back to step 1

6: end if

7: Select a point P in G at random and compute nP using the double and add
algorithm.

8: if nP /= 0 then

9 n is not the order of the subgroup generated by P, go back to step 7.

10: else

11: k=n

12: end if

13: return out = (p,a,b, P,k, h)

Note that this procedure is computationally expensive. Curves are thus usually
pre-computed and form a families with particular properties. The main families of
curves used in ECC are presented next.

3.3. Special curves. There are special curves which are used in cartographic pro-
tocols to optimize certain computational steps. We give below the main families of
such curves:

o Koblitz curves over binary fields: these are of the form y?>+zy = 23 +ax?+1
with a € {0,1} over GF(2™) for m prime. These allow particularly fast
addition and scalar multiplication.

e Binary curves: these have the form y? 4+ zy = 23 + x? + b, where b is a
random number, and also allow efficient addition and scalar multiplication.

e Edward curves: these are of the form z? + y? = 1 + ax?y? with a € {0,1}.
These also fast addition and scalar multiplication but also a unique group
law operation which doesn’t change if P = Q, P # @, or P = —Q. These
are useful in avoiding side channel attacks which happen when an adversary
tries to learn information from the time the algorithm takes to compute.



ELLIPTIC CURVE CRYPTOGRAPHY: PRE AND POST QUANTUM 9

o Weierstrass curves over prime fields: These are the curves which were
discussed so far in this paper. They are believed to offer more security than
the Koblitz or Binary curves, although not as efficient of a computation.

In particular, NIST provides the following set of curves which can be used for
ECC protocols. Specifically, FIPS 186-3 recommends 10 finite fields [1]:

e Five prime fields F,, for certain primes p of sizes 192, 224, 256, 384, and
521 bits. Each prime is associated with a curve, for more or less security.

e Five binary fields Fom for m equal 163, 233, 283, 409, and 571. For each of
the binary fields, one elliptic curve and one Koblitz curve is recommended.

These curves all offer efficient computation and can be used in practice, assuming
of course that NIST did not find a way to make people use weak curves. There
exists, indeed, curves which are considered ”weak”, and should be avoided. We
discuss these in section 4 of this paper. Before this, the two protocols currently
suggested by the NSA in its suite-B algorithms are presented: the Elliptic Curve
Diffie-Hellman key exchange, and the Elliptic Curve Digital Signature Algorithm.

3.4. Elliptic curve Diffie-Hellman (ECDH). Alice and Bob would like to com-
municate over a secured channel using elliptic curve cryptography, avoiding the
man-in-the-middle attack. First Alice and Bob agree on a set of domain parame-
ters, as defined in the previous section. In the context of this protocol, there are
two types of keys:

e The public key in this cryptosystem is a point Q = nP

e The corresponding private key is the scalar n which takes P to Q.

ECDH is a key exchange protocol. We omit here the details of encryption using

the keys, which can be done in many ways, and focus instead on the establishment
of a shared secret between Alice and Bob. The protocol runs as follows:

(1) Alice and Bob each generate a public key and a private key pair (Q = nP,n).
Note that Alice and Bob both use the point P as a generator. We now have
two pairs (Qa,n4) and (@p,np).

(2) Alice and Bob exchange their public key over a potentially insecure channel.
An eavesdropper may learn @ 4 or Qg but won’t be able to compute n4 or
np, thanks to the difficulty of the discrete logarithm problem.

(3) Alice computes n4 - @Qp, and Bob computes ng - Q4. Alice and Bob now
share the point nanpgP. They can then use the x or y coordinate of the
shared point to establish a secured symmetric channel for communication.

3.5. Elliptic Curve Digital Signature Algorithm (ECDSA). Now, let’s say
that Alice wants to sign a message m so that Bob knows without a doubt that the
message came from Alice. This is the ECDSA protocol, which works as follows:

(1) For some message m, Alice takes a hash of m and truncates it so that it
has bit-length k, where k is the order of the subgroup generated by P in
G. Let z be the resulting truncated hash of m.

(2) Alice chooses an integer n such that 1 <n <k

(3) Alice computes @ = nP and r, the z-coordinate of the point @, modulo k.
If » = 0, then go back to step 1.

(4) Alice then calculates s = n=(z +7n4), where n 4 is Alice’s private key and
n~! is the multiplicative inverse of n mod k. If s = 0, go back to step 1.
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(5) The pair (r,s) forms the signature.

Note that step 4 requires computing the multiplicative inverse of n mod k. How-
ever this is only possible when the order of the subgroup of G is itself prime. Curves
with prime order are therefore essential in the use of ECDSA. Now to verify Alice’s
signature, Bob uses Alice’s public key A, and proceeds as follows:

(1) Bob computes u; = s~ 1z mod z
(2) Bob computes us = s~1r mod z
(3) Finally, Bob computes the point @ = u1 P+ u2 A and verifies » = g mod n

A proof of correctness is presented below:

Proof. We start with @ as described above. That is Q) = u3 P + us A, where A is
Alice’s public key, which is equal to n4G, for some number n 4, which is Alice’s
private key. Then:

(39) Q = U1P+’LL2dAP
(310) (U1 + UQdA)P

Now let s be such that s =n~1(z +rn,). Then:

(3.11) Q = (s'z+s'rda)P
(3.12) = s Yz+rda)P
(3.13) = nP

So in both cases we found the point ), which would have only been possible if the
message was signed by Alice’s private key. This completes the proof. ([

Elliptic curve cryptography takes an edge over RSA because of the shortness
of its keys for virtually the same level of security, which has made it popular in
the past decade [13]. One of the main disadvantage of ECC, however, is that the
curves usually need to be pre-computed in advance, as the domain parameters are
expensive to generate. Thus, there is the need to do a thorough analysis of the
curves used, when given by a third-party, like NIST. Furthermore, just like RSA,
Elliptic curve cryptography is subject to some classical attacks and most impor-
tantly the same quantum attack, which promises to break RSA: Shor’s algorithm.
Until then however, ECC, which has shown great promises in the past decade, will
likely continue to be used for the years to come.

4. CLASSICAL AND QUANTUM ATTACKS ON ECC

Elliptic curve cryptography, in the format presented in this paper, is vulnerable
to attacks by classical and quantum computers. In the classical case, the most
efficient algorithms have purely exponential running time. In the quantum case,
however, there exists a variant of Shor’s algorithm which can solve the elliptic curve
discrete logarithm problem in polynomial time. Presented below are some of the
weak curves to avoid in ECC protocols, and the reasons behind Sony’s attack a few
years ago. Then, the Pollard’s p algorithm is presented, as well as a brief overview
of Shor’s algorithm.
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4.1. Weak curves and Sony’s problem. Recall the domain parameters de-
scribed above : (p,a,b, P, k, h), where p is the prime number of for the field F),
a and b are the coefficients in Weierstrass normal form, P is the point of origin, k
is the order of the subgroup of G generated by P, and the group law.

Nigel P. Smart showed that when the curve’s group order is equal to the order
of the finite field, then the discrete logarithm can be computed in polynomial time.
Such curves should thus be avoided. More about Smart’s attack can be found here
[29]. Another set of curves which was shown to be vulnerable are what are called
super singular elliptic curves. For these curves, the elliptic curve discrete loga-
rithm can be reduced to a regular discrete logarithm in Z,, for which there exists
sub-exponential algorithms [18]. Super singular curves turn out to be useful in a
different cryptographic scheme which is presented in section 5 of this paper.

Sony a few years ago, suffered an attack on its ECDSA protocol. The issue with
Sony’s procedure was that they were using a fixed number n instead of a random
one in the ECDSA protocol. In this case, the following proposition holds:

Proposition 4.1. Let n the number chosen between 1 and k, the order of the
subgroup, for the signature algorithm ECDSA. If n is fixed, then we can recover
the private key n4 from Alice’s signature.

Proof. Let (r1,s1) and (72, s2) be two signatures Alice made on two different mes-
sages, using the same "random” number n. Since r = zg, where Q = nP, then
since n is fixed, we have r1 = ro. We also know that s; — s9 = n’l(zl —2z9) mod n,
where z; and 2o are the hashed truncated versions of the respective messages. Thus
we obtain n = (21 — 22)(s1 — s2) ! mod n. The private key can thus be recovered:

(4.1) na = 1 ‘(sin—z1) mod n

O

If n is not fixed, but somehow predictable, similar techniques can be used. This
is what happened to Sony in 2011 [15]. Sony was using a vulnerable pseudo-random
number generator for the seed n in the ECDSA signature scheme, which lead to a
similar attack to what is described above.

Another issue which is raised earlier in this paper is that the NIST curves may
be have been built with a backdoor, compromising their security. However, it is
possible to check that a curve was generated randomly, which suggests that it would
have been difficult to make it weak on purpose.

Proposition 4.2. Curve parameters generated by a hash function are verifiably
random

Proof. Given a random seed S, it is possible to generate parameters a and b using a
hash of s, H(s). Then an arbitrary function can generate a and b from H(s). The
idea is that given the parameters and the seed, one can check that the parameters
came form that seed. However, specifying a certain seed for desired parameters
requires to inverse the hash function, which is computationally very difficult. [

This should give some degree of confidence that NIST did not arrange the curve
parameters in a way that would make the curve vulnerable, but that these were
randomly generated instead.
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4.2. Pollard’s p attacks. Let an instance of the discrete logarithm problem on
elliptic curves be as follows. Given @ = nP, we would like to find n. Let k
be the order of the subgroup generated by the point P. Pollard’s p is the best
known algorithm for breaking elliptic curve cryptosystems on classical computers.
It runs in time roughly O(v/k), which is exponential in the number of bits of k, the
order of the subgroup of P. However, a rigorous analysis of Pollard’s p complexity
remains an open question [12]. Another method, the baby step, giant step algorithm
achieves a similar bound for time complexity but happens to require a large amount
of space, which makes it unpractical. Note that the running of Pollards’ p is purely
exponential, as opposed to the general number sieve which can also be used to solve
the general discrete logarithm problem on the multiplicative group Z,, and which
has sub-exponential running time.

The first step in Pollard’s p is to find integers a, b, c,d such that aP + bQ) =
c¢P + dQ, where the pairs (a,b) and (c,d) are distinct. If we just try all possible
pairs randomly we have an O(k?) running time. However, there is a more efficient
method, which is at the heart of Pollard’s p: Floyd’s cycle finding algorithm.

Algorithm 3 Floyd’s cycle finding algorithm
Input: P,Q
Output: out = (a,b,c,d)
: Choose a random sequence S of (a,b) pairs
: Use Pointers p1 = 0 and p2 = 0 to walk S.
while aP + bQ # cP + dQ do

p1=p1+1

p2 = p2 + 2

(a,b) = S[p1]

(¢, f) = Slp]
end while
return (a,b,c,d)

The correctness of the algorithm is immediate, as it only outputs when it found
a pair. The complexity of the algorithm is the part that is hard to analyze in
Pollard’s p but a probabilistic proof can show a bound of roughly O(vk), as stated
before. We can compute the group law operations using the double and add method
for efficiency. Note also that applying addition and scalar multiplication keeps the
resulting point in the cyclic subgroup. That is the subgroup is closed under the
group law. As for the termination of the algorithm, since the order of the subgroup
is finite and cyclic, it eventually finds a pair that works with 100% probability. Now
that we have the (a,b) and (c,d) pairs, Pollard’s p is a simple computation.

Algorithm 4 Pollard’s p

Input: P,Q
Output: out =n
1: Use Floyd’s cycle finding algorithm to find two pairs (a,b) and (c,d) such that aP +
bQ = cP +dQ
2: Thenn = (a —¢)(d —b)~1 mod k, where k is the order of the subgroup of generated
by P, which includes @ or any linear combination of the two
3: return n
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A proof of correctness is given below.

Proof. Given two pairs (a, b) and (c, d) distinct such that aP 4+ bQ = c¢P + dQ, we
can compute n, such that Q = nP as follows.

(4.2) aP+bQ = c¢P+dQ

(4.3) aP+nP = c¢P+dnP

(4.4) (a—c)P = (d—b)nP

(4.5) (a—c)P = (d—bnP modk

(4.6) (a—c¢) = (d—0bn modk

(4.7 n = (a—c)(d—b)~' modk

O

In practice, it takes months for Pollar’s p to be able to break a standard elliptic
curve protocol. There is reason to believe that elliptic curves will remain at the
center of public key cryptography for many years before we really need to worry
about quantum computers. The next section covers a brief overview of Shor’s
algorithm for the discrete logarithm problem, which can be applied to elliptic curves,
and any abelian group in general, to solve the hidden subgroup problem. Should
be be able to build quantum computers, major changes to the current public-key
cryptosystems will have to be made. All thanks to Peter Shor, who in 1994, showed
that a quantum computer could factor large numbers or take the discrete logarithm
over a finite filed in polynomial time. The following section provides a brief overview
of the intuition behind the algorithm.

4.3. Shor’s Algorithm for The Elliptic Curve Discrete Logarithm Prob-
lem. Shor’s algorithm involves heavy quantum computation, which is beyond the
scope of this paper. However, we give intuition for the algorithm using the discrete
logarithm on finite prime fields. For a more formal description of the algorithm,
see [28].

Quantum computers have an interesting ability. Instead of computing over bits,
which are either 0 and 1, they compute on what are called qubits and represent a
probability to be either a 0 or a 1. We say that the quibit is in a superposition of the
0 and 1 state. This fact is important. It is a common misconception that quantum
computers can perform their computation in parallel, which is a bad representation
of what is actually happening. A quantum computer works on probability distri-
butions, which in a sense allows it to perform operations which can impact many
states at a time by changing a quibit’s probability distribution, but the resulting
state is limited. While we may be able to produce a computation over superposition
of states, when measuring the state of a quibit, we get a single random value . We
say that the wave function collapses when measuring the quibit forcing it into a
definite state (i.e not a superposition).

Suppose we have g" =z mod p. We wish to find r. Let f : Z, x 1, = Zj, be the
following function:

(4.8) f(a,b) = g%~ modp
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Shor’s algorithm uses a particular procedure on quantum computers, called the
quantum Fourier transform, QFT. Here quantum computing offers an exponential
speedup in comparison to the classical FFT, which is really the key to the polyno-
mial running time of Shor’s algorithm. We don’t present the QFT in this paper but
assume we have some black box which can perform the QFT. The QFT allows to
find the periods of the function f over a and b. These periods have the interesting
property that for a a pair (¢, d), output of the QFT, we have the relation d+cr =0
mod (p — 1). Now, as long as we find c such that ged(c,p — 1) = 1, then we can
recover r by taking d + ¢r modulo p — 1. A similar trick can be used with ellip-
tic curves where we use the additive group law and scalar multiplication instead
of multiplication and exponentiation. The math behind the choice of function f
is a little elaborate and is omitted for simplicity. For a detailed implementation
of a polynomial time quantum algorithm for the elliptic curve discrete logarithm
problem see [23].

5. SUPER SINGULAR ELLIPTIC CURVE ISOGNENIES AND POST-QUANTUM
CRYPTOGRAPHY

Shor’s algorithm poses a serous threat to current public key cryptographic sys-
tem. While quantum computers remain mostly theoretical, large organizations such
as the NSA have already made moves toward the use of quantum resistant cryp-
tography, in prevention of these future possible attacks [2]. Sadly, the day that
quantum computers can work with a practical number of qubits will mark the end
of Elliptic Curve Cryptography as we know it. As was noted previously, the dis-
crete logarithm on abelian groups can be broken in polynomial time using Shor’s
algorithm on a quantum computer. In order to create quantum resistant schemes,
one can for instance look at non abelian groups, where Shor’s algorithm does not
apply. For this section of the survey, we focus on the development of a new encryp-
tion method, also based on elliptic curves, which has given hopes of being quantum
resistant. This method is based on isogenies of super singular elliptic curves and
was suggested by De Feo and al. in 2014 [8]. Because of its recent discovery, this
encryption scheme will require more attention and research from the cryptography
community in order to affirm its security. As a side note, the first Diffie-Hellman-
Merkle key exchange equivalent on elliptic curve isogenies was first suggest in 2006
[25]. However, the protocol used ordinary curve, for which a subexponential quan-
tum algorithm was found in 2014, which motivated the use of super-singular curves
[7]. We define the necessary terms below and look at the Diffie-Hellman-Merkle key
exchange equivalent for supersingular curve isogenies.

5.1. Basics. The key exchange uses super singular curves over [Fj2> for some prime
p. Supersingular cuvres can be defined in many ways.

Definition 5.1. For this particular field, we define a supersingular curve as having
no points order p, and in particular the curve as p+ 1 points. These types of curve
have unusually large endomorphism rings.

Definition 5.2. An isogeny is a rational map from a curve E to a another curve
E’ such that |E| = |E’|. That is the number of points on the two curves is the
same.
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Definition 5.3. The j-invarient of a curve E, namely j(FE), is a function which
is fixed over sets of isomophic curves and which can be computed from a given
curve’s parameters. In particular, for a curve with equation y? = 22 + ax + b, the
j-invarient is given by :

4a3
4a3 + 27b?

The following protocol is shown for intuition and global understanding of the
encryption scheme. For a formal proof of correctness and complexity, see [8]

J(E) = 1728

5.2. Key exchange protocol. Before starting the protocol we need the publicly
available domain parameters:
e A prime p of the form p = a®b?
d are arbitrary elements in 2.
e A super singular curve E over F»
e Points Pa,Q 4, Pg,@p on the curve, such taht the order of P4,Q4 is a®
and the order of Pg,Qp is b?

We now detail the protocol:

+ 1, were a and b are small primes and b,

(1) Alice and Bob each generate two random integersm,,, n, < a® and my, ny <
be.

(2) Alice and Bob use their randomly generated integers to computer a linear
combination of P4Q4, and Pg,Qp. We get R4 = myPa +n,Q 4

(3) Alice uses R4 and Bob Rp to create isogenies ¢4 and ¢p

(4) Using their respective isogenies, Alice and Bob create points ¢ 4 (Pa), ¢a(QAa)
and ¢p(Pg), ¢p(Qp) on the curves E4 and Ep, images of E by their re-
spective isogenies.

(5) Alice sends FA,pa(Pa),04(Q4) to Bob, and Bob does the same with
Ep,¢B(PB),¢5(QB)

(6) Now Alice and Bob can compute S4 and Sp such that:

Sa = mapp(Pp) +n.9(QB)
Sp = mppa(Pa) +nppa(Qa)

(7) Using Sa and Sp, Alice and Bob each create a new isogeny ¥4 and ¥p.
These isogenies take E to the isogenous curves E4 B and EgA, respectively.
(8) The j-invarient of the curves E4B and EpA is the same, and forms the
shared secret k between Alice and Bob. The actual key is a function of k.

Security and Quantum. The reasons for which the j-invarient is the same for
two curves involves an elaborate background, which is also beyond the scope of
this paper. However, one can see how the Diffie-Hellman-Merkle protocol is easily
applicable to other mathematical structures. Elliptic curves in particular offer both
a classical encryption using ordinary curves and a potentially quantum resistant
scheme using super singular curves.

The main reason that the scheme is believed to be quantum resistant is that it
is based on a non-abelian group: the set of isogenies of for a given elliptic curve
and the operation of composition. This is fundamentally different from the other
protocols discussed in this paper, which are based on abelian groups, and thus, are
candidate to Shor’s attack. It is currently an open question in quantum computing
of whether the same kind of polynomial time algorithm exist for non-abelian groups.
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For its small keys, the isogeny based protocol has strong arguments to replace
ECC. More research will be however necessary before their security has been sup-
ported to the point of practical use. There are also many other classical public
key methods which are also based on non-abelian groups and are believed to be
quantum resistant. To name a few: lattice based cryptography is the one which
has been the most researched to this day [19], multivariate equations, error codes,
and hash based cryptography are also potential candidates. For a comprehensive
overview of these different methods see [6, 21].

6. CONCLUSION

Elliptic curve cryptography, since the beginning of its wide adoption in the early
2000’s, has brought considerable improvements to its predecessors by dramatically
reducing the key size required for the same amount of security. ECC, however, like
other cryptographic methods based on abelian group arithmetic, is threatened by
the rise of quantum computing and will most likely be obsolete once these comput-
ers become a reality. This should however not discourage elliptic curve enthusiasts.
First, elliptic curve will be around for a long time before quantum computers are
able to break the protocol. Second, elliptic curves are fascinating mathematical
structures which hold many interesting properties. As we discuss in the second
part of this paper, another possible use of elliptic curves resides in isogeny based
cryptography, which may prove to be quantum resistant and thus a natural succes-
sor to ECC.
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