18.100A Practice Problems for Exam 2 F-12 120 minutes (exam is 80 min.)

Directions: You can only use the book; cite relevant theorems when asked to.

1. A function f(x) has three distinct zeros $a_0 < a_1 < a_2$ on an interval I, and in addition $f'(a_2) = 0$. Assume f(x) has a third derivative f'''(x) at all points of I.

Prove there is a point $c \in I$ such that f'''(c) = 0.

2. Let $f(x) = \frac{1}{\sqrt{1+x}} = (1+x)^{-1/2}$. Find the best lower and upper quadratic estimates of the form $1 - x/2 + Kx^2$, valid on [0, 3], given by the Linearization Error Theorem.

3. For what values of the constant k > 0 will the equation $\frac{\ln x}{x} = k$ have no solutions? (You can use instead the alternative form $\ln x = kx$; in either case, make a good drawing, show calculations and brief reasoning; cite relevant theorems.

4. Prove from a definition of continuity: $f(x) = \int_0^1 \frac{dt}{1+xt^4}$ is continuous at 0.

5. a) A function f(x) is defined on all of **R**, and its secants (i.e., line segments joining two arbitrary points (x', f(x')) and (x'', f(x')) on its graph) have bounded slope.

Prove f(x) is uniformly continuous on I.

(Note that I is not compact, and f(x) is not assumed to be differentiable.)

b) Give an example of an f(x) which satisfies all the hypotheses of part (a) but is not differentiable on I; give with proof explicit bounds on the secant slopes of f(x).

6. Using the two different methods given below, prove that if f(t) is continuous on [a, b],

 $\int_{a}^{b} f(t) dt = f(c)(b-a) \text{ for some } c \text{ between } a \text{ and } b.$

Cite theorems used for each step, and indicate where the continuity of f(t) is being used.

a) Prove it by considering the function $F(x) = \int_{a}^{x} f(t) dt$.

b) Prove it by using the intermediate value theorem, making use of points t' and t'' where f(t) attains respectively its minimum and maximum values on [a, b].

(Assume say t' < t''; begin by writing the resulting inequalities f(t) satisfies on [a, b].)

7. Let f(x) be continuous on $[0, \infty)$, and assume $\lim_{x \to \infty} f(x) = L$ $(L \neq \pm \infty)$. Prove f(x) is bounded on $[0, \infty)$. (Cite theorems; note that the interval is not compact.)

8. Let f(x) be an integrable function on the interval [a, b] of positive length, and assume that f(x) = 0 whenever x is a rational number. Prove that $\int_{a}^{b} f(x) dx = 0$.

(Nothing is known about the value of f(x) when x is irrational. For a weaker result, you can add the assumption: $f(x) \ge 0$ for all $x \in [a, b]$.)

9. For what values of k does $\int_{0^+}^{1^-} \frac{x^k}{\sqrt{x-x^3}} dx$ converge? Give reasoning, cite theorems.

10. Suppose f'(x) exists on $[0, \infty)$ and is continuous, f(0) = 0, and $0 \le f(x) \le e^{kx}$ for some constant k < 1. Citing theorems, prove $\int_0^\infty f'(x) e^{-x} dx = \int_0^\infty f(x) e^{-x} dx$.