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Abstract. Chip firing is a one-player game where piles start with an initial

number of chips and any pile with at least two chips can send one chip to the

piles on either side of it. When all of the piles have no more than a single chip,
the game ends. In this paper we review fundamental theorems related to this

game on a two dimensional number line, including the fact that termination

and final configuration are independent of the sequence of moves made and
prove the number of moves required for termination is bounded. We then

extend the game to consider distinct chips also on a two dimensional number

line, where chips are represented by integers and firings result in a comparison
of two chips in a pile such that the smaller is sent left and larger is sent right.

We prove that for odd numbers of chips some final configurations are sorted
while others are unsorted and conjecture that for even numbers of chips the

final configuration is necessarily sorted.

1. Introduction

Chip-firing as a field is relatively young compared to most areas of mathemat-
ical research. The first chip-firing game was described by Spencer in 1986 when
he wrote a paper about a so-called “balancing game”. Interestingly, he did not
set out to study the properties of a chip-firing process, but instead was studying a
vector balancing problem where he tried to assign positive or negative labels to a
set of vectors such that when multiplied by their label, the sum of all the vectors
was within a certain bound. His answer, however, came in terms of what is now
considered to be a chip-firing game. [3]

In Spencer’s original game a pile of chips begin at the origin of an infinite two
dimensional number line of piles. On each move, every pile of chips sends half of its
contents one pile to the right and the other half of its contents one pile to the left.
When a pile sends its chips to its neighboring piles it is said to have been fired. If
it contains an odd number of chips, a single chip remains in its original pile. This
process continues until each pile contains no more than a single chip and it is no
longer possible for any chips to move as a result. We will formally describe this
process in the next section.

Naturally, once other mathematicians were introduced to the idea, they sought
to generalize it so it could be applied to more processes. In 1989 R.J. Anderson, L.
Lovász, P. Shor, J. Spencer, E. Tardos, and S. Winograd generalized the process
to allowing the player to only move a single pair of chips at a time in their paper
Disks, balls, and walls: analysis of a combinatorial game. Their paper is the focus
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of this summary paper, and we will explore and restate their results in the third
section. In particular, we ask ourselves natural questions such as: Which piles are
able to ever hold chips? Will the firing process ever end? If so where will the chips
be when it does? And how many firings will be needed until it does?

Since the work of Anderson et al. the idea has been generalized beyond a two
dimension number line onto arbitrary graphs, both directed and undirected. Fur-
thermore, shortly after Spencer’s work, theoretical physicists studying the toppling
of sandpiles and pink noise introduced a similar idea they called the Abelian Sand-
pile Model [4]. In general, the two describe the same process, and so the ideas
explored in this paper are often referred to as both chip-firing and the Abelian
Sandpile Model. While these more general ideas are not explored within this pa-
per, the reader is encouraged to explore them at their leisure.

Since this field of research is still young, there are still many open questions and
interesting variations that have not been fully explored. In the last major section
of this paper we present one such variation where the chips are considered to be
distinct. We explore some very basic results, such as showing final configurations of
odd numbers of chips can either be sorted or unsorted, but the problem in general
for even numbers of chips is still open.

We’ll begin in section two by restating Spencer’s original game. Then, in section
three we recap classical results on the more general game as described by Anderson
et al. Finally in section four we extend to the case where chips are considered to
be distinct.

2. Preliminaries: Spencer’s Original Game

Formally, Spencer’s original chip-firing game can be defined as follows:

Let Ai,t be the number of chips in the ith pile on the tth timestep. Then we can
write the following recurrence relationship for this process:

Ai,t = bAi−1,t−1

2
c+ bAi+1,t−1

2
c+ ai,t−1mod 2

.

In this recurrence the first term refers to the chips that come from the pile to the
left, the second term refers to the chips that come from the pile to the right, and the
third term refers to the chip that may remain stationary in the pile on a given move.

We’re specifically interested in the initial conditions

Ai,0 =

{
2n + 1 i = 0

0 i 6= 0
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Figure 1. Chip-Firing Game. To transition from the first to sec-
ond configuration the pile at the origin is fired. Then to transition
to the third it is fired again. The transition from the third to fourth
configuration takes a single move in Spencer’s original game where
all piles are fired simultaneously, but two moves in the generalized
game where the pile at −1 and pile at 1 must be fired individually

Throughout many of the proofs, we are interested in which piles chips are present
in and how many chips are in each pile. To this end, we make the following definition
that describes the placement of chips.

Definition 2.1. Configuration
Let the assignment of chips to piles be called the configuration. We say that two
configurations are the same if corresponding piles with the same position relative
to the origin contain the same number of chips in both of the configurations.

However, as is sometimes the case in mathematics, in order to answer the ques-
tions we have about Spencer’s original game we seek to describe the results of a
more general chip-firing game.

Our more general version of the game is largely set up the same, except on each
turn we fire only a single pile and from this pile we move only a single pair of
chips, again sending one to the right and one to the left. The example in Figure 1
illustrates the process. The termination condition remains unchanged. This game
is more general in the sense that there is a series of moves in this game that mimics
the behavior of Spencer’s original game and therefore anything we can show for any
sequence of moves in the more general game must also apply to Spencer’s original
game.

3. Classical Results: Anderson Et Al’s Generalization

We consider the more general game as presented above, with 2n+ 1 chips begin-
ning at the origin. The following lemmas, theorems, and proofs in this section are
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Figure 2. Lemma 3.1: x and y are two consecutive unoccupied
piles. If x was fired last, one chip would have been moved both left
and right as indicated by the arrows. However, this would have
put a chip into pile y resulting in a contradiction.

adapted from the paper of Ansderson et al. who originally explored this variation.

A natural question is to consider whether or not such a game would terminate,
and if so what sort of final configuration the chips might be left in when it does. To
this end, we begin with a series of lemmas to build up to a pair of theorems that show
that there is only a single final configuration and describe the final configuration.

Lemma 3.1. It is impossible to have two unoccupied piles in a row that fall between
occupied piles on either side. [1]

Proof. We proceed by contradiction. Consider the two piles labeled x and y in
Figure 2. Since there are occupied piles on either side of x and y and all the chips
began at the origin and can move only a single pile in each turn, at some point both
x and y must have been occupied. Suppose, without loss of generality, that pile x
was the last occupied of the two. Then, in order for x to now be empty, x must
have been fired. However, firing x means that a chip must have been moved from x
to y and y must have been occupied after x was occupied. This is a contradiction,
and therefore it is impossible to ever have two unoccupied piles between occupied
piles. �

Next we set to bound how far away from the origin the chips are able to move.

Lemma 3.2. Chips never move outside the range of piles [-4n,4n]. [1]

Proof. We have 2n+ 1 chips and as a result of the previous lemma, there can be at
most 2n interior empty piles if there is one empty pile between each of the occupied
piles. As a result, we know that the range of the chips must always be less than
or equal to 4n + 1. An example of this is shown in the Figure 3. The final thing
to notice is that after the first move where all the chips begin at the origin, there
must always be chips on both the positive and negative sides of the origin. As a
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Figure 3. Lemma 3.2: Consider this example of n = 2. There are
5 chips, and at most 4 interior empty piles, since there can never
be two empty piles in a row. The total possible maximum range
between chips is therefore 9. As a result none of the chips can ever
move outside of [−9, 9] since the chips can’t all be on the same side
of the origin.

result, we know that the chips can never move more than 4n from the origin in
either direction. �

Note that this bound is not tight, as we will show later. Also of interest is how
many moves it takes before we reach the final configuration.

Lemma 3.3. The number of moves, M , until completion is bounded by 16n3+8n2.
[1]

Proof. Let ai be the number of chips in the ith pile in the final configuration. We
consider the sum of the squared distances from the center, which we can write as
D =

∑
i ai ∗ i2. In the very worst case, all of the chips are at either 4n or −4n

at termination, since we determined in the last lemma that no chip can ever move
outside these bounds. Therefore, we know that

D =
∑
i

ai ∗ i2 ≤ (2n + 1)(±4n)2 = 32n3 + 16n2

Then we consider what happens to the sum of the squared distances for each move
that is made. If pile i is fired, then we add a chip to pile i − 1, add a chip to pile
i + 1, and take two away from pile i so

∆D = (i + 1)2 + (i− 1)2 − 2i2) = 2

This means that for every move that is made, the sum of the squared distances
increases by two. Since we’ve bounded D ≤ 32n3 + 16n2 this means that there can
be at most M ≤ 16n3 + 8n2 moves. �

Asymptotically this means that the number of moves needed until termination
is O(n3). A natural question, of course, is how tight this bound is. The actual
number of moves to completion is actually the same regardless of the sequence of
moves made, and equals [2]

M =
k(k − 1)(2k − 1)

6

where

k = bn + 2

2
c.
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Figure 4. Lemma 3.5: The red arrows and numbers show the
changes in number of chips in each pile when x is fired. The green
arrows and numbers show the changes in number of chips in each
pile when y is fired. Notice that because addition commutes, the
total number of chips in each pile is the same regardless of whether
x is fired and then y or y is fired and then x.

Notice that this is also O(n3) so our rough bound above is fairly tight.

Corollary 3.4. The chip-firing game must terminate

Proof. In the previous lemma we proved that number of moves is bounded. Since
one move occurs on each time step, the number of time step must also be finite and
therefore the game must terminate. �

We need one final supporting lemma, before we can prove that there is only a
single final configuration that is always reached.

Lemma 3.5. Moves Commute [1]

Proof. Consider two subsequent firings of piles x and y, where x and y are distinct.
There are two cases, either x and y have more than a single pile between them or
x and y have at most one pile between them.

If the two piles have more than a single pile between them, there is no overlap
between the piles affected when they are fired. As a result, it doesn’t matter in
which order the two are fired, the result must still be the same.

In the other case, we first note that firing a pile only adds chips to other piles
so it cannot make a pile that previously was able to fire unable to subsequently
fire. Then, we note that the affects of firing the two piles amount to additions and
subtractions from the relevant piles. Since both addition and subtraction commute,
the moves also commute.
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Figure 5. Theorem 3.8: We claim that A is the last configura-
tion with two final configurations as descendants. We then consider
making moves x and y such that the two resulting configurations
result in different final configurations. However, since moves com-
mute, we then apply moves y and x such that both end up in
configuration B. Then, B must have both final configurations as
descendants, resulting in a contradiction

Therefore, starting from configuration A and making move x followed by move y
must result in the same configuration as starting from configuration A and making
move y followed by move x. �

We are now ready to prove our first major result, that there is only a single final
configuration but first we need the following two definitions.

Definition 3.6. Descendant
We say that configuration B is a descendant of configuration A if there is a sequence
of moves that transforms configuration A into configuration B

Definition 3.7. Final
We say that a configuration is final if there are no more piles that can be fired.

Theorem 3.8. There is only a single final configuration for the chips [1]

Proof. We assume for the purposes of contradiction that there are at least two
final configurations. We choose the last configuration A such that it has two final
configurations but each of its descendants has only a single final configuration. We
consider, as shown in Figure 5, the configurations A′ and A′′ that come from firing
piles x and y respectively. However, as we proved in the previous lemma, moves
commute, so making move y and x from configurations A′′ and A′ respectively both
result in configuration B. However, this means that configuration B must be able
to reach both final states. This is a contradiction because we said that A was the
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last state that was able to reach both final states. Therefore, there can only be a
single final configuration. �

The natural next question, once we’ve shown that there’s only a single final
configuration is to show what the final configuration that must be reached is. That
is our next major result. We take advantage of the fact that since there is only
a single final configuration, we can choose the sequence of moves which makes
it easiest to determine the resulting final configuration and know that this final
configuration also applies to any other sequence of moves that we could have made.

Theorem 3.9. A pile of 2n + 1 chips at the origin results in piles of size 1 on the
interval [−n, n]. [1]

Proof. We claim that there is a sequence of moves that can transform m consecutive
piles of size 1 followed by a pile of n chips followed by another m consecutive piles of
size 1 into m+1 consecutive piles of size 1 followed by a pile of n-2 chips followed by
another m+1 consecutive piles of chips of size 1. Such a sequence of moves makes
it clear that the resulting final configuration must be piles of size 1 on the interval
[−n, n] since the center pile is slowly reduced to one as the piles expand outwards.
This is illustrated in the example below.

9
1 7 1

1 1 5 1 1
1 1 1 3 1 1 1

1 1 1 1 1 1 1 1 1

We now describe the sequence of moves that makes this possible. At each time
step, we simply fire all of the piles that are able to be fired at the same time.
Consider the patterns apparent in the following example we borrow from Anderson
et al. [1]:

1 1 1 1 3 1 1 1 1
1 1 1 2 1 2 1 1 1
1 1 2 0 3 0 2 1 1
1 2 0 2 1 2 0 2 1
2 0 2 0 3 0 2 0 1

1 0 2 0 2 1 2 0 2 0 1
1 1 0 2 0 3 0 2 0 1 1
1 1 1 0 2 1 2 0 1 1 1
1 1 1 1 0 3 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

An alternating sequence of 2s and 0s ripples outwards from the center until it
reaches the most extreme piles. Then a single chip is pushed one spot further out
in both directions, and another alternating sequence of 0s and 2s retreats towards
the center. Once it reaches the center, we realize that we have reduced the center
pile by 2 and added another pile of size 1 on both sides of it. This is exactly the
sequence of moves that we sought to describe. Then, this sequence of moves can
be applied over and over again until the configuration is fully reduced, each time
firing the center pile, rippling the effect outwards, and then back inwards until only
a single chip remains in the center. �
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Figure 6. Distinct Chips: In the above example, first chips 3 and
4 were compared, and 3 is smaller so it was sent left while 4 is larger
so it was sent right. Now, on the next turn, we are comparing 2
and 5. Since 2 is less than 5, 2 will be sent to the right and 5 will
be sent to the left.

To extend this result to an even number of chips, note that there is a single
chip that remains in the center for all time and never moves. If we instead began
with only 2n chips at the origin, by the same argument we’d end up with chips on
[−n,−1] ∪ [1, n] with a single empty pile at the origin.

Now that we’ve proved these results about this more general game, we return
to Spencer’s original game. As we stated early in the paper, there is a sequence
of moves such that the more general game models Spencer’s game. Since the more
general game has the same final configuration regardless of the sequence of moves
made, Spencer’s game must also have this same unique final configuration.

4. Distinct Chips

In the previous chip firing games all of the chips were considered to be identical.
As a result, when we considered configurations we were only concerned with the
number of chips in each pile. Now we’d again like to consider the case where we
again have chips that begin at the origin, but the chips themselves are distinct. We
represent the chips by the integers 1 through 2n+1. Now, on each firing, we choose
two of the chips from the pile to compare and move the smaller of the two one pile
to the left and the larger of the two one pile to the right. An example of this is
shown in Figure 6. Other than this, the game is identical to the general version
presented above, and as such all of the previous lemmas and theorems still apply
to this case. Now, however, we are interested not only in the number of chips in
each pile when we talk about configurations, but also what the chips are that exist
in each pile.

Recall that the final configuration must be piles of size 1 on [−n, n] for odd
numbers of chips and piles of size 1 on [−n,−1] ∪ [1, n] for even numbers of chips.
Of interest, however, is the final position of the chips relative to each other in the
final configuration. We begin with a definition of one possible final configuration
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of the chips relative to each other.

Definition 4.1. Sorted
We say that a final configuration is sorted if for every pile the chips in piles to its
left are less than the chip it contains and the chips in piles to its right are greater
than the chip it contains.

We claim that for every odd number of chips there is both a sequence of moves
such that the final configuration is sorted and a sequence of moves such the final
configuration is not sorted. To show that there is a final configuration in which the
chips are not sorted is slightly easier, so we begin with this result.

Lemma 4.2. There exists a sequence of moves for every odd number of chips such
that the final configuration is not sorted

Proof. Consider the sequence of moves that we used above to prove the final con-
figuration for an odd number of chips. Notice that there is a single chip, which ends
up in the middle, that never moves from the center position. Since we choose which
chips to compare in a given pile, if we never choose a given chip for a comparison,
it will remain stationary for all time and therefore occupy the center location in
the final configuration. If we choose this chip to be anything other than the middle
element, the resulting configuration will not be sorted. �

While it is possible to adversarily make comparisons such that the resulting
configuration is not sorted, the next lemma shows that it is also possible to ad-
vantageously make comparisons such that the resulting configuration does end up
sorted.

Lemma 4.3. There exists a sequence of moves for every odd number of chips such
that the final configuration is sorted

Proof. Each time you choose a pile to be fired, choose the smallest and largest
elements that it contains to be the elements used in the comparison. This allows
us to maintain the invariant that a chip never ends up to the left of something
that is smaller than it. To see this, suppose that the invariant was broken and
consider the firing that broke it, such that the invariant was true before the firing.
For the invariant to be broken by the firing, the chip that is moved left must be
smaller than something that is now to its right. However, the only chips to its
right that were not previously to its right are the other chips in the pile that was
fired. For the invariant to be broken, one of these elements must be smaller than
the element that was moved left, but this is a contradiction because we chose the
smallest element in the pile that was fired. If the invariant is always true, then in
the final configuration, no element is to the left of something smaller than it, so the
configuration is necessarily sorted. �

Conjecture 4.4. Conjecture: For every sequences of moves for an even number
of chips the final configuration is sorted.

At this time, to the best of my knowledge this conjecture is still an open ques-
tion. While tricky to prove, it is easy to explore through simulation by writing a
short script.
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Running repeated simulations re-enforces our conjecture and fails to provide an
obvious counterexample. It is easy to see that the smallest chip must end up in
the position farthest to the left and the largest chip must end up in the position
farthest to the right since nothing can ever be fired to the extreme side of the
smallest and largest chips. Interestingly, simulation shows that other than these
two extreme chips, all of the interior chips appear to end up being compared to
the other interior chips that ultimately occupy neighboring positions in the final
configuration, regardless of the sequence of moves made. While this doesn’t imme-
diately imply that the final configuration must be sorted, as an observation it may
provide inspiration as to why this is necessarily the case.

5. Final Remarks

Since chip firing has only been studied for about the past thirty years, it is
still a very exciting area of research. The results originally proven on the infinite
number line, as repeated above, have since been extended to both directed and
undirected graphs. Chip-firing as a process is also interesting because of the multi-
disciplinary implications it has. The process is important to theoretical physicists
who are interested in its applications to frequency in noise and sandpile shapes
and to theoretical computer science, where sorting, such as the process explored
in the last section of this paper, is often of interest. Furthermore, this may have
applications to latencies in networks and load balancing. It is likely in the coming
years as researchers have even more time to explore this area even more exciting
and novel results are produced.
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