
18.100A Assignment 1 due Fri. Sept. 7, at 1:05 in 4-163

Directions: This first assignment is diagnostic, to give some idea of how well you can
write a coherent argument in decent style, find errors, use basic calculus and elementary
mathematics, read a proof in the book and adapt it to an analogous question.

Therefore, no collaboration, outside help (except from me – see below), looking up
problem sets from previous years, etc. is allowed on this first assignment.

For subsequent assignments, the rules given in the “18.100A Information” sheet on the
website and distributed in class apply.

I will be available this Thursday afternoon 3:10 - 5:15 (2-241, 3-4345, mattuck@mit.edu)
in person and by e-mail for brief individual conferences or hints for those who are stuck on
a problem or having general difficulties with the assignment, but you should first have tried
the problems yourself and be able to point to where you are having trouble.

I’ll check e-mail Wed. evening around 8 and 11, Thurs. evening around 10-11, maybe
also Fri. morning early for those who live dangerously.

Reading:
Chapter 1: 1.1-1.3 and 1.6 go quickly and shouldn’t be hard – 1.1 is for background

motivation, and you can skip the argument for Theorem 1.3.
Sections 1.4 and 1.5 are more substantial; 1.5 is needed for Problem 2 below.

2.1-.3 are elementary, but also the most common source of error all semester.
Appendix A.1-A.4 Background, read as needed. Specific topics there (induction, coun-

terexample, and contraposition are used in the Problems below.

This first problem uses induction (A.4), 1.1-1.3, and 1.6, and 2.1. It has several parts;
later parts depend on the earlier ones. If you are uncertain about how to do one of the
parts, you can still use what it states in the subsequent parts.

Problem 1. (3: .5,.5,1,.5,.5) Define a sequence {xn} recursively by

xn+1 =
√

2xn − 1, x0 = a, where a > 1 .

(Note: by convention,
√

b, for b > 0, always means the positive square root.)

a) Work Question 3(i) at the end of section 2.1 . (Follow the hint given.)
b) Prove by induction (App. A.4) that xn > 1 for all n ≥ 0.
c) Prove that {xn} is strictly decreasing.
d) Prove the sequence has a limit, using the ideas in Chapter 1.
e) Prove the limit is 1, for any a > 1.

(For part (e), you may assume that if bn is a positive monotone sequence having the limit

L, then
√

bn has the limit
√

L.)
In addition, you can use this elementary theorem about limits of monotone sequences:

Theorem. If c is a constant, and an, bn, anbn, an+bn are bounded monotone sequences,

lim
n→∞

c an = c lim
n→∞

an;

lim
n→∞

anbn = lim
n→∞

an · lim
n→∞

bn;

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

(If you used backwards reasoning (cf. Q1.4/1 Answer) in (b) or (c), any non-obvious steps
of the form: [line k ⇒ line (k-1)] should be justified.)



Problem 2. (3.5: 1.5,2) Read 1.5, and by adapting the arguments in the two proofs on
page 9, using comparison with the area under a curve and calculus, prove the following:

Consider the strictly increasing sequence xn =
1

12
+

1

22
+

1

32
+ . . . +

1

n2
, n ≥ 1.

a) Prove it is bounded above by 2; deduce that it has a limit L ≤ 2.

b) Prove that the “tail” sequence {xn}, n ≥ N , is bounded below by 3/2, for some
number N .

(Since the sequence is increasing, this can be done by simply calculating xn explicitly,
for increasing values of n until it grows larger than 3/2, but that won’t teach you anything.
Instead, use geometric reasoning and calculus, as in the proof of Prop. 1.5B.

Place the rectangles correctly on the picture so you can show the sum 1

22 + 1

32 + . . . + 1

n
2

is larger than the area under the curve from 2 to n+1, plus some triangles whose total area
you can calculate, and in this way determine a value of N which works. (Don’t forget the
first rectangle, which this calculation omits.) What’s the smallest such value of N?)

This shows that 3/2 ≤ L ≤ 2. The actual value of L is π2/6 ≈ 10/6.

Problem 3. (3.5: 1,1,.5,1) The proof of Prop.1.4 begins with the inequality (≥ includes
h = 0):

(1 + h)2 ≥ 1 + 2h, for all h. A generalization of this would be

(1) (1 + h)n ≥ 1 + nh, for all h, and n ≥ 1.

Proof by induction: (cf. App. A.4, Examples A and B) The basis step P (1) is trivial;
the induction step P (n) ⇒ P (n + 1) is proved in three steps:

(1 + h)n+1 = (1 + h)n(1 + h),

≥ (1 + nh)(1 + h), since P (n) is true,

≥ 1 + (n + 1)h, since nh2 ≥ 0.

a) Find a counterexample to (1) (cf. App. A.3 for “counterexample”).
b) Since the counterexample shows that (1) is false as stated, find and describe the error

in the above proof.
c) Give the weakest hypothesis (i.e., condition) on h for which the proof above will be

valid (cf. A.1 p. 405 for “weakest”).
d) Find a value of h which does not satisfy the condition in (c), yet for which the inequality

(1) is still valid for n ≥ 1.

Remarks:

Part (b): if you’re stuck for more than 10 minutes, take the trace of your counterexample
in the proof – i.e., substitute the numerical values of n and h used by the counterexample
into each successive line of the proof, and see where it goes wrong; then explain in general
where the error lies.

Part (d): this shows that the failure of a method of proof – induction, in this case –
doesn’t show that a statement is false, since someone might come along with a different
method of proof which succeeds.

Remember this; it will haunt us throughout the semester!


