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Real Numbers and
Monotone Sequences

1.1 Introduction. Real numbers.

Mathematical analysis depends on the properties of the set R of real numbers,
so we should begin by saying something about it.

There are two familiar ways to represent real numbers. Geometrically, they
may be pictured as the points on a line, once the two reference points correspond-
ing to 0 and 1 have been picked. For computation, however, we represent a real
number as an infinite decimal, consisting of an integer part, followed by infinitely
many decimal places:

3.14159 . . . , −.033333 . . . , 101.2300000 . . . .

There are difficulties with decimal representation which we need to think
about. The first is that two different infinite decimals can represent the same real
number, for according to well-known rules, a decimal having only 9’s after some
place represents the same real number as a different decimal ending with all 0’s
(we call such decimals finite or terminating):

26.67999 . . . = 26.68000 . . . = 26.68 , −99.999 . . . = −100.

This ambiguity is a serious inconvenience in working theoretically with decimals.

Notice that when we write a finite decimal, in mathematics the infinite string of

decimal place zeros is dropped, whereas in scientific work, some zeros are retained to

indicate how accurately the number has been determined.

Another difficulty with infinite decimals is that it is not immediately obvious
how to calculate with them. For finite decimals there is no problem; we just follow
the usual rules—add or multiply starting at the right-hand end:

2.389 2.849
+ 2.389 × .09

. . . 78 . . . 41

But an infinite decimal has no right-hand end. . .
To get around this, instead of calculating with the infinite decimal, we use

its truncations to finite decimals, viewing these as approximations to the infinite
decimal. For instance, the increasing sequence of finite decimals

(1) 3, 3.1, 3.14, 3.141, 3.1415, . . .

gives ever closer approximations to the infinite decimal π = 3.1415926 . . . ; we say
that π is the limit of this sequence (a definition of “limit” will come soon).
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2 Introduction to Analysis

To see how this allows us to calculate with infinite decimals, suppose for
instance we want to calculate

π + 3
√

2 .

We write the sequences of finite decimals which approximate these two numbers:

π is the limit of 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . ;
3
√

2 is the limit of 1, 1.2, 1.25, 1.259, 1.2599, 1.25992, . . . ;

then we add together the successive decimal approximations:

π+3
√

2 is the limit of 4, 4.3, 4.39, 4.400, 4.4014, 4.40151, . . . ,

obtaining a sequence of numbers which also increases.

The decimal representation of this increase isn’t as simple as it was for the
sequence representing π, since as each new decimal digit is added on, the earlier
ones may change. For instance, in the fourth step of the last row, the first decimal
place changes from 3 to 4. Nonetheless, as we compute to more and more places,
the earlier part of the decimals in this sequence ultimately doesn’t change any
more, and in this way we get the decimal expansion of a new number; we then
define the sum π + 3

√
2 to be this number, 4.4015137 . . . .

We can define multiplication the same way. To get π × 3
√

2, for example,
multiply the two sequences above for these numbers, getting the sequence

(2) 3, 3.72, 3.9250, 3.954519, . . . .

Here too as we use more decimal places in the computation, the earlier part of the
numbers in the sequence (2) ultimately stops changing, and we define the number
π × 3

√
2 to be the limit of the sequence (2).

As the above shows, even the simplest operations with real numbers require
an understanding of sequences and their limits. These appear in analysis whenever
you get an answer not at once, but rather by making closer and closer approxima-
tions to it. Since they give a quick insight into some of the most important ideas
in analysis, they will be our starting point, beginning with the sequences whose
terms keep increasing (as in (1) and (2) above), or keep decreasing. In some ways
these are simpler than other types of sequences.

Appendix A.0 contains a brief review of set notation, and also describes the most

essential things about the different number systems we will be using: the integers,

rational numbers, and real numbers, as well as their relation to each other. Look

through it now just to make sure you know these things.

Questions 1.1

(Answers to the Questions for each section of this book can be found at the
end of the corresponding chapter.)

1. In the sequence above for π + 3
√

2, the first decimal place of the final
answer is not correct until four steps have been performed. Give an example of
addition where the first decimal place of the final answer is not correct until k
steps have been performed. (Here k is a given positive integer.)
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1.2 Increasing sequences.

By a sequence of numbers, we mean an infinite list of numbers, written in a
definite order so that there is a first, a second, and so on; we write it either

(3) a0, a1, a2, a3, . . . , an, . . . , or {an}, n ≥ 0.

We call an the n-th term of the sequence; often there is an expression in n for it.
Some simple examples of sequences written in both forms are:

1, 1/2, 1/3, 1/4, . . . {1/n}, n ≥ 1(4)

1, −1, 1, −1, . . . {(−1)n}, n ≥ 0(5)

1, 4, 9, 16, . . . {n2}, n ≥ 1(6)

3, 3.1, 3.14, 3.141, 3.1415, . . .(7)

For the last sequence, there is no expression in n for the n-th term. In the other
cases, the range of values of n is specified, though this can be omitted if it is the
standard choice n ≥ 0. As this book progresses, we will with increasing frequency
omit the braces, referring to (5) for example simply as the sequence (−1)n.

Definition 1.2 We say the sequence {an} is

increasing if an ≤ an+1 for all n; strictly increasing if an < an+1 for all n;

decreasing if an ≥ an+1 for all n; strictly decreasing if an > an+1 for all n.

As examples, the sequence (4) is strictly decreasing, (6) is strictly increasing,
while (7) is only increasing since zeros occur in the infinite decimal for π. The
phrase “for all n” has the meaning “for all values of n for which an is defined”;
this is usually n ≥ 0 or n ≥ 1 for the sequences in this chapter.

According to the definition, the sequence 2, 2, 2, . . . has to be called increasing.

This may seem strange, but remember that, like Humpty-Dumpty, mathematicians can

define words to mean whatever they want them to mean. Here the mathematical world

itself is split over what one should call these sequences. One possibility is on the right,

but our choice is on the left — we have a dislike for negative-sounding words, since

they point you in the non-right direction.

increasing = non-decreasing;

strictly increasing = increasing.

Questions 1.2 (Answers at end of chapter)

1. Under the natural ordering, which of the following are sequences?

(a) all integers (b) all integers ≥ −100 (c) all integers ≤ 0

2. Give each sequence in the form {an}, n ≥ . . . , as in (4) or (5):

(a) 0, 1, 0,−1, 0, 1, 0,−1, . . . (use sin x) (b) 1/2, 2/3, 3/4, . . .
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3. For each of the following sequences, tell without proof whether it is

increasing (strictly?), decreasing (strictly?) or neither.

(a) {(3/4)n}, n ≥ 0 (b) {cos(1/n)}, n ≥ 1 (c)
{n − 1

n

}

, n ≥ 1

(d) {n2 − n}, n ≥ 0 (e) {n(n − 2)}, n ≥ 0 (f) {ln(1/n)}, n ≥ 1

1.3 The limit of an increasing sequence.

We now make our earlier observations about adding and multiplying reals
more precise by giving a provisional definition for the limit of an increasing se-
quence. (A more widely applicable definition will be given in Chapter 3.)

In the definition, we assume for definiteness that none of the an ends with
all 9’s—i.e., they are written as terminating decimals, if possible. The limit L
however might appear in either form (cf. Question 1.3/3 below); we will refer to
the form in which it appears as a “suitable” decimal representation for L.

Definition 1.3A A number L, in a suitable decimal representation, is the limit

of the increasing sequence {an} if, given any integer k > 0, all the an after some
place in the sequence agree with L to k decimal places.

The two notations for limit are (often the braces are omitted):

lim
n→∞

{an} = L, {an} → L as n → ∞.

If such an L exists, it must be unique, since its first k decimal places (for any
given k) are the same as those of all the an sufficiently far out in the sequence.

On the other hand, such an L need not exist; the sequence 1, 2, . . . , n, . . . has
no limit, for example. Here is the key hypothesis which is needed.

Definition 1.3B A sequence {an} is said to be bounded above if there is a
number B such that an ≤ B for all n.

Any such B is called an upper bound for the sequence.

For example, the sequences (4), (5), and (7) are bounded above, while (6) is
not. For (4) and (5), any number ≥ 1 is an upper bound.

Theorem 1.3

A positive increasing sequence {an} which is bounded above has a limit.

We cannot give a formal proof but hope the ar-
gument below will seem plausible to those who have
watched odometers on long car trips. (The theorem is
also true for sequences with negative terms; these will
be discussed in Section 1.6.)

Write out the decimal expansions of the numbers
an and arrange them in a list, as illustrated at right.

a0 = 15.34576 . . .
a1 = 16.26745 . . .
a2 = 16.33654 . . .
a3 = 16.34722 . . .
a4 = 16.34745 . . .
a5 = 16.34747 . . .
a6 = 16.34748 . . .
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Look down the list of numbers. We claim that after a while the integer part
and first k decimal places of the numbers on the list no longer change. Take these
unchanging values to be the corresponding places of the decimal expansion of the
limit L.

To see this in more detail, look first at the integer parts of the numbers in
the list. They increase (in the sense of Definition 1.2), but they cannot strictly
increase infinitely often, because the sequence formed by the integer parts is
bounded above. So after some index n = n0, the integer part never changes.

Starting from this term an0
, continue down the list, looking now just at the

first decimal place. It increases (Definition 1.2), but if it ever got beyond 9, i.e.,
turned into 0, the integer part would have to change, and we just agreed it doesn’t.
So after some later index n1 ≥ n0, the first decimal place will stay constant.

Continue down from the term an1
; after a while the second decimal place

will stay constant, otherwise it would get beyond 9 and the first decimal place
would have to change. Continuing in this way (or using mathematical induction
— see Appendix A.4), we see that ultimately the integer part and first k decimal
places remain constant, and these define the first k decimal places of L. Since k
was arbitrary, we have defined L. ¤

Questions 1.3

1. Which of these sequences is bounded above? For each that is, give an
upper bound. (In each case use n ≥ 0 if it makes sense, otherwise n ≥ 1.)

(a) {(−1)n/n} (b) {√n} (c) {sin n} (d) {lnn}
2. Which of these increasing sequences is bounded above? For each that is,

give: (i) an upper bound; (ii) the limit.

(a) an = (n − 1)/n, n ≥ 1 (b) an = cos(1/n), n ≥ 1

(c) an = 2n/(n + 1) (d) an = 1 + 1
2 + 1

4 + . . . + 1
2n

3. Apply the method given in the argument for Theorem 1.3 to find the “suit-
able” decimal representation (cf. Definition 1.3A) of the limit L of the increasing
sequence an = 1 − 1/10n.

4. Where in the plausibility argument are we using the fact that the an are
written in terminating form, if possible?

1.4 Example: the number e

We saw in Section 1.1 how the notion of limit lets us define addition and
multiplication of positive real numbers. But it also gives us an important and
powerful method for constructing particular real numbers. This section and the
next give examples. They require some serious analytic thinking and give us our
first proofs.

The aim in each proof is to present an uncluttered, clear, and convincing
argument based upon what most readers already know or should be willing to
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accept as clearly true. The first proof for example refers explicitly to the binomial
theorem

(8) (1+x)k = 1+kx+. . .+

(
k

i

)

xi+. . .+xn,

(
k

i

)

=
k(k−1) · · · (k−i+1)

i!
,

which you should know. But it also uses without comment the result

1 +
1

2
+

1

4
+

1

8
+ . . . +

1

2n
< 2,

which is “obvious” geometrically:
1 1/2 1/4

0 1 21.5

and also follows from the formula for the geometric sum (taking r = 1/2):

1 + r + r2 + . . . + rn =
1 − rn+1

1 − r
.

If you didn’t think of the picture and didn’t remember or think of using the
formula, you will feel a step has been skipped. One person’s meat is another
person’s gristle; just keep chewing and it will ultimately go down.

As motivation for this first example, we recall the compound interest formula:
invest P dollars at the annual interest rate r, with the interest compounded at
equal time intervals n times a year; by the end of the year it grows to the amount

An = P
(

1 +
r

n

)n

.

Thus if we invest one dollar at the rate r = 1 (i.e., 100% annual interest), and
we keep recalculating the amount at the end of the year, each time doubling the
frequency of compounding, we get a sequence beginning with

A1 = 1 + 1 = 2 simple interest;

A2 = (1 + 1/2)2 = 2.25 compounded semiannually;

A4 = (1 + 1/4)4 ≈ 2.44 compounded quarterly.

Folk wisdom suggests that successive doubling of the frequency should steadily
increase the amount at year’s end, but within bounds, since banks do manage to
stay in business even when offering daily compounding. This should make the
following proposition plausible. (The limit is e.)

Proposition 1.4 The sequence an =
(

1 +
1

2n

)2n

has a limit.

Proof.

By Theorem 1.3, it suffices to prove {an} is increasing and bounded above.

To show it is increasing, if b 6= 0 we have b2 > 0, and therefore,

(1 + b)2 > 1 + 2b ;

raising both sides to the 2n power, we get

(1 + b)2·2
n

> (1 + 2b)2
n

.

If we now put b = 1/2n+1, this last inequality becomes an+1 > an . ¤
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To show that an is bounded above, we will prove a stronger statement

(“stronger” because it implies that an is bounded above: cf. Appendix A):

(9)
(

1 +
1

k

)k

≤ 3 for any integer k ≥ 1 .

To see this, we have by the binomial theorem (8),

(10)
(

1 +
1

k

)k

= 1 + k
(1

k

)

+ . . . +
k(k−1) · · · (k−i+1)

i!

(1

k

)i

+ . . . +
k!

k!

(1

k

)k

.

To estimate the terms in the sum on the right, we note that

k(k − 1) · · · (k − i + 1) ≤ ki , i = 1, . . . , k ,

since there are i factors on the left, each at most k; and by similar reasoning,

1

i!
=

1

i
· 1

i − 1
· · · · · 1

2
≤

(1

2

)i−1

, i = 2, . . . , k .(11)

Therefore, for i = 2, . . . , k (and i = 1 also, as you can check),

k(k − 1) · · · (k − i + 1)

i!
·
(1

k

)i

≤ 1

2i−1
.(12)

Using (12) to estimate the terms on the right in (10), we get, for k ≥ 2,
(

1 +
1

k

)k

≤ 1 + 1 +
1

2
+

1

4
+ . . . +

1

2k−1
;(13)

≤ 1 + 2 ;

and this is true for k = 1 as well. ¤¤

Remarks.

1. Euler was the first to encounter the number lim an; he named it e because
of its significance for the exponential function (or maybe after himself).

2. In the proof that an is increasing, the b could have been dispensed with,
and replaced from the start with 1/2n+1 . But this makes the proof harder to read,
and obscures the simple algebra. Also, for greater clarity the proof is presented
(as are many proofs) backwards from the natural procedure by which it would
have been discovered; cf. Question 1.4/1.

3. In the proof that an is bounded by 3, it is easy enough to guess from the
form of an that one should try the binomial theorem. Subsequent success then
depends on a good estimation like (12), which shows the terms of the sum (10)
are small. In general, this estimating lies at the very heart of analysis; it’s an art
which you learn by studying examples and working problems.

4. Notice how the three inequalities after line (10) as well as the two in line
(13) are lined up one under the other. This makes the proof much easier to read
and understand. When you write up your arguments, do the same thing: use
separate lines and line up the = and ≤ symbols, so the proof can be read as
successive transformations of the two sides of the equation or inequality.
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Questions 1.4

1. Write down the proof that the sequence an is increasing as you think you
would have discovered it. (In the Answers is one possibility, with a discussion of
the problems of writing it up. Read it.)

2. Define bn = 1 + 1/1! + 1/2! + 1/3! + . . . + 1/n! ; prove {bn} has a limit
(it is e). (Hint: study the second half of the proof of Prop. 1.4.)

3. In the proof that (1+1/k)k is bounded above, the upper estimate 3 could
be improved (i.e., lowered) by using more accurate estimates for the beginning
terms of the sum on the right side of (10). If one only uses the estimate (11) when
i ≥ 4, what new upper bound does this give for (1 + 1/k)k?

1.5 Example: the harmonic sum and Euler’s number.

We consider an increasing sequence (its terms are called “harmonic sums”)
which does not have a limit. This somewhat subtle fact cannot even be guessed
at by experimental calculation; it is only known because it can be proved. We
will give two proofs for it.

Proposition 1.5A Let an = 1 +
1

2
+

1

3
+ . . . +

1

n
, n ≥ 1 .

The sequence {an} is strictly increasing, but not bounded above.

Proof 1. We will show that the terms a1, a2, a4, a8, a16, . . . become arbitrarily
large. This will show that {an} is not bounded above.

Consider the term an, where n = 2k. We write it out as follows, grouping
the terms after the first two into groups of increasing length: 2, 4, 8, . . . , 2k−1:

a2k = 1 +
1

2
+

1

3
+

1

4
︸ ︷︷ ︸

+
1

5
+ . . . +

1

8
︸ ︷︷ ︸

+
1

9
+ . . . +

1

16
︸ ︷︷ ︸

+ . . . +
1

2k
.

We have
1

3
+

1

4
>

1

4
+

1

4
=

1

2
,

1

5
+ . . . +

1

8
>

1

8
+ . . . +

1

8
=

1

2
,

and so on. Thus each of the groupings has a sum > 1/2. Since there are k − 1
such groupings, in addition to the beginning terms 1 + 1/2, we get finally

a2k > 1 +
1

2
+ (k − 1)

(1

2

)

,

which shows that a2k becomes arbitrarily large as k increases. ¤

The next two proofs will use geometric facts about the graph of 1/x and the relation

between areas and definite integrals. If you are after a completely logical, rigorous

presentation of analysis, you can complain that these things haven’t been defined yet.

This is a valid objection, but we assume a reader who knows calculus already, wants to

see how the ideas of analysis are used in familiar and unfamiliar settings, and is willing

to wait for a rigorous presentation of the definite integral.
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Proof 2. Draw the curve y = 1/x , and
put in the rectangles shown, of width 1, and of
height respectively 1, 1/2, 1/3, . . . , 1/n .

We compare the total area of the rectangles
with the area under the curve between x = 1 and
x = n + 1.

1

1 2 3 4 x

y

.5

n n+1

y = 1 / x

total area of the rectangles = 1 +
1

2
+ . . . +

1

n
= an ;

area under curve and over [1, n + 1] =

∫
n+1

1

dx

x
= ln(n + 1) .

Since their tops lie above the curve, the rectangles have greater total area:

an > ln(n + 1) .

Since lnn increases without bound as n increases, so does an, and it follows that
{an} is not bounded above. ¤

Though this second proof is less elementary, it has the advantage of giving
more insight into the approximate size of an than the first proof does. The picture
suggests that an increases at about the same rate as ln(n + 1). What can we say
about the difference between them?

Proposition 1.5B Let bn = 1 +
1

2
+ . . . +

1

n
− ln(n + 1) , n ≥ 1.

Then {bn} has a limit (denoted by γ and called “Euler’s number”).

Proof. It is sufficient to show {bn} is increas-
ing and bounded above.

Referring to the picture at the right and the
ideas of Proof 2 above, and letting Ti denote the
area of the i-th shaded curvilinear triangle in the
picture, we have

x

1

2

n

T

T
T

y

1

.5

1 2 3 4 n n+1

y =   /x1

bn = area of rectangles − area under curve

= T1 + . . . + Tn .

The sequence {bn} is increasing, since bn+1 = bn + Tn+1 .

The sequence {bn} has 1 as an upper bound, since all of the “triangles” can
be moved horizontally without overlapping into the rectangle of area 1 lying over
the interval 1 ≤ x ≤ 2. ¤

Remarks. How big is Euler’s number γ = lim bn? From the proof,

γ = T1 + T2 + T3 + . . . = total area of the triangles.

Each of the triangles has a curved hypotenuse; if this were replaced by a straight
side, the total area of the resulting triangles would add up to exactly half the area
inside the rectangle over [1, 2], i.e., to 1/2. This shows that 1/2 < γ < 1, but the
picture suggests it is much closer to 1/2.

It turns out that γ = .577, to three decimal places.
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One of the mysteries about γ is whether or not it can be expressed in terms of other

known numbers, like e, π, ln 2 or sin 3. It is also not known whether γ is an algebraic

number, i.e., a zero of some polynomial with integer coefficients. These problems have

been open for over 200 years.

We will meet γ again toward the end of this book.

Questions 1.5

1. Estimate the size of 1 + 1/2 + 1/3 + . . . + 1/999 , by using the ideas of
Proof 2. The approximation ln 10 ≈ 2.3 will be helpful (and is useful enough to
be worth memorizing).

2. To see that Proposition 1.5A is not an experimental fact, suppose a
computer adds up in a second 1,000,000 terms of the harmonic sum

∑
1/k . Esti-

mating there are roughly 100,000,000 seconds/year, what will be the approximate
value of an after one year of calculation? After two years of calculation?

3. In the proof of Proposition 1.5B, why is the phrase “without overlapping”
included in the next-to-last line?

If the curve 1/x were replaced by the graph of some other function, what
property should its graph have to guarantee a similar argument can be made?

1.6 Decreasing sequences. The Completeness Property.

To conclude, we gain a little more flexibility by first extending the notion of
limit to decreasing sequences. The definition is the same as the one in Section
1.3; as before we assume that none of the an end with all 9’s.

Definition 1.6A A number L, in a suitable decimal representation, is the limit

of the decreasing sequence {an} if, given any integer k > 0, all the an after some
place in the sequence agree with L to k decimal places.

Definition 1.6B A sequence {an} is said to be bounded below if there is a
number C such that an ≥ C for all n.

Any such C is called a lower bound for the sequence.

Theorem 1.6 A positive decreasing sequence has a limit.

The plausibility argument is similar to the one we gave before and is omitted
(think of the odometer on a car running in reverse). Note that since all the terms
are positive, the sequence is bounded below by zero.

Theorems 1.3 and 1.6 can be extended to include sequences all or some of
whose terms are not positive. Consider for example an increasing sequence {an}
which has a term ≤ 0. There are three cases:

a) The sequence also contains a positive term aN . In this case, all the terms
after aN will be positive, and the argument for Theorem 1.3 applies.
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b) All the terms are negative. In this case, just change the sign of all the
terms: the sequence {−an} will be a positive decreasing sequence, so it will have
a limit L by Theorem 1.6; then −L is the limit of {an}. For, since the decimal
places of L agree with those of the {−an}, the places of −L agree with those of
the {an}.

c) Neither of the above. Left for you to figure out (see the Questions). ¤

Decreasing sequences with a non-positive term can be handled similarly.

We would now like to combine all these cases into a single concise statement
about the existence of a limit; it will be one of the cornerstones of our work in
this book. For this we need two more words.

Definition 1.6C A sequence {an} is bounded if it is bounded above and
bounded below; i.e., there are constants B and C such that

C ≤ an ≤ B for all n .

Notice that an increasing sequence is always bounded below (by its first
term), so that for an increasing sequence it makes no difference whether we say it
is bounded or bounded above. Similarly, saying a decreasing sequence is bounded
below is the same as saying it is bounded.

Definition 1.6D A sequence is monotone if it is increasing for all n, or de-
creasing for all n.

Humpty-Dumpty strikes again: in a rational world, “monotone” ought to be reserved

for a sequence like 2, 2, 2, . . ., which is both increasing and decreasing. When you need

a verbal macro, either you give a new meaning to an old word, or you coin a new one,

like “scofflaw” for those who run speakeasies or red lights. Mathematicians do both.

We can summarize Theorems 1.3 and 1.6, allowing also non-positive terms, by the
following statement; it is one form of what is called the Completeness Property of
the real number system R.

Completeness Property. A bounded monotone sequence has a limit.

The word “completeness” is used because the property says that the real
line is “complete”— it has no holes. The early Greeks thought all numbers were
rational; their line contained only points corresponding to the rational numbers.
The discovery by Pythagoras that

√
2 is irrational (cf. Appendix A.2) was a

mathematical earthquake; it meant that on the Greek line, there would be no
limit for the sequence of points 1, 1.4, 1.41, 1.414, . . . , since the line had no
point representing the number

√
2. Passing from the rationals to the reals can be

thought of as filling in the holes in the pre-Pythagorean line—making it complete,
in other words.
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Our definition of the limit of a sequence is reasonably intuitive, but has two
defects. It works only for monotone sequences, and it is wedded too closely to
decimal notation. We shall free it from both limitations in Chapter 3, but to do
this, we need some ideas of estimation and approximation which are fundamental
to all of analysis. So we turn to these in the next chapter.

Questions 1.6

1. For each of the an below, tell if the sequence {an} is bounded or monotone;
if both, give its limit. (Use n = 0 as the starting point, or n = 1 if a0 would be
undefined.)

(a) 1/n (b) sin 1/n (c) sin 4/n (d) (−1)n (e) ln(1/n)

2. What is case (c) in the extension of the limit definition to increasing
sequences with some non-positive terms? How would the argument for Theorem
1.3 go for this case?

Exercises (The exercises go with the indicated section of the chapter.)

1.2

1. For each of the an below, tell if the sequence {an}, n ≥ 1, is increasing
(strictly?), decreasing (strictly?), or neither; show reasoning.

(If simple inspection fails, try considering the difference an+1 − an, or the
ratio an+1/an, or relate the sequence to the values of a function f(x) known to
be increasing or decreasing.)

(a) 1 − 1
2 + 1

3 − . . . + (−1)n−1 1
n

(b) n/(n + 1)

(c)

n∑

1

sin2 k (d)

n∑

1

sin k

(e) tan (1/n) (f)
√

1 + 1/n2

1.3

1. Show increasing; find an upper bound, if it exists; give the limit if you
can.

(a)

√
n2 − 1

n
(b)

(

2− 1

n

)(

2+
1

n

)

(c)

n∑

0

sin2 kπ (d)

n∑

0

sin2 kπ/2

2. Let an =
∑

n

1 1/10i . Apply the method in Theorem 1.3 to find the limit
L in its “suitable” decimal form; also express it as a rational number a/b.

3. Let {an} be increasing, and lim
n→∞

an = L, where L is a terminating

decimal. Show that if {an} is strictly increasing, the “suitable” decimal represen-
tation for L in Definition 1.3A is always the non-terminating form (ending with
all 9’s).

4. Read Section A.4 on mathematical induction (just the first page will be
enough for now) and finish the argument for Theorem 1.3 by using induction.
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1.4

1. Consider the sequence {an}, where

an = 1 +
1

1 · 3 +
1

1 · 3 · 5 +
1

1 · 3 · 5 · 7 + . . . +
1

1 · 3 · . . . · (2n − 1)
.

Decide whether {an} is bounded above or not, and prove your answer is correct.
(Hint: cf. Question 1.4/2 .)

2. Prove the sequence an = nn/n!, n ≥ 1, is

(a) increasing; (b) not bounded above (show an ≥ n).

1.5

1. (a) Let an = 1 +
1

1 · 2 +
1

2 · 3 + . . . +
1

n(n + 1)
. Prove {an} is bounded

above. (Hint:
1

2 · 3 =
1

2
− 1

3
.)

(b) Let bn = 1 +
1

4
+

1

9
+ . . . +

1

n2
. Prove {bn} is bounded above by

comparing it to {an}. What upper bound does this give for {bn}?
2. Prove the sequence {bn} of the preceding exercise is bounded, by express-

ing bn as the area of a set of rectangles and comparing this with the area under
a suitable curve. What upper bound does this give for {bn}?

In fact, it is known that the limit of {bn} is π2/6 ; how close is this to the bounds

you got in this exercise and the preceding one?

3. Let an = 1 + 1/
√

2 + 1/
√

3 + . . . + 1/
√

n . Prove {an} is unbounded.

4. Let bn = an − 2
√

n + 1, where an is as in the previous exercise. Prove
{bn} has a limit. (See Proposition 1.5B.)

1.6

1. Show the sequence an = (n+1)/(n−1) is strictly decreasing and bounded
below, and give its limit.

2. Show that an = n/2n, n ≥ 1, is a monotone sequence.

3. Define a sequence {an} by: an+1 = 2an
2; assume 0 < a0 < 1/2 .

Prove that an is strictly decreasing; is it bounded below?

4. Prove the sequence an =
1 · 3 · · · (2n − 1)

2 · 4 · · · 2n
has a limit.
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Problems

1-1 Define a sequence by

an+1 =
an + 1

2
, n ≥ 0; a0 arbitrary .

(a) Prove that if a0 ≤ 1, the sequence is increasing and bounded above,
and determine (without proof) its limit.

(b) Consider analogously the case a0 ≥ 1 .

(c) Interpret the sequence geometrically as points on a line; this should
make (a) and (b) intuitive.

1-2 Prove that an =
(

1 +
1

2

)(

1 +
1

3

)

· · ·
(

1 +
1

n

)

is strictly increasing,

and not bounded above.

1-3 Prove that an =
1 · 3 · · · · (2n + 1)

2 · 4 · · · (2n)
is strictly increasing and not

bounded above.

1-4 Let An denote the area of the regular 2n-sided polygon inscribed in a
unit circle. (Assume n ≥ 2.) Explain geometrically why the sequence {An} is
monotone and bounded above, and give its limit. Then use trigonometry to get an
explicit expression for An, and prove the same facts analytically, using anything
you know from calculus.

Answers to Questions

1.1

1. Example: .099 . . . 9 + .000 . . . 1 (both numbers have k decimal places).

The sum sequence is .0, .09, .099, . . . , .099 . . . 9 (k− 1 places), .100 . . . 0 (k places),

so the correct first decimal place of the sum—namely, 1—appears for the first
time only in the k-th term of the sum sequence.

1.2

1. Only (b) is a sequence.

2. (a) {sin nπ/2}, n ≥ 0 (b)
{ n

n + 1

}

, n ≥ 1, or
{n + 1

n + 2

}

, n ≥ 0.

3. (a) strictly decreasing (b) strictly increasing (c) strictly increasing

(d) increasing (e) neither (f) strictly decreasing

1.3

1. (a) 1/2 or anything larger; (c) 1 or anything larger;

(b) and (d) are not bounded above.
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2. The limits are: (a) 1 (b) 1 (c) 2 (d) 2.

These or anything larger are upper bounds for the respective sequences.

3. The sequence is .9, .99, .999, . . . ; following the method in Theorem 1.3
gives the limit L = .999 . . . , i.e., the non-terminating form of 1.

4. The argument says at various points: the integer parts increase; after
a certain point, the first decimal place increases; after a later point, the second
decimal place increases, and so on.

This would not necessarily be true if we did not require a uniform choice
(terminating form) for the decimal expansions of the an. For instance, the con-
stant sequence 1.000, .999 . . . , 1.000, . . ., whose representation alternates between
the terminating and non-terminating forms of 1, is increasing and bounded, yet
the integer part of its terms is not increasing.

Similarly, in the constant sequence 1.300, 1.299 . . . , 1.300, the integer part is
unchanging, but the sequence formed by the first decimal places 3, 2, 3, . . . is not
an increasing sequence.

1.4

1. The following is a fairly common method, both of discovering the argu-
ment that an is increasing, and writing it up.

an+1 ≥ an ; (1)
(

1 +
1

2n+1

)2n+1

≥
(

1 +
1

2n

)2n

; (2)

(

1 +
1

2n+1

)2

≥
(

1 +
1

2n

)

; (3)

1 +
2

2n+1
+

1

22(n+1)
≥ 1 +

1

2n
; (4)

1

22(n+1)
≥ 0 . (5)

At this point (or at step (4)), the problem is considered solved.

The meaning of this falling-domino argument is presumably:

(1) is true if (2) is true: (2) ⇒ (1);
(2) is true if (3) is true: (3) ⇒ (2);
(3) is true if (4) is true: (4) ⇒ (3);
(4) is true if (5) is true: (5) ⇒ (4);
(5) is true. Therefore (1) is true.

The argument is written backwards. Students often try to express this by
writing the first four inequalities using an invented symbol, such as ≥? . A formal
argument would usually write the successive inequalities in the opposite order,
without any ? symbols. But written in this way, the argument is unmotivated,
and can be difficult to follow, since the readers can’t tell where they are headed.

A reasonable compromise might be to use some symbol like ≥?, with the
understanding that the next line then must imply the line containing the ≥?.
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2. By Theorem 1.3 it suffices to show that {bn} is increasing and bounded
above. (The limit is again e.)

It is strictly increasing since bn+1 = bn + 1/(n + 1)! .
It is bounded above since

bn = 1 + 1/1! + 1/2! + 1/3! + . . .

≤ 1 + 1 + 1/2 + 1/22 + 1/23 + . . . , by (11);

= 3 .

3. Using the estimate (11) only starting with the fifth term, we have
(

1 +
1

k

)k

= 1 + k
(1

k

)

+ . . . +
k(k−1) · · · (k−i+1)

i!

(1

k

)i

+ . . . ;

≤ 1 + 1 +
1

2!
+

1

3!
+

1

23
+

1

24
+ . . . ;

≤ 8

3
+

1

23

(

1 +
1

2
+

1

22
+ . . .

)

;

≤ 2.67 + .25 = 2.92 .

1.5

1. 0 < a999 − ln(1000) < 1 by proofs 1.5A[2], 1.5B; ln(1000) ≈ 6.9 .

2. ln(1014) ≈ 14(2.3) ≈ 32.2, after one year;

ln(2 · 1014) = ln 2 + ln 1014 ≈ .7 + 32.2 ≈ 32.9, after two years.

3. The statement (total area of triangles) ≤ (area of rectangle) can only be
made if the triangles do not overlap when fitted inside the rectangle.

If the function is positive and strictly increasing or strictly decreasing, the
triangles will not overlap.

1.6

1. (a) both (decreasing); 0 (b) both (decreasing); 0

(c) bounded, not monotone (d) bounded, not monotone

(e) monotone (decreasing), not bounded

2. Case (c): The increasing sequence contains no positive terms, but not all
the terms are negative.

The sequence then contains the term 0, but no positive terms. Since it is
increasing, all terms after 0 must also be 0, so the limit exists and is 0.


