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Abstract. We construct examples of smooth proper rigid-analytic varieties admitting formal model
with projective special fiber and violating Hodge symmetry for cohomology in degrees ≥ 3. This

answers negatively the question raised by Hansen and Li in [HL20].

1. Introduction

A powerful tool in algebraic geometry over the field of complex numbers is viewing smooth projective
varieties as complex manifolds and henceforth using complex analysis to study them. An important
role for that technique is played by Kähler manifolds: this is a subclass of complex manifolds large
enough to contain all smooth projective algebraic varieties and small enough to be amenable to Hodge
theory. In particular, for any compact Kähler manifold X the Hodge-to-de Rham spectral sequence
Ei,j1 = Hj(X,ΩiX)⇒ Hi+j

dR (X/C) degenerates at the first page and the Hodge numbers satisfy Hodge

symmetry: dimCH
j(X,ΩiX) = dimCH

i(X,ΩjX).
The situation in p-adic geometry is somewhat different: p-adic Hodge theory has been developed

for all smooth proper rigid-analytic varieties, without any “Kähler” assumption. It was proven by
Scholze [Sch13] that for any such variety the Hodge-to-de Rham spectral sequence degenerates. There
are, however, examples of smooth proper rigid-analytic varieties that fail Hodge symmetry. This
might suggest that there should be a natural narrower class of rigid-analytic varieties for which Hodge
symmetry does hold.

Let K be a discretely valued p-adic field with ring of integers OK and perfect residue field k. In
[HL20] David Hansen and Shizhang Li raised the following question (see also Conjecture 2.4 in [Sch18])
suggesting a candidate for that narrower class:

Question. Let X be a smooth proper rigid-analytic variety over K admitting a formal model over
OK with projective special fiber. Is it true that dimK H

i(X,ΩjX/K) = dimK H
j(X,ΩiX/K) for all i, j?

Hansen and Li answered this question positively for i+ j = 1 in Theorem 1.2 of [HL20]. The main
result of this text is that the answer is in general negative for i+ j ≥ 3:

Theorem (Corollary 4.4). For every pair of positive integers i 6= j with i+j ≥ 3 there exists a smooth
proper rigid-analytic variety X over Qp admitting a smooth formal model X over Spf Zp with projective
special fiber XFp such that

dimQp H
i(X,ΩjX/Qp) 6= dimQp H

j(X,ΩiX/Qp).

The idea behind the examples comes from the following difference between complex Hodge theory
and p-adic Hodge theory. For any compact Kähler manifold X not only there is an equality of numbers
hi,j(X) = hj,i(X) but there is a canonical isomorphism of C-vector spaces:

Hj(X,ΩiX) ' Hi(X,ΩjX)

In particular, for a finite group G acting on X the G-representations Hj(X,ΩiX) and Hi(X,ΩjX) are
dual to each other.

We show that the analogous statement in p-adic geometry fails already for abeloid varieties. We con-
struct a formal abelian scheme A (necessarily a non-algebraizable one) with an action of a finite group
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G of order prime to p such that the G-representations H0(A,Ω1
A) and H1(A,O) on the cohomology of

the abeloid generic fiber A of A are not dual to each other.
Moreover, for i+ j = 3 we can arrange (Proposition 3.1) that the dimensions of G-invariants on the

spaces Hi(A,ΩjA) and Hj(A,ΩiA) are different (note that these G-representations are obtained from
H0(A,Ω1

A) and H1(A,O) by taking exterior powers and tensor products). Taking the direct product
with an auxiliary smooth projective formal scheme to make the G-action free and taking the quotient
by G gives the desired example. The examples for i+ j > 3 are obtained simply by taking the direct
product with an appropriate projective scheme to move the asymmetry to higher cohomology via the
Künneth formula.

This strategy does not work for i + j = 2 for a good reason: any smooth proper rigid-analytic
variety that admits a smooth (not necessarily with a projective special fiber) formal model satisfies
Hodge symmetry on first and second cohomology:

Proposition 1.1 (Corollary 2.2). If a smooth proper rigid-analytic variety X over K admits a smooth
formal model over OK then dimH0(X,ΩiX/K) = dimK H

i(X,O) for i = 1, 2.

Proposition 1.1 is a consequence of a certain self-duality of Frobenius action on the crystalline
cohomology of the special fiber and weak admissibility (in the sense of filtered ϕ-modules) of de Rham
cohomology of X coming from the crystalline comparison theorem. As mentioned above, Hansen and
Li proved this statement by a different method for i = 1 in the case of (arbitrarily singular) projective
reduction. Piotr Achinger has independently obtained Proposition 1.1 in the case of smooth projective
reduction by the same method, see [Ach20] for a treatment of a number of situations where Hodge
symmetry does follow from the existence of a model with projective special fiber, including some cases
when reduction is singular.

Notation. Let p be a prime number fixed throughout the text. If X is an object of any of
the three types {smooth proper rigid-analytic variety over K, smooth proper formal scheme over
Spf OK , smooth proper algebraic variety over an arbitrary field F}, denote by hi,j(X) the number
dimK H

j(X,ΩiX/K), rkOK H
j(X,ΩiX/OK ) or dimF H

j(X,ΩiX/F ) respectively. Denote also by δi,j(X)

the number hi,j(X)−hj,i(X) in any of the three situations. For the convenience of notation, we declare
hi,j(X) = 0 if i or j is negative. Note that hi,j(X) = hi,j(X) if X is the generic fiber of a smooth
proper formal scheme X by Lemma 4.1. We say that an object X “satisfies Hodge symmetry in degree
d” if hi,j(X) = hj,i(X) for all i, j with i+ j = d and X “satisfies Hodge symmetry” if it does so for all
d.

Acknowledgments. I am grateful to Piotr Achinger, Shizhang Li, Vadim Vologodsky, Zijian Yao
and Bogdan Zavyalov for their interest and several useful discussions and to Piotr Achinger, Borys
Kadets and Zhiyu Zhang for comments on the drafts of this text. I am indebted to Vasily Rogov whose
talk on the work [Rog19] motivated the examples presented here.

2. Hodge symmetry in degree 2

For the duration of this section let K be a discretely valued field of characteristic zero with perfect
residue field k of characteristic p. Denote by K0 the subfield W (k)[ 1

p ], and let σ be its automorphism

induced by Frobenius action on k.
The goal of this section is to observe that results of p-adic Hodge theory impose the following

relation between Hodge numbers of a rigid-analytic variety with good reduction. A similar idea has
been used in [FM87] I.4.4 to prove Hodge symmetry for smooth proper algebraic varieties over K.

Proposition 2.1. If X is a smooth proper formal scheme over OK then for its generic fiber X and
every n the following relation among hi,j := hi,j(X) holds:

(2.1) h1,n−1 + 2h2,n−2 + · · ·+ n · hn,0 = n · h0,n + (n− 1) · h1,n−1 + · · ·+ hn−1,1.

Corollary 2.2. For a smooth proper formal scheme X over Spf OK we have the following for the
generic fiber X = XK

(i) h1,0(X) = h0,1(X) and h2,0(X) = h0,2(X)
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(ii) for odd n the Betti numbers dimQp H
n
ét(XK ,Qp) = dimK H

n
dR(X/K) are even.

Proof. (i) The equality 2.1 takes forms h1,0 = h0,1 and h1,1 + 2h2,0 = 2h0,2 + h1,1 for n = 1, 2
respectively.

(ii) The sum of the left-hand side and the right-hand sied of 2.1 is, of course, even and is also equal
to n · (h0,n + h1,n−1 + · · ·+ hn,0) = n · dimK H

n
dR(X/K) so dimK H

n
dR(X/K) is even for odd n. �

We first recall the setup of rational p-adic Hodge theory. Let MFϕK be the category of filtered
ϕ-modules over K [Fon79]. Its objects are finite-dimensional vector spaces D over K0 equipped with
a semi-linear automorphism ϕD : D → D and a deceasing filtration F iDK on the K-vector space
DK := D ⊗K0

K. To every such object we can attach two integers

(2.2) tN (D) =
∑
α∈Q

α · dimK0 Dα and tH(D) =
∑
i∈Z

i · dimK griDK

Here Dα is the slope α direct summand of the ϕ-module D under the Dieudonne-Manin decompo-
sition and griDK := F iDK/F

i+1DK are the graded pieces of the filtration. Note that tN depends
only on the semi-linear endomorphism and we will also use the notation tN (D) for a ϕ-module D not
equipped with a filtration. A filtered ϕ-module D ∈ MFϕK is called weakly admissible if tN (D) = tH(D)
and for every subobject D′ ⊂ D we have tN (D′) ≥ tH(D′). For an integer i denote by K0(i) the filtered
ϕ-module given by a one-dimensional vector space D = K0 with ϕd = p−iσ and the filtration defined
by F−iDK = DK , F

−i+1DK = 0. For a filtered ϕ-module D define its i-fold twist D(i) as the tensor
product D⊗K0

K0(i), we use the same notation for twisting ϕ-modules not equipped with a filtration.
We have the following symmetry of Frobenius slopes, due to [Suh12]:

Lemma 2.3 (Corollary 2.2.4 in [Suh12]). Let Y be a smooth proper variety over k. For the ϕ-module
D = Hn

cris(Y/W (k))[ 1
p ] we have tN (D) = n · dimK0

D − tN (D).

Proof. For the convenience of the reader we recall the proof in the case when Y is projective over an
arbitrary perfect field or arbitrary proper defined over a finite field.

If Y is projective, denote by L ∈ H2
cris(Y/W (k)) the crystalline Chern class of an am-

ple line bundle on Y . The hard Lefschetz theorem for crystalline cohomology [KM74] shows
that cup-product with Ld−min(n,2d−n) induces an isomorphism Hn

cris(Y/W (k))[ 1
p ](n − d) '

H2d−n
cris (Y/W (k))[ 1

p ] of ϕ-modules over K0. On the other hand, Poincare duality provides an iso-

morphism H2d−n
cris (Y/W (k))[ 1

p ] ' Hn
cris(Y/W (k))∨[ 1

p ](−d). Combining these isomorphisms we get

Hn
cris(Y/W (k))[ 1

p ](n) ' Hn
cris(Y/W (k))[ 1

p ]∨. Since tN (D∨(−n)) = −tN (D(n)) = −tN (D)+n·dimK0
D

we get the desired equality.
If Y is not projective but is defined over a finite field k = Fq the result follows from Weil conjectures:

the multiset of q-power Frobenius eigenvalues consists of algebraic integers and is stable under complex
conjugation. Hence, it is stable under the operation α 7→ qnα−1 = α so the multiset of slopes is stable
under λ 7→ n− λ, as desired. �

Proof of Proposition 2.1. Consider the filtered ϕ-module given by D = Hn
cris(Xk/W (k))[ 1

p ] with the

Frobenius structure induced by Fr : Xk → Xk ×k,σ k and the filtration on DK is given by the Hodge
filtration on the de Rham cohomology of the generic fiber Hn

dR(X/K) ' Hn
cris(X/W (k))⊗W (k)K = DK .

By the crystalline comparison theorem proved in [BMS18] Theorem 1.1(i) for smooth proper for-
mal schemes, the filtered ϕ-module D is obtained by applying the functor Dcris to the p-adic Galois
representation Hn

et(XK ,Qp). In particular, D is weakly admissible by Proposition 4.4.5 [Fon79].
Hence, tH(D) = tN (D) so by Lemma 2.3 we get tH(D) = n · dimK H

n
dR(X/K) − tH(D). As

tH(D) = h1,n−1 + 2h2,n−2 + · · ·+n ·hn,0 and dimK H
n
dR(X/K) = h0,n +h1,n−1 + · · ·+hn,0 we get the

desired equality. �

Remark 2.4. The above proof used only that the endpoints of the Newton and Hodge polygons of
D coincide. The full strength of weak admissibility, however, does not put any further restrictions
on the Hodge numbers. For any tuple of non-negative integers h0,n, h1,n−1, . . . , hn,0 satisfying (2.1)
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equip the vector space D := Qbp of dimension b = h0,n + h1,n−1 + · · ·+ hn,0 with an endomorphism ϕ

that has irreducible characteristic polynomial with all roots having valutation a/b where a = h1,n−1 +
2h2,n−2 · · · + n · hn,0. Endowing D with an arbitrary filtration F iD such that dimQp F

iD = hi,n−i +

hi+1,n−i−1 + · · · + hn,0 turns D into an object of MFϕQp with Hodge numbers hi,n−i which is weakly

admissible just because there are no proper non-zero submodules stable under ϕ. Alternatively, we
can apply Theorem 1 of [FR05] that shows the existence of a weakly admissible module over W (k)[ 1

p ]

with any given Newton polygon and any Hodge polygon having the same endpoints and lying below
it.

3. Cyclic group acting on a formal abelian scheme

Fix once and for all a prime number l satisfying the following condition:

(3.1) l 6= p and the order of p in the multiplicative group (Z/l)× is divisible by 4

This condition is equivalent to l being a prime divisor of a number of the form p2r + 1. Denote by k
the finite field Fp(µl) obtained by adjoining to Fp all l-th roots of unity and by κ ⊂ k the finite field
κ = Fp2 . Let G denote the cyclic group Z/l with a chosen generator σ ∈ G. We will denote by Z[µl]

the ring of integers of the cyclotomic extension Q(µl) inside a chosen algebraic closure Q.
The goal of this section is to exploit the existence of abelian varieties over a finite field with multi-

plication by Z[µl] such that the resulting CM type is different from those appearing over characteristic
zero fields. This allows us to construct a formal abelian scheme with an action of G having asymmetric
dimensions of invariant spaces on Hodge cohomology groups in degree 3:

Proposition 3.1. There exists a formal abelian scheme Z with an action of G over Spf W (k′) for
some finite field k′ such that

(3.2) rkH0(Z,Ω3
Z/W (k′))

G < rkH3(Z,O)G.

Remark 3.2. The proof also produces examples with inequalities going in the other direction, we
record here this particular version for the convenience of applying it to Lemma 5.1.

We first collect the necessary facts about abelian varieties in Lemmas 3.3-3.8 and then use them
together with the combinatorial Lemma 3.10 to prove the Proposition 3.1 at the end of this section. All
the facts about abelian varieties used in this section are contained in [CCO14] (especially, cf. Example
4.1.2 there). We include here the proofs in an attempt to make the exposition relatively self-contained.

Lemma 3.3. There exists an abelian variety A over κ of dimension l−1
2 equipped with an action of G

such that the eigenvalues of σ ∈ G on H1
cris(A/W (κ)) ⊗W (κ) W (k)[ 1

p ] are the l − 1 pairwise different

nontrivial roots of unity of order l and the p2-Frobenius endomorphism of A is given by σ ◦ [p]A.

Proof. Let ζl be a primitive l-th root of unity in Q. By Honda–Tate theory, there exists an abelian
variety A′ (unique up to isogeny) over κ with eigenvalues of the p2-Frobenius endomorphism on first
etale cohomology given by the conjugates of the Weil number p · ζl. Since [Qp(µl) : Qp] = ord(Z/l)× p
is even we have 2 dimA′ = [Q(µl) : Q] = l − 1 by Theoreme 1(ii) of [Tat71]. If ϕA′ denotes the
p2-Frobenius endomorphism of A′ then ϕlA′ acts by pl on H1

et(A
′
Fp
,Zt) (where t is any prime different

from p) so ϕlA′ is equal to the multiplication-by-pl endomorphism of A′. Hence, ϕA′ induces the action
of the subalgebra Z[pζl] ⊂ Z[µl] on the abelian variety A′ with pζl acting by ϕA′ .

Proposition 1.7.4.4 of [CCO14] shows that the Serre’s tensor product A := Z[ζl] ⊗Z[pζl] A
′ is an

abelian variety isogenous to A′ that has an action of G with σ acting as ζl. The eigenvalues of σ on
H1

cris(A/W (κ)) are equal to the eigenvalues of ϕA divided by p and, since characteristic polynomials of
ϕA on crystalline and etale cohomology are equal, the eiegnvalues of σ are the l− 1 Galois conjugates
of ζl, as desired. �

Remark 3.4. The variety A′ can be constructed as the quotient (Res
F
p2l

Fp2
(E ×Fp2 Fp2l))/E for a

supersingular elliptic curve E over Fp2 with the trace of Frobenius endomorphism equal to 2p.
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The map g 7→ gp is an automorphism of the group G. For a representation ρ : G → Aut(V ) on a
module V we denote by V τ the representation on the same module in which g ∈ G acts by ρ(gp).

Lemma 3.5. For any A as in Lemma 3.3 we have the following:
(i) the representations H1(A,O) and H0(A,Ω1

A/κ)τ are isomorphic.

(ii) A lifts to a formal abelian scheme A over Spf W (κ) together with an action of G such that the
representations H1(A,O) and H0(A,Ω1

A/W (κ))
τ are isomorphic.

Proof. (i) Denote by A(1) = A ×κ,Fr κ the Frobenius-twist of A. For a vector space W over κ denote

as well by W (1) := W ⊗κ,Fr κ its twist. Note that the double twist A(2) := (A(1))(1) is canonically
identified with A.

The de Rham cohomology H1
dR(A/κ) carries the Hodge filtration H1

dR(A/κ) = F 0 ⊃ F 1 ⊃
F 2 = 0 and the conjugate filtration H1

dR(A/κ) = G2 ⊃ G1 ⊃ G0 = 0 satisfying F 0/F 1 =

H0(A,Ω1
A/κ), F 1/F 2 = H1(A,O), G2/G1 = H0(A(1),Ω1

A(1)/κ
), G1/G0 = H1(A(1),O), see §7 of

[Kat70]. The compositions

H1(A(1),O) = G1 → H1
dR(A/κ)→ F 0/F 1 = H1(A,O)

and

H1
dR(A(1)/κ) = H1

dR(A/κ)(1) → (F 0/F 1)(1) = H1(A,O)(1) = G1/G0 → H1
dR(A/κ)

are both induced by the relative Frobenius morphism FrA : A→ A(1).
Since Fr2

A is equal to the multiplication by p endomorphism [p]A up to composing with an automor-
phism, Fr2

A induces the zero map on H1
dR(A/k). Equivalently, ker(Fr∗A : H1

dR(A(1)/κ) → H1
dR(A/κ))

contains Im(Fr∗A : H1
dR(A/κ) = H1

dR(A(2)/κ) → H1
dR(A(1)/κ)) = G

(1)
1 . The sum of the dimensions

of these two vector space is dimκH
1
dR(A/κ) = 2g and dimension of the image is equal to g, so the

containment is in fact equality and we get G1 = F 1.
This gives a G-equivariant κ-linear isomorphism H1(A(1),O) ' H0(A,Ω1

A/κ). If V is a represen-

tation of G on a vector space over a field of characteristic p then the character of Frobenius-twisted
representation V (1) is equal to that of V τ so the first assertion of the lemma follows.

(ii) By Theorem V.1.10 of [Mes72] the category of formal abelian schemes over W (κ) is equivalent

to the category of pairs (A0, F̃ ) where A0 is an abelian variety over κ and F̃ is a W (κ)-submodule of

H1
cris(A0/W (κ)) such that the quotient H1

cris(A0/W (κ))/F̃ is torsion-free and F̃ /p is equal to the first
step of Hodge filtration F 1 ⊂ H1

dR(A/κ) = H1
cris(A/W (κ))/p.

Since the eigenvalues of σ on H1
cris(A/W (κ)) are pair-wise different, the same is true for the ac-

tion of σ on H1
dR(A/κ) so there is a unique isomorphism H1

dR(A/κ) ' H0(A,Ω1
A/κ) ⊕ H1(A,O) of

G-representations splitting the Hodge filtration on H1
dR(A/κ). Since the isomorphism class of a repre-

sentation of G on a finite free W (κ)-module is completely determined by its reduction modulo p, there

is a unique G-equivariant decomposition H1
cris(A/W (κ)) = F̃ ⊕ F̃ ′ lifting the decomposition of the de

Rham cohomology. The formal lift A of A defined by F̃ then comes equipped with a lift of the action

of G because F̃ ⊂ H1
cris(A/W (κ)) is stable under G. The assertion about the action of G on Hodge

cohomology groups of A is a formal consequence of (i). �

The result of Lemma 3.5(i) is specific to positive characteristic: for an abelian variety B with an
action of G over a field F of characteristic zero the representations H0(B,Ω1

B/F ) and H1(B,O)∨

have to be isomorphic by the next lemma, whereas for A as above the representations H0(A,Ω1
A/κ)

and H1(A,O)∨ ' H0(A,Ω1
A/κ)τ∨ are self-dual and are not isomorphic to each other (in fact, any

representation of G on a Fp2-vector space has to be self-dual because −1 = p2r in (Z/l)× for some
r by the assumption on l). The same is happening for the lift A, so, in particular, it has to be
non-algebraizable.

Lemma 3.6. For an abelian variety B over a field F of characteristic zero equipped with an action of
a finite group H the representations H0(B,Ω1

B/F ) and H1(B,O)∨ are isomorphic.
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Proof. Choose an ample line bundle L on B. Then M :=
⊗
h∈H

h∗(L) is an ample line bundle inducing

a H-equivariant polarization λM : B → B∨ that is separable because charF = 0. The induced map
λ∗M : H0(B∨,Ω1

B∨/F ) → H0(B,Ω1
B/F ) provides a H-equivariant isomorphism between H0(B,Ω1

B/F )

and H1(B,O)∨ ' H0(B∨,Ω1
B∨/F ) �

The abelian schemes constructed in Lemma 3.5 do not yet provide the desired Z because for all
i, j the module Hi(A,ΩjA/W (κ)) is the τ -twist of Hj(A,ΩiA/W (κ)) and, in particular, these modules

have equal ranks of invariants. We will break this symmetry by taking the direct product with an
appropriate algebraic abelian scheme with complex multiplication by Q(µl).

Recall that k is an extension of Fp containing all l-th roots of unity, so any representation of G on
a finite free module over W (k) is isomorphic to a direct sum of characters χζ given by sending σ to a
degree l root of unity ζ ∈ µl ⊂W (k)×.

Definition 3.7. We call a representation U of G on a finite free W (k)-module typical if it has the

form
d⊕
i=1

⊕
ζ∈Si

χζ where each Si is a subset of µl of cardinality l−1
2 such that Si ∩ S−1

i = ∅ and d is

some number.

If B is an algebraic abelian scheme over W (k) of dimension l−1
2 with a non-trivial action of G then

the representation H0(B,Ω1
B/W (k)) is typical: for the base change of B to C singular cohomology

H1(BC,Z) is a free abelian group of rank l − 1 with a non-trivial action of G. Hence, all non-trivial
characters appear in H1(BC,Z) exactly once and by Lemma 3.6 these characters have to be distributed
between H0(BC,Ω

1
BC/C) = H0(B,Ω1

B/W (k))⊗W (k) C and H1(BC,O) in such a way that χζ and χζ−1

never occur in the same piece of the Hodge decomposition. The next lemma deduces from the theory
of complex multiplication that every typical representation arises from an abelian scheme over the ring
of integers in an unramified extension of Qp:

Lemma 3.8. For any typical representation of G on a finite free W (k)-module U there exists an abelian
scheme B with an action of G over the ring of integers OL = W (k′) of a finite unframified extension
L = W (k′)[ 1

p ] ⊃ W (k)[ 1
p ] such that H0(B,Ω1

B/OL) ' U ⊗W (k) OL and H1(B,O) ' U∨ ⊗W (k) OL as

G-representations.

Proof. It is enough to prove the lemma for typical representations of rank l−1
2 because we have

H0(B1 ×OL B2,Ω
1
B1×OLB2/OL) ' H0(B1,Ω

1
B1/OL) ⊕ H0(B2,Ω

1
B2/OL) and likewise H1(B1 ×OL

B2,O) ' H1(B1,O) ⊕ H1(B2,O) for all abelian schemes B1,B2, so the general case can be ob-
tained by taking the products.

Fix a non-trivial root of unity ζl ∈ Q(µl) and an embedding Q(µl) ⊂ W (k)[ 1
p ], giving a bijection

between roots of unity in Q(µl) and W (k). Each non-trivial root of unity ζ ∈ µl(W (k)) thus defines
an embedding of the cyclotomic field ϕζ : Q(µl)→ Q into the algebraic closure given by ζl 7→ ζ.

Let U be a typical representation of rank l−1
2 over W (k). We associate to U the set Φ =

{ϕζ |χζ−1 appears in U} of embeddings. By the definition of typical representation Φ is a CM type of
the field Q(µl). Since Q(µl) is Galois over Q, the reflex field of Φ is contained in Q(µl). By [CCO14]
Corollary A.4.6.5 applied with N = p (beware that the symbol ”p” bears its own meaning in this
corollary) there exists an abelian variety B′ with complex multiplication by Q(µl) of type Φ defined
over an unramified extension F of the reflex field that has good reduction at all primes above p. Take
L = Fp for some prime p ⊂ OF above p and consider the good model B′ of B′ over OL. The isogeny
action of Q(µl) then extends onto B′. In particular, embedding G into Q(µl) via σ 7→ ζl gives an action
of G on B′ in the isogeny category. By our choice of Φ the G-representation H0(B′,Ω1

B′/OL) ⊗OL L
is isomorphic to U ⊗W (k) L.

Analogously to the proof of Lemma 3.3, Serre’s tensor product construction gives an isogeny B′ → B
to an abelian scheme B that carries a genuine action of Z[µl]. In particular, G acts on B such that
H0(B,Ω1

B/OL) is isomorphic to U ⊗W (k) OL, as desired. To see that H1(B,O) is isomorphic to
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U∨ ⊗W (k) OL it is enough to check the analogous statement for the generic fiber BL and this is given
by Lemma 3.6. �

Remark 3.9. We have appealed to stronger results of [CCO14] to make sure that there exists B
defined over the ring of integers in an unramified extension of Qp. If we did not care about the field of
definition of the ultimate counterexamples to Hodge symmetry we could have applied a cruder form
of CM theory given e.g. by [Tat71] Lemme 4.

Lemma 3.10. Let V be a representation of G on a finite free W (k)-module such that V is isomorphic
to its dual V ∨ but is not isomorphic to the twist V τ . Then there exists a typical representation U such
that

(3.3) rk Λ3(V ⊕ U)G 6= rk Λ3(V τ ⊕ U∨)G

Proof. Suppose on the contrary that these ranks of invariant subspaces are equal for all typical U . Using
that Λ3(V ⊕U) ' Λ3V ⊕Λ2V ⊗U ⊕ V ⊗Λ2U ⊕Λ3U and the fact that twisting by an automorphism
of G does not change the invariant submodule of a representation we get

rk(Λ2V ⊗ U⊕r)G + rk(V ⊗ Λ2(U⊕r))G = rk(Λ2V τ ⊗ U∨⊕r)G + rk(V τ ⊗ Λ2(U∨⊕r))G

for all typical U and any multiplicity r (by definition, the class of typical representations is closed

under direct sums). Since Λ2(U⊕r) ' (Λ2U)⊕r ⊕ (U⊗2)⊕(r2) both sides of the equality are quadratic
polynomials in r for a fixed U and comparing the leading coefficients we get

rk(V ⊗ U⊗2)G = rk(V τ ⊗ U∨⊗2)G

As V is assumed to be self-dual this equality is equivalent to rk(V ⊗ U⊗2)G = rk(V τ ⊗ U⊗2)G. In
other words, the difference of characters χV −χV τ is orthogonal to any character χU⊗2 for a typical U
with respect to the pairing 〈χ1, χ2〉 :=

∑
g∈G

χ1(g)χ2(g) on the character ring W (k)[G]. Moreover, this

implies that χV − χV τ is orthogonal to χU1⊗U2 = χU1 · χU2 for any two typical representations U1, U2

because 2χU1⊗U2
= χ(U1⊕U2)⊗2 − χU⊗2

1
− χU⊗2

2
.

If ζ is any non-trivial root of unity, then for a set ζ1, . . . , ζ l−3
2

of pairwise different roots such that

ζi 6= ζ−1
j and ζi 6= ζ±1 for all i, j both representations χζ⊕χζ1⊕· · ·⊕χζ l−3

2

and χζ−1⊕χζ1⊕· · ·⊕χζ l−3
2

are typical. Hence the span of characters of typical representations in W (k)[G] contains all characters
of the form χζ − χζ−1 for a non-trivial root of unity ζ. By linearity of the pairing, χV − χV τ is hence
also orthogonal to χ2

ζ + χ2
ζ−1 = (χζ − χζ−1)2 + 2χ1. However, 〈χV , χ2

ζ + χ2
ζ−1〉 = 2〈χV , χ2

ζ〉 by self-

duality of V and likewise for V τ so we get a contradiction since, by assumption, there exists ζ such
that multiplicities of χζ−2 in V and V τ are different. �

Proof of Proposition 3.1. Let A be a formal abelian scheme with an action of G provided by Lemma
3.5(ii). Consider the representation V = H0(A,Ω1

A/W (κ)). We have G-equivariant isomorphisms V ⊕
V τ ' H0(A,Ω1

A/W (κ)) ⊕H
1(A,O) ' H1

dR(A/W (κ)) ' H1
cris(A/W (κ)), so every non-trivial character

χζ appears in exactly one of V and V τ with multiplicity one. It follows that V ' (V τ )τ . Since V ∨ is
obtained from V by applying the twist τ an even number of times, the representation V ⊗W (κ) W (k)
satisfies the assumptions of Lemma 3.10 and there exists a typical representation U such that non-
equality (3.3) holds. Let B be an abelian scheme over OL = W (k′) provided by Lemma 3.8 applied
to U . The product Z′ = A ×W (k) B equipped with the diagonal action then has H0(Z′,Ω1

Z/OL) '
(V ⊕ U)⊗W (k) OL and H1(Z′,O) ' (V τ ⊕ U∨)⊗W (k) OL as G-representations.

Since H0(Z′,Ω3
Z/OL) ' Λ3H0(Z′,Ω1

Z′/OL) and H3(Z′,O) ' Λ3H1(Z′,O) we

get rkH0(Z′,Ω3
Z/OL)G 6= rkH3(Z′,O)G. If rkH0(Z′,Ω3

Z/OL)G > rkH3(Z′,O)G then Z = Z′ gives

the desired inequality 3.2. If the inequality goes the other way, take Z = Z′∨ using that there are
G-equivariant isomorphisms H0(Z′∨,Ω1

OL) ' H1(Z′,O)∨ and H1(Z′∨,O) ' H0(Z′,Ω1
Z′/OL)∨. �

Remark 3.11. (i) The same argument works just as well to provide an abelian scheme with different

ranks of invariants rkHi(Z,ΩjZ/W (k))
G 6= rkHi(Z,ΩjZ/W (k))

G for any i 6= j, i + j ≥ 3. We chose to
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treat here only the case (i, j) = (3, 0) and obtain counterexamples to symmetry in higher degrees by
taking products with auxiliary varieties because that simplifies the argument in the next section.

(ii) I am not aware of a simple way of choosing Z that would work uniformly for all p. However,
for any fixed l everything can be made more explicit for primes p for which l satisfied condition (3.1).
For instance, for p congruent to 2 or 3 modulo 5 we can take l = 5 so that dimA = 2 and B can also
be chosen to be 2-dimensional. In this case (for any of the particular choices of A and B that give
non-symmetric dimensions of invariants) H3

dR(A×B/L)G is a filtered ϕ-module with Hodge numbers
(h3,0, h2,1, h1,2, h0,3) = (0, 5, 2, 1) or (1, 2, 5, 0) and single slope 3

2 (the slopes can be computed by the
Shimura-Taniyama formula). Note that such Hodge numbers satisfy the relation (2.1)

4. Main example

Theorem 4.1. For every pair of distinct positive integers i 6= j with i + j ≥ 3 there exists a smooth
proper formal scheme X over Zp with projective special fiber XFp such that the Hodge cohomology groups

Hi(X,ΩjX/Zp) and Hj(X,ΩiX/Zp) are free Zp-modules of different rank.

We first record two standard general facts from formal geometry. The main reference on rigid-
analytic generic fibers of formal schemes is [BL93]. Let K be a discretely valued field of characteristic
zero with ring of integers OK , maximal ideal m ⊂ OK and perfect residue field k = OK/m of charac-
teristic p.

Lemma 4.1. If X is a smooth proper formal scheme over Spf OK with generic fiber X, then there is
a canonical isomophism Hi(X,ΩjX/K) ' Hi(X,ΩjX/OK )[ 1

p ]. In particular, hi,j(X) = hi,j(X).

Proof. Let (Ui)i∈I be a finite cover of X by affine open formal subschemes. Their generic fibers Ui
induce a covering of X by affinoid subdomains. For any coherent sheaf F on X its cohomology is
computed by the Čech complex

⊕
i∈I F(Ui)→

⊕
i,j∈I F(Ui∩Uj)→ . . . . The cohomology of the sheaf

F on X associated to F is computed by the Čech complex
⊕

i∈I F (Ui) →
⊕

i,j∈I F (Ui ∩ Uj) → . . .

since higher cohomology of coherent sheaves on affinoids vanish. By definition, F (Ui) = F(Ui)[
1
p ] so

the Čech complex on the generic fiber is obtained from that of the formal scheme by inverting p and
we get the isomorphism Hi(X,F ) ' Hi(X,F) which implies the statement by using F = ΩjX/OK . �

Lemma 4.2. Let Y be a smooth proper formal scheme over OK with an action of a finite group Γ
of order prime to p. If the special fiber Yk is projective over k and the action of Γ on it is free there
exists a quotient smooth proper formal scheme X over OK with projective special fiber such that

Hi(X,ΩjX/OK ) ' Hi(Y,ΩjY/OK )Γ

Proof. For each n the quotient Xn := YOK/mn/Γ exists by [SGA71] Expose 1 Proposition V.1.8 because
admissibility of the action can be checked on the reduced subscheme which is projective in this case.
The closed immersions YOK/mn → YOK/mn+1 induce morphisms Xn → Xn+1. Since the action is free,
by Corollarie V.2.4 loc. cit. the morphisms πn : Yn → Xn are etale with Galois group Γ and the
canonical maps OXn ⊗Z Z[Γ]→ πn∗OYn are isomorphisms.

Hence, the maps Xn → Xn+1 are closed immersions inducing isomorphisms Xn+1 ×OK/mn+1

OK/mn ' Xn (this also follows from order of Γ being invertible on Y but is not true in general
for a non-free action) and the schemes Xn form the desired quotient formal scheme X. If L is an ample
line bundle on Yk then

⊗
γ∈Γ

γ∗(L) descends to an ample line bundle on Xk so Xk is projective over k.

By the etaleness of the quotient map π : Y → X the canonical morphisms ΩiX/OK → (π∗Ω
i
Y/OK )Γ

are isomorphisms and we get a Hochschild-Serre spectral sequence with the second page Eab2 =
Ha(Γ, Hb(Y,ΩiY/OK )) converging to Ha+b(X,ΩiX/OK ). Since higher cohomology of Γ with coefficients

in OK-modules vanishes, we get the desired isomorphism. �

Proof of Theorem 4.1. We first treat the case of i+j = 3 and the general case follows from the Lemma
4.3 below. Let Z be a formal abelian scheme with an action of G over the ring of integers OL = W (k′)
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in some unramified extension L ⊃ Qp provided by Proposition 3.1. We would like to construct X by
taking the quotient of Z by G but first we need to make the action free in a way that does not spoil the
discrepancy between ranks of invariant submodules. By [Ray79] Proposition 4.2.3 or [BMS18] Section
2.2 there exists a smooth projective complete intersection Y of dimension ≥ 4 in projective space over
OL equipped with a free action of G. We equip the product Z ×OL Y with the diagonal action of
G which is free because the action on the second factor is free. Note that Hi(Z ×Y,O) ' Hi(Z,O)
and H0(Z × Y,ΩiZ×Y/OL) ' H0(Z,ΩiZ/OL) for i ≤ 3 by Künneth formula and Lefschetz hyperplane

theorem (Proposition 5.3 of [ABM]) applied to Y .
First, we construct the scheme with desired property over the unramified extension OL as the

quotient X′ := (Z × Y)/G provided by the Lemma 4.2. We have H3(X′,O) = H3(Z × Y,O)G =
H3(Z,O)G and H0(X′,Ω3

X′/OL)G = H0(Z,Ω3
Z/OL)G. Proposition 3.1 supplied Z such that the ranks of

invariant modules H3(Z,O)G and H0(Z,Ω3
Z/OL)G are different, so H3(X′,O) and H0(X′,Ω3

X′/OL) are

indeed of different rank. By Proposition 2.1 we have 3h3,0(X′) + h2,1(X′) = 3h0,3(X′) + h1,2(X′) so the
ranks of H2(X′,Ω1

X′/OL) and H1(X′,Ω2
X′/OL) are forced to be different as well.

Finally, the example over Zp is obtained by Weil restriction of scalars X := ResOLZp X′. Since OL
is finite etale over Zp this is a smooth proper formal scheme over Zp with projective special fiber

XFp = Resk
′

Fp Xk′ . Since X ×Zp OL is isomorphic to (X′)×d where d is the degree of k′ over Fp, the

Hodge cohomology modules of X are free and h3,0(X) − h0,3(X) = d(h3,0(X′) − h0,3(X′)) because the
symmetry on cohomology of X′ in degrees 1 and 2 holds by Corollary 2.2.

Lemma 4.3. Let X be a smooth proper formal scheme over OK such that h3,0(X) 6= h0,3(X). Then
for any i, j ≥ 0 with i 6= j and i+ j > 3 there exists a smooth projective scheme Y over OK such that
hi,j(X×Y) 6= hj,i(X×Y).

Proof. Recall that for a formal scheme T the number δi,j(T) is defined as the difference hi,j(T)−hj,i(T).
Note that if Y satisfies Hodge symmetry then

(4.1) δi,j(T×Y) =
∑

i1+i2=i
j1+j2=j

δi1,j1(T)hi2,j2(Y)

By Proposition 2.1 we have δ2,1(X) = −3δ3,0(X) and δ1,0(X) = δ2,0(X) = 0. Let us assume that
i > j. For a scheme Y denote by HY(x, y) :=

∑
i,j

hi,j(Y)xiyj its Hodge polynomial. If Y1 ⊂ Y2 is a

smooth closed subscheme of codimension r+ 1 in a smooth proper scheme then the Hodge polynomial
of the blow-up is given by

HBlY1
Y2(x, y) = HY2(x, y) +HY1(x, y) · (xy + (xy)2 + · · ·+ (xy)r)

Let Td,n be a smooth degree d hypersurface in Pn+1
OK where d and n are numbers that we will choose later.

Construct a sequence of smooth projective schemes starting with Y0 = Td,n and for s ≥ 0 defining

the scheme Ys+1 as the blow-up of some projective space PNsOK along some embedding Ys ⊂ PNsOK of
codimension ≥ 2 (the numbers Ns > dimOK Ys+1 can be chosen arbitrarily). By the above formula we
have HYs

(x, y) = F (xy)+HTd,n(x, y) · (xy)s ·G(xy) where F (t), G(t) ∈ 1+ tZ[t] are some polynomials.
Assume first that i > j + 3. Then take n = i− 3− j, s = j and consider Y := Ys obtained by the

above inductive procedure from Td,n. We then have hi−2,j−1(Y) = hi−1,j−2(Y) = hi,j−3(Y) = 0 and
hi−3,j(Y) = hn,0(Td,n). This turns the formula (4.1) into

δi,j(X×Y) = δ3,0(X) · hi−3,j(Y) +
∑

i2+j2<i+j−3

δi−i2,j−j2(X) · hi2,j2(Y)

By [SGA73] XI.Theoreme 1.5 the Hodge numbers ha,b(Td,n) of a hypersurface are zero unless a+b = n
or a = b and ha,a(Td,n) = 1 for 0 ≤ a ≤ n, 2a 6= n. It follows that the Hodge polynomial HY(x, y) is
congruent modulo the ideal (x, y)n+s to a polynomial of the form K(xy) with coefficients not depending
on the degree d of the hypersurface. In particular, δi,j(X × Y) is the sum of δ3,0(X) · hi−3,j(Y) =
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δ3,0(X) · hn,0(Td,n) and a number that does not depend on d. By loc. cit. Corollaire 2.4 the number

is hn,0(Td,n) is equal to
(
d−1
n+1

)
so for large enough d this sum will be non-zero.

If i = j+2 then take Y = Ys with n = 1, s = j−1. An analogous computation gives that δi,j(X×Y)
is the sum of a number that does not depend on d and the expression δ2,1(X) · h1,0(Td,1) + δ3,0(X) ·
h0,1(Td,1) = δ3,0(X)(h0,1(Td,1)− 3h1,0(Td,1)) = −2δ3,0(X)

(
d−1

2

)
which is non-zero for d > 2.

Finally, if i = j+ 3 or i = j+ 1 we will be able to move asymmetry into higher cohomology just via
Tate twists. Consider the scheme Y = (P1

OK )d where we will again choose d at the end. We have

δi,j(X×Y) =
∑

r≤ i+j−3
2

δi−r,j−r(X) ·
(
d

r

)
This is a polynomial in d with leading coefficient δi−r,j−r(X) with r = i+j−3

2 which is nothing but

±δ3,0(X) or ±δ2,1(X) so this expression is non-zero for a large enough value of d. �

This finishes the proof of Theorem 4.1. �

Corollary 4.4. For every pair of positive numbers i 6= j with i + j ≥ 3 there exists a smooth proper
rigid-analytic variety X over Qp admitting a smooth formal model X over Spf Zp with projective special
fiber XFp such that

hi,j(X) 6= hj,i(X).

Proof. Take X to be the generic fiber of a formal scheme X provided by Theorem 4.1. Applying Lemma
4.1 gives the result. �

5. Embellishing the main example and a question

We end by noting that the examples provided by Theorem 4.1 can be modified to avoid some of the
characteristic p “pathologies”.

In all of the examples constructed above the Hodge cohomology groups Hi(X,ΩjX/Zp) are free

modules over Zp so the Hodge numbers of the special and generic fibers of X coincide. In particular,
the Hodge symmetry for the special fiber XFp fails as well. The next lemma shows that symmetry for
the generic fiber cannot be salvaged by requiring that for the special fiber: there are enough projective
schemes failing symmetry for the special fiber to cancel out the asymmetry on the special fiber by
taking products. We only treat here one particular pair of degrees.

Lemma 5.1. There exists a smooth proper formal scheme X′ over Spf Zp with projective special fiber
such that h3,0(X′) 6= h0,3(X′) while h3,0(X′Fp) = h0,3(X′Fp).

Proof. The proof of Theorem 4.1 provides us with a smooth proper scheme X over Zp with projective

special fiber such that all Hodge groups Hi(X,ΩjX/Zp) are free over Zp and h3,0(X) < h0,3(X) while

h1,0(X) = h0,1(X) = 0 (the Hodge numbers in degree 1 vanish because representations U, V used in
proof of Proposition 3.1 have trivial invariants). Since Hodge cohomology modules are free, the Hodge
numbers of the special fiber XFp are equal to those of X.

We will now take the product of X with an auxiliary projective scheme that will be constructed
by approximating the stack B(µp × Z/p). By Theorem 1.2 of [ABM] applied over Zp to the group
scheme µp × Z/p with d = 3 there exists a smooth projective scheme Y′ such that Hj(Y′Fp ,Ω

i
Y′Fp

) =

Hj(B(µp × Z/p)Fp ,Ωi) and Hj(Y′,ΩiY′/Zp) = Hj(B(µp × Z/p)Zp ,Ωi) for pairs i, j with i + j ≥ 3

and i = 0 or j = 0. The Hodge polynomial HB(µp×Z/p)Fp (x, y) :=
∑
i,j

hi,j(B(µp × Z/p)Fp)xiyj of

this stack is given by the product HBµp,Fp
(x, y)HBZ/pFp (x, y). By [Tot18] Proposition 11.1 the first

multiple HBµp,Fp
is equal to 1+x

1−xy and HB(Z/p)Fp is equal to 1
1−y because the only non-zero Hodge

cohomology groups of the classifying stack of a finite discrete group Γ are given by group cohomology
Hi(BΓFp ,O) ' Hi(Γ,Fp). Take Y := Y′ × El where E is an elliptic curve over Zp and l is a number
that we will choose at the end.
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By the above computation, HYFp
(x, y) is given by 1

1−y ·
1+x
1−xy ·(1+x+y+xy)l modulo an element of the

ideal (x4, xy, y4). For the purpose of computing h3,0((X×Y)Fp) and h0,3((X×Y)Fp) we only care about

this polynomial modulo xy and we have H(X×Y)Fp
(x, y) ≡ (1+h2,0(XFp)x2+h3,0(XFp)x3+h0,2(XFp)y2+

h0,3(XFp)y3)(1 + (l+ 1)x+ (
(
l
2

)
+ l)x2 + (

(
l
3

)
+
(
l
2

)
)x3 + (l+ 1)y+ (

(
l
2

)
+ l+ 1)y2 + (

(
l
3

)
+
(
l
2

)
+ l+ 1)y3)

modulo the ideal (x4, xy, y4). The Hodge numbers of the special fiber XFp × YFp are thus given by

h3,0((X × Y)Fp) =
(
l
3

)
+
(
l
2

)
+ h3,0(XFp) + (l + 1)h2,0(XFp), h0,3((X × Y)Fp) =

(
l
3

)
+
(
l
2

)
+ l + 1 +

h0,3(XFp) + (l + 1)h0,2(XFp). Hence, δ3,0((X × Y)Fp) = δ3,0(XFp) + l + 1. Since δ3,0(XFp) < 0 there
exists l that makes this difference equal to zero.

The product X×Y is our desired scheme X′. Note that the Hodge numbers hi,0(YQp) of the generic

fiber YQp vanish for i ≤ 3 so the asymmetry h3,0(X′) = h3,0(X) 6= h0,3(X) = h0,3(X′) persists. �

Another feature of the counterexamples to Hodge symmetry obtained by taking quotients of formal
abelian schemes by finite groups is the absence on the special fiber of an ample line bundle of degree
prime to p. Indeed, if the d-dimensional special fiber of X (in the notation of the proof of Theorem 4.1)
admits a line bundle L such that Ld 6≡ 0 (mod p) then it induces a G-equivariant ample line bundle
L′ on Zk′ with (L′)dimZk′ 6≡ 0 (mod p) as well (because the order of G is prime to p). It induces
a separable G-equivariant polarization and hence and isomorphism H0(Z,Ω1

Z′k/k
′) ' H1(Zk′ ,O)∨ of

G-representations. Hence, for all i and j the representations Hi(Zk′ ,Ω
j
Zk′/k

′) and Hj(Zk′ ,Ω
i
Zk′/k

′)

would be dual to each other and Hodge symmetry for Xk′ and, hence, for X would have to hold.
We note, however, that blowing up a point provides the special fiber with a prime to p polarization

without spoiling Hodge asymmetry

Lemma 5.2. For every pair of distinct positive integers i, j with i+ j ≥ 3 there exists a smooth proper
formal scheme X′ over Zp such that hi,j(X′) 6= hj,i(X′) and the special fiber carries an ample divisor

L such that its top self-intersection is prime to p: L
dim(X′Fp ) 6≡ 0 (mod p).

Proof. Let X be a formal scheme provided by Theorem 4.1. Choose a point x : Spf Zp → X (one sees
easily that the proof of Theorem 4.1 can be modified to make sure that at least one point exists). Let
f : X′ → X be the blow-up of X at the closed subscheme given by x. Note that hi,j(X′) = hi,j(X) for
i 6= j.

The special fiber X′Fp is the blow-up of XFp at a point, denote by E ⊂ X′Fp the exceptional divisor.

Let H be any ample divisor on X′Fp . We will find a linear combination mH +nE with n ≥ 0 such that

the top self-intersection (mH + nE)d is prime to p.
Suppose that H|E has degree k in Pic(E) = Z. Then Hd−i ·Ei = kd−i · (−1)i for i > 0 by Example

8.3.9. in [Ful98] and the projection formula, so

(5.1) (H + nE)d = Hd +

d∑
i=1

(
d

i

)
nikd−i(−1)i−1 = Hd − (k − n)d + kd

For varying n the residue of (k − n)d modulo p takes at least two different values, so we can find n
such that the expression (5.1) is prime to p. For a large enough r the divisor (pr+ 1)H +nE is ample
and has non-zero self-intersection modulo p, as desired. �

Apart from satisfying Hodge symmetry, compact Kähler manifolds must have nonzero middle Hodge
numbers hi,i(X) 6= 0 for i ≤ dimX because Hi(X,ΩiX/C) contains the nonzero i-th power of the class

of a Kähler form. It would be interesting to find out whether this is the case for rigid-analytic varieties
with projective reduction:

Question 1. Does there exist a smooth proper rigid-analytic variety X of dimX > 0 admitting a
formal model with projective special fiber such that H1(X,Ω1

X/K) = 0?

Note that X must have non-zero second de Rham cohomology H2
dR(X/K). If X is algebraic projec-

tive, then a non-zero class is given by the first Chern class of an ample line bundle. If, on the contrary,
X is not projective, then no ample line bundle on the special fiber Xk can lift to X. The obstruction
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to lifting a line bundle gives a non-zero class in second cohomology as follows. Consider the long exact
sequence

· · · → Pic(X)→ Pic(Xk)
δ−→ H2(X, (1 + mOX)×)→ . . .

obtained from the short exact sequence 1 → (1 + mOX)× → O×X → O
×
Xk
→ 1 of sheaves of abelian

groups on the Zariski site of X. For any ample line bundle L ∈ Pic(Xk) the image δ(L) ∈ H2(X, (1 +
mOX)×) is non-zero and, since no power of L lifts to X, is a non-torsion element. Applying to δ(L)
the isomorphism given by the logarithm log : (1 + mOX)×[ 1

p ] ' OX[ 1
p ] gives a non-zero class in

H2(X,OX[ 1
p ]) = H2(X,O).

References

[ABM] Benjamin Antieau, Bhargav Bhatt, and Akhil Mathew. Counterexamples to Hochschild–Kostant–Rosenberg
in characteristic p. to appear in Forum of Mathematics, Sigma, arXiv:1909.11437.

[Ach20] Piotr Achinger. Hodge symmetry for rigid varieties via log Hard Lefschetz. 2020. arXiv:2005.02246.

[BL93] Siegfried Bosch and Werner Lütkebohmert. Formal and rigid geometry. I. Rigid spaces. Math. Ann., 295(2):291–
317, 1993.

[BMS18] Bhargav Bhatt, Matthew Morrow, and Peter Scholze. Integral p-adic Hodge theory. Publ. Math. Inst. Hautes
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