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Abstract. Using the de Rham stack of Bhatt-Lurie and Drinfeld, we prove that

de Rham complex of a smooth quasi-F-split variety over a perfect field of positive
characteristic decomposes in all degrees. In particular, smooth proper quasi-F-split

varieties have degenerate Hodge-to-de Rham spectral sequence, and satisfy Kodaira-

Akizuki-Nakano vanishing. We apply this to prove that the Hodge-to-de Rham spec-
tral sequence for the classifying stack of a reductive group over a field of positive

characteristic degenerates.

1. Introduction

Cohomological invariants of smooth proper varieties over fields of positive characteristic
in general fail to satisfy some of the good properties exhibited in characteristic zero,
such as degeneration of the Hodge-to-de Rham spectral sequence and Kodaira vanishing.
Deligne and Illusie [DI87] made a fundamental discovery that if a smooth proper variety
X over a perfect field k of characteristic p > 0 lifts over the ring W2(k) of length 2 Witt
vectors, and dimX ≤ p then Hodge-to-de Rham degeneration and Kodaira-Akizuki-
Nakano vanishing hold for X. They deduced these cohomological statements by proving
that the de Rham complex of X decomposes in the derived category of sheaves on X.

For varieties of arbitrary dimension liftability alone is not enough to guarantee de-
generation of the Hodge-to-de Rham spectral sequence, as examples in [Pet23, Theorem
1.1] show. In this paper, we point out that for Frobenius-split, and more generally,
quasi-Frobenius-split smooth varieties the de Rham complex nevertheless decomposes,
regardless of the dimension of X.

Theorem 1.1 (Corollaries 4.6, 4.9). For a smooth quasi-F -split variety X over a perfect
field k of characteristic p the de Rham complex FX/k∗Ω

•
X/k is quasi-isomorphic to the

direct sum
⊕
i≥0

Ωi
X(1)/k

[−i] of its cohomology sheaves, as a complex of sheaves of OX(1)-

modules.
In particular, for a smooth proper quasi-F -split variety X the Hodge-to-de Rham spec-

tral sequence Ei,j1 = Hj(X,ΩiX/k) ⇒ Hi+j
dR (X/k) degenerates at the first page, and the

Kodaira-Akizuki-Nakano vanishing holds: for an ample line bundle L on X the cohomol-
ogy group Hi(X,ΩjX/k ⊗ L) vanishes when i+ j > dimX.

An Fp-scheme is called quasi-F -split if for some n, the natural map to the mod p

reduction of the length n Witt vectors sheaf OX
f 7→[f ]p−−−−−→ F∗Wn(OX)/p has an OX -linear

section. This notion was introduced by Yobuko [Yob19] as a generalization of the more
classical notion of F -split varieties (corresponding to the case n = 1) [MR85], and it is
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remarkable in that many cohomological consequences of the existence of an F -splitting
happen to remain valid in the presence of the weaker structure of a quasi-F -splitting.

Theorem 1.1 implies (Corollary 4.8) that (partial) flag varieties of reductive groups, in
particular smooth quadrics, have decomposable de Rham complex, which answers some
of the questions raised in [Ill96, 7.11]. When dimX ≤ p, Theorem 1.1 follows readily
from [DI87, Lemme 2.9] because quasi-F -split varieties are liftable over W2(k) [Yob19,
Theorem 4.4], [KTT+22, 7.2]. Kodaira vanishing (i.e. the case j = dimX in the above)
for quasi-F -split varieties has also been previously shown in [NY21, Theorem 1.7]. Apart
from these two special cases the above theorem is new, even in the case of F -split varieties.

We deduce Theorem 1.1 from the following decomposition result valid for arbitrary
smooth varieties:

Theorem 1.2. For a smooth variety X over k there is a natural quasi-isomorphism in
the derived category of W (OX)/p-modules:

(1.1) W (OX)/p⊗O
X(1)

FX/k∗Ω
•
X/k ≃

⊕
i≥0

W (OX)/p⊗O
X(1)

ΩiX(1) [−i]

where the sheaf W (OX)/p is viewed as an OX(1)-module via the map of sheaves of algebras
OX(1) →W (OX)/p given by f 7→ [f ]p. In particular, there is a natural quasi-isomorphism

(1.2) F ∗
X/kFX/k∗Ω

•
X/k ≃

⊕
i≥0

F ∗
X/kΩ

i
X(1)/k[−i]

in the derived category of quasi-coherent sheaves on X.

The proof of Theorem 1.1 accesses the de Rham complex through the de Rham stack,
introduced in the setting of varieties in positive characteristic by Drinfeld [Dri24] and
Bhatt-Lurie [BL22a], [BL22b]. A secondary goal of this paper is to demonstrate the
utility of the stacky approach to de Rham cohomology – the proof crucially uses the
gerbe property of the de Rham stack of a smooth variety, and we are unaware of any
elementary reformulation of this property in terms of the de Rham complex itself.

The decomposition after Frobenius pullback (1.2) has been previously shown by Bhar-
gav Bhatt by the same method, and by Vadim Vologodsky by a related method relying on
the Azumaya property of the algebra of differential operators on X. The aforementioned
gerbe property of the de Rham stack can be recovered from this Azumaya property, and
Theorem 1.2 can be proved using it instead of the de Rham stack.

We also extend (Proposition 5.9) decomposition (1.2) to the case of smooth Artin
stacks, by proving smooth descent for Frobenius pullback of sheaves of differential forms
on smooth schemes. It turns out that the classifying stack of any reductive group is
Frobenius-split:

Proposition 1.3 (Proposition 5.12). Let G be a reductive group over k. Then the natural
map OBG(1) → RFBG∗OBG in the derived category of quasi-coherent sheaves on the
classifying stack BG admits a splitting.

As a consequence of a version of Theorem 1.1 for stacks (Thoerem 5.9), we deduce:

Theorem 1.4 (Theorem 5.1). For a reductive group G over k the Hodge-to-de Rham

spectral sequence Ei,j1 = Hj(BG,ΩiBG) ⇒ Hi+j
dR (BG/k) of the classifying stack BG de-

generates at the first page.
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When p = char k is not a ‘torsion’ prime for G this has been proven by Totaro [Tot18,
Theorem 0.2]. For p = 2, the degeneration has also been proven for special orthogonal
groups SO(n) by Totaro [Tot18, Theorem 11.1], for G2 and Spin(n), n ≤ 11 by Primozic
[Pri20], and for PGL4m+2,PSO4m+2,PSp4m+2 for all m by Kubrak-Scavia [KS22]. In all
of these works the authors have been able to compute explicitly the de Rham and Hodge
cohomology in question. Kubrak and Prikhodko proved in [KP22, Theorem 1.3.23] that
the Hodge-to-de Rham spectral sequence of BG for any reductive group G has no non-
zero differentials coming out of entries with coordinates (i, j) for i+ j ≤ p− 1; our proof
is similar to theirs in that we proceed by showing that the conjugate filtration on the de
Rham complex of BG is split.

In Section 2 we collect the preliminary material on de Rham cohomology, Witt vectors
and quasi-F -splitting, in Section 3 we review the definition and basic properties of the de
Rham stack, and prove the decomposition (1.2) along with Theorem 1.1 for F -split vari-
eties implied by it. In Section 4 we prove Theorems 1.1 and 1.2 in full generality. Section
5 extends the decomposition of the Frobenius pullback of the de Rham complex to smooth
Artin stacks, proves Frobenius splitting of BG, and deduces that the Hodge-to-de Rham
spectral sequence of BG degenerates at the 1st page. In Section 6 we give another proof
of the decomposition (1.2) that proceeds by explicitly splitting the conjugate filtration
on the Frobenius pullback of derived de Rham cohomology of quasiregular semiperfect
algebras.

Acknowledgements. I am very grateful to Bhargav Bhatt for his suggestion, after
hearing the argument in the F -split case, to consider the case of quasi-F -split varieties.
Thanks to Vadim Vologodsky for the discussions of the alternative proofs of the presented
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BG arose from discussions with Dmitry Kubrak, to whom I am very thankful for this, as
well as for comments on the draft of this text. I also would like to thank Hélène Esnault,
Luc Illusie, Arthur Ogus, Gleb Terentiuk, and Shou Yoshikawa for useful conversations
and comments.

The author was supported by the Clay Research Fellowship.

2. Preliminaries

In this section we introduce the notation for the de Rham complex, review some con-
structions related to Witt vectors, and recall the notion of the quotient by a quasi-ideal
needed for our discussion of the de Rham stack. Throughout the paper, let p be a fixed
prime number.

2.1. De Rham complex. For a scheme Y over Fp we denote by FY its absolute Frobe-

nius endomorphism. For a morphism f : X → S of Fp-schemes we denote by X(1) the
Frobenius twist of X, defined as the following fiber product:

(2.1)
X(1) X

S S

f

FS

We denote by FX/S : X → X(1) the relative Frobenius endomorphism, induced by the
universal property of the fiber product from the absolute Frobenius FX : X → X.
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For a smooth morphism f : X → S let Ω•
X/S := OX

d−→ Ω1
X/S

d−→ . . . be the relative

de Rham complex, viewed as a complex of sheaves of f−1(OS)-modules on X. The
differential on its pushforward under relative Frobenius FX/S∗Ω

•
X/S respects the OX(1)-

linear structure on the terms of this complex, and we view FX/S∗Ω
•
X/S as an object of

D(X(1)), cf. [DI87, 1.1].

2.2. Animated rings. The description of the de Rham stack that will be used for our
arguments relies crucially on being able to view our scheme X as a derived scheme, i.e.
being able to consider its points with values in an animated (also known as simplicial) ring.
For a commutative ring A we denote by CAlganA the∞-category of animated commutative
A-algebras.

One source of animated rings needed for us is the quotient by a quasi-ideal in a classical
ring. Recall, following [Dri21, 3.3], that for a commutative algebra A a quasi-ideal in an
A-algebra B is a B-module I and a map d : I → B of B-modules such that d(x)·y = d(y)·x
for all x, y ∈ I. The latter condition is equivalent to I

d−→ B forming a differential graded
algebra with I in degree −1, and B in degree 0, the graded algebra structure being defined
by the algebra structure on B and the B-module structure on I.

Given a quasi-ideal I in an A-algebra B, we can form the quotient animated A-algebra

cone(I
d−→ B) ∈ CAlganA , see for instance [Dri21, 3.6.3]. If I is an invertible B-module,

then the animated A-algebra cone(I
d−→ B) is also described in [BL22b, Construction 2.1].

If d is injective, then this animated A-algebra is equivalent to the classical ring quotient
B/I.

2.3. Witt vectors. In this subsection, let R be an arbitrary Fp-algebra. We denote
by W (R) its ring of p-typical Witt vectors. It has a ring endomorphism F : W (R) →
W (R) referred to as Frobenius, and an endomorphism of the underlying abelian group
V : W (R) → W (R), called Verschiebung, such that FV = V F = p. We first make an
observation about Frobenius on the Witt vectors on the level of classical rings and then
generalize it to a construction involving animated rings, the latter being relevant for the
discussion of de Rham stacks.

The restriction map W (R) → R factors through W (R)/p, inducing a map that we
denote by rclR : W (R)/p → R. The reduction modulo p of F coincides with the intrinsic
Frobenius endomorphism of the Fp-algebra W (R)/p. Since FV = 0 on W (R)/p, this
Frobenius endomorphism annihilates ker rclR = VW (R)/pW (R), which is to say that it
factors as

(2.2) F :W (R)/p
rclR−−→ R

sclR−−→W (R)/p

for some Fp-algebra map sclR. The map sclR sends an element r ∈ R to the p-th power
[r]p ∈W (R)/p of its Teichmuller representative.

We will now construct analogs of rclR and sclR with W (R)/p replaced by the derived

modulo p reduction of W (R). We denote by cone(W (R)
p−→W (p)) the animated commu-

tative W (R)-algebra obtained by taking the quotient by the quasi-ideal W (R)
p−→W (R).

Equivalently, it is the derived tensor productW (R)⊗LZ Fp in animated commutative rings.
We will also consider the animated commutative W (R)-algebra

(2.3) cone(F∗W (R)
p−→ F∗W (R)) ≃ F∗W (R)⊗LZp

Fp
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where F∗W (R) denotesW (R) viewed as anW (R)-algebra through the Witt vector Frobe-
nius morphism F :W (R)→W (R).

Remark 2.1. Since the object of the derived category of W (R)-modules underlying

cone(W (R)
p−→W (R)) is the cofiber of the multiplication by pmap onW (R), the animated

ring cone(W (R)
p−→W (R)) has non-trivial homotopy groups only in degrees 0 and 1. The

ring π0(cone(W (R)
p−→ W (R))) is the quotient W (R) by the ideal pW (R) in the usual

sense, and π1(cone(W (R)
p−→W (R))) is identified with the p-torsion subgroup in W (R).

The ringW (R) is p-torsion-free if and only if R is reduced1. In this case, cone(W (R)
p−→

W (R)) is the classical commutative ring W (R)/p.

There is a natural map of animated W (R)-algebras rR : cone(W (R)
p−→ W (R)) → R

induced by the map of quasi-ideals

(2.4)

W (R) W (R)

0 R

p

rR

where the right vertical map rR is the surjection given by the 0-th Witt component.

Next, we will construct a natural map sR : R → cone(F∗W (R)
p−→ F∗W (R)) of ani-

mated W (R)-algebras whose composition R → cone(F∗W (R)
p−→ F∗W (R)) → F∗R with

F∗rR is the Frobenius endomorphism of R. The map sR is induced by the map of quasi-
ideals

(2.5)

F∗W (R) W (R)

F∗W (R) F∗W (R)

id

V

F

p

The quotient by the quasi-ideal F∗W (R)
V−→W (R) is indeed the classical ring R because

V is an injective map.

Remark 2.2. If W (R) is p-torsion-free so that cone(F∗W (R)
p−→ F∗W (R)) is concen-

trated in degree 0, the map sR : R → F∗W (R)/p coincides with the map sclR defined in
(2.2).

In other words, the construction of the map sR shows that the structure of an ani-

mated W (R)-algebra on cone(F∗W (R)
p−→ F∗W (R)) naturally refines to a structure of an

animated R-algebra: the structure map W (R) → cone(F∗W (R)
p−→ F∗W (R)) factors as

the composition W (R)→ R
sR−−→ cone(F∗W (R)

p−→ F∗W (R)).

As mentioned above, when R is reduced, cone(F∗W (R)
p−→ F∗W (R)) coincides with

the classical quotient F∗W (R)/p. We will need the following flatness property of this
quotient.

1Multiplication by p equals V F on W (R), the map V is injective, and an element [r0] + V [r1] +
V 2[r2] + . . . ∈ W (R) is annihilated by F if and only if rpi = 0 for all i. So ker p = kerF is non-zero if and

only if R has non-zero nilpotetns.
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Lemma 2.3. For a smooth algebra R over a perfect Fp-algebra k the quotient F∗Wn(R)/p
is a finite projective R-module, for every n. Moreover, the module F∗W (R)/p is flat over
R.

Proof. For the first assertion, the proof of [KTT+22, Proposition 2.9] endows F∗Wn(R)/p
with a finite filtration with graded pieces of the form F i∗R/F

i−1
∗ R. Each of these R-

modules is finite projective by a local computation, cf. [BK05, Proposition 1.1.6].
The second assertion is a consequence of a classical general fact: over a Noetherian

ring R, the inverse limit lim
n
Mn of a system of finitely generated projective R-modules

with surjective transition maps is flat. Indeed, lim
n
Mn is a direct summand of an infinite

product
∞∏
i=0

R, because we can establish each Mn as a direct summand of a finite free

R-module in a way compatible with restriction maps.

Since R is Noetherian,
∞∏
i=0

R is flat: to check flatness it suffices to show that for every

ideal I ⊂ R the natural map I⊗R
∞∏
i=0

R→
∞∏
i=0

R is injective, but since I is finitely presented

as an R-module, this map can be identified with
∞∏
i=0

I →
∞∏
i=0

R, which is injective. Hence

lim
n
Mn is a direct summand of a flat module and is flat itself.

In particular, F∗W (R)/p = lim
n
F∗Wn(R)/p is flat over R. □

We will also need a global version of these constructions. Let X be a reduced2 scheme
over Fp. Denote by W (OX) the sheaf of rings on the underlying topological space of X,
whose value on an affine open SpecR ⊂ X is W (R). The maps rR and sR introduced
above give rise to the maps of sheaves of W (OX)-algebras

(2.6) sX : OX → F∗W (OX)/p rX :W (OX)/p→ OX
We also consider the composition sX,n : OX

sX−−→ F∗W (OX)/p → F∗Wn(OX)/p with
the restriction map to the length n Witt vectors, for all n ≥ 1. This map of sheaves of
algebras in particular endows F∗W (OX)/p and each F∗Wn(OX)/p with a structure of an
OX -module.

We denote by Wn(X) the nilpotent thickening of X over Z/pn obtained by gluing
together SpecWn(R) for all affine open SpecR ⊂ X. The map sX,n gives rise to a map
of Fp-schemes

(2.7) sX,n :Wn(X)×Z/pn Fp → X

whose composition with the natural closed embedding X ↪→ Wn(X) ×Z/pn Fp is the
Frobenius on X.

2.4. F -splitting and quasi-F -splitting. Recall the following special class of algebraic
varieties introduced by Mehta and Ramanathan in [MR85]:

Definition 2.4. For a scheme X over Fp a Frobenius splitting is an OX -linear map

τ : F∗OX → OX such that the composition OX
f 7→fp

−−−−→ F∗OX
τ−→ OX equals the identity

on OX . A scheme admitting a Frobenius splitting is called Frobenius split, or F -split.

2the following constructions make perfect sense for any Fp-scheme but we put ourselves in a setting

where W (OX) is p-torsion-free, to avoid the ambiguity between derived and classical quotient by p



DECOMPOSITION OF DE RHAM COMPLEX FOR QUASI-F-SPLIT VARIETIES 7

Yobuko introduced in [Yob19] a generalization of this notion, which happens to have
similarly strong cohomological consequences.

Definition 2.5 ([Yob19, Definition 4.1], [KTT+22, 2.3]). For a scheme X over Fp and
an integer n ≥ 1, a n-quasi-F -splitting is a map τn : F∗Wn(OX)/p→ OX of OX -modules

such that the composition OX
sX,n−−−→ F∗Wn(OX)/p

τn−→ OX is the identity on OX . A
scheme admitting n-quasi-F -splitting for some n is called quasi-F -split.

A 1-quasi-F -splitting is the same notion as an F -splitting, and a n-quasi-F -splitting
gives rise to a n′-quasi-F -splitting for any n′ > n.

Yobuko proved [Yob19, Theorem 4.4] that for a perfect field k a smooth quasi-F -split
k-scheme X admits a flat lift overW2(k). Combined with the results of [DI87] this implies
that for a smooth proper quasi-F -split variety over k of dimension ≤ p the Hodge-to-de
Rham spectral sequence degenerates, and the Kodaira-Akizuki-Nakano vanishing theorem
holds. One of the main goals of the present paper is to show that this is also true for
quasi-F -split varieties of arbitrary dimension.

3. de Rham stack

Our key tool is the stacky interpretation of the de Rham cohomology of schemes in
characteristic p. In this section we recall the definition and basic properties of the de
Rham stack, following [Dri24], [BL22b], [Bha22]. Let k be an arbitrary commutative
Fp-algebra, it will serve as our base.

Definition 3.1. For a k-scheme X we define its de Rham stack as a functor from k-
algebras to groupoids defined on a k-algebra R by

(3.1) (X/k)dR : R 7→ X(cone(F∗W (R)
p−→ F∗W (R)))

To evaluate the k-scheme X on cone(F∗W (R)
p−→ F∗W (R)), we view it here as an

animated k-algebra via the map k → R
sR−−→ cone(F∗W (R)

p−→ F∗W (R)). Recall [TV08,
Ch.2, §2.2.4] that for a classical k-scheme X the value of X on an animated k-algebra A
is defined by colim

B→A
X(B) where the colimit is taken in the ∞-category of spaces over all

classical commutative k-algebras B equipped with a map to A.
We also abbreviate the notation for the absolute de Rham stack (X/Fp)dR to XdR.

Remark 3.2. (1) Since the animated ring cone(F∗W (R)
p−→ F∗W (R)) has non-zero

homotopy groups only in degrees 0 and 1, the value of X on it is indeed a 1-
groupoid, rather than an arbitrary space, by [TV08, Ch. 2, Corollary 2.2.4.6].

(2) In [Bha22, Definition 2.5.3] the de Rham stack of X relative to k is defined by
sending a test k-algebra R to X(GdR

a (R)). Here GdR
a is a ring stack defined

in [Bha22, Definition 2.5.1] and by [Bha22, Corollary 2.6.8] it coincides with the
fppf-sheafification of the presheaf of animated k-algebras R 7→ F∗W (R)/p. Since
H>0

fppf(SpecR,W ) = 0, this presheaf is already a sheaf, so the natural map of

animated k-algebras F∗W (R)/p → GdR
a (R) is an equivalence, and Definition 3.1

recovers the same stack.
(3) The functor XdR is in fact an étale sheaf, as we will see in Lemma 3.3 below. We

will use this fact repeatedly to reduce some constructions to the case of an affine
X.
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Lemma 3.3. Let R→ S be a fully faithful étale map of Fp-algebras. For any Fp-scheme
X the natural map

(3.2) X(W (R)⊗LZp
Fp)→ lim

∆
X(W (S⊗R•)⊗LZp

Fp)

is an equivalence.

Proof. Let us first treat the case of an affine X = SpecA. By étale descent we have an
equivalence R ≃ lim

∆
S⊗R•, and since the functor R 7→ W (R)⊗LZp

Fp from Fp-algebras to
animated Fp-algebras preserves limits, we get an equivalence

(3.3) W (R)⊗LZp
Fp → lim

∆
W (S⊗R•)⊗Zp

Fp

even though this limit diagram is no longer the Čech nerve of an étale W (R) ⊗LZp
Fp-

algebra in general. The assertion of the lemma for X = SpecA now amounts to the fact
that the mapping spaces from A to the LHS and RHS of (3.3) are equivalent.

To prove the lemma for a general scheme X we apply deformation theory to the square-
zero extension W (R) ⊗LZp

Fp → R. Denote the ideal of this extension by IR. The map

(3.2) fits into the commutative diagram

(3.4)

X(W (R)⊗LZp
Fp) lim

∆
X(W (S⊗R•)⊗LZp

Fp)

X(R) lim
∆
X(S⊗R•)∼

where the bottom horizontal arrow is an equivalence by étale sheafiness of X. Hence it
suffices to check that (3.2) becomes an equivalence after pullback to any point in ∗ ∈ X(R).
Given such a point x : SpecR→ X the fiber of the right vertical map in (3.4) is a torsor
over lim

∆
τ≤0RHomS⊗R•(x∗LX ⊗R S⊗R•, IS⊗R•) ≃ lim

∆
τ≤0RHomR(x

∗LX , IR) while the

fiber of the left vertical map is a torsor over τ≤0RHomR(x
∗LX , IR). As mentioned above,

the natural map W (R) ⊗LZp
Fp → lim

∆
W (S⊗R•) ⊗LZp

Fp is an equivalence, in particular

IR → lim
∆
IS⊗R• is an equivalence. Therefore the map between fibers of the vertical map

(3.4) is an equivalence, as desired. □

The natural R-linear map F∗rR : cone(F∗W (R)
p−→ F∗W (R)) → F∗R induces a map

X(cone(F∗W (R)
p−→ F∗W (R)))→ X(F∗R) = X(1)(R) which gives rise to a map of stacks

(3.5) νX : (X/k)dR → X(1).

The natural map sR : R → cone(F∗W (R)
p−→ F∗W (R)) likewise induces a morphisms of

stacks

(3.6) πX : X → (X/k)dR

By construction, the composition νX ◦πX is the relative Frobenius morphism FX/k : X →
X(1).

Definition 3.4. For a morphism f : X → S of Fp-schemes with S not necessarily affine,
we define the relative de Rham stack as the fiber product in presheaves of groupoids on
Fp-algebras:

(3.7) (X/S)dR := XdR ×SdR S
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where S maps to SdR via the map πS .

Remark 3.5. (1) This is consistent with Definition 3.1 in the case S = Spec k is
affine, because for an animated k-algebra A the groupoid of A-points X(A) =
Mapk(SpecA,X) is equivalent to

MapFp
(SpecA,X)×MapFp (SpecA,Spec k)

∗

where ∗ → MapFp
(SpecA,Spec k) classifies the structure map SpecA→ Spec k.

(2) If S is a perfect Fp-scheme then the natural map (X/S)dR → XdR is an equiv-
alence. Equivalently, the natural map S → SdR is an equivalence. It suffices to
show this in the case S is an affine perfect scheme Spec k. For a test Fp-algebra
R we have (Spec k)dR(R) = MapFp

(k, cone(F∗W (R)
p−→ F∗W (R))). In general,

for an animated Fp-algebra A there is a natural equivalence of mapping spaces
between animated Fp-algebras

(3.8) MapFp
(k,A) ≃ MapFp

(k, π0(A)
perf)

where π0(A)
perf is the inverse limit perfection lim←−

φ

π0(A) of the ring π0(A). Indeed,

in the diagram

(3.9) MapFp
(k,A)←−−−

φA◦
MapFp

(k,A)←−−−
φA◦

. . .

all transition maps can be identified with ◦φk and hence are equivalences, so its
limit is equivalent to MapFp

(k,A). On the other hand, its limit is tautologically

identified with the mapping space MapFp
(k, lim←−−

φA

A). The perfection Aperf of an

animated Fp-algebra is equivalent to the perfection of its π0, by [BS17, Corollary
11.9], which gives (3.8).

Applying this observation to A = cone(F∗W (R)
p−→ F∗W (R)) we get

MapFp
(k, cone(F∗W (R)

p−→ F∗W (R))) ≃ MapFp
(k,R) because the Frobenius en-

domorphism of π0(cone(F∗W (R)
p−→ F∗W (R))) ≃ W (R)/p factors through the

surjective map rclR : W (R)/p → R, and therefore perfections of W (R)/p and R
are identified.

The morphisms πX : X → XdR and νX : XdR → X then induce their relative versions

(3.10) πX/S : X → (X/S)dR νX/S : (X/S)dR → X(1)

For smooth morphisms, cohomology of the structure sheaf on (X/S)dR recovers the de
Rham complex of X:

Proposition 3.6. For a smooth morphism f : X → S there is a natural quasi-
isomorphism in D(X(1)):

(3.11) RνX/S∗O(X/S)dR ≃ FX/S∗Ω•
X/S

Proof. In the case of an affine S this is [Bha22, Corollary 2.7.2 (3)]. The proof in the
general case can be deduced via Zariski descent, as we now outline. The de Rham complex
FX/S∗Ω

•
X/S can be identified with colim

j:U↪→S
j∗FX|U/U∗Ω

•
X|U/U where the colimit in D(X(1))

is taken over all affine open subschemes j : U ↪→ S.
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The formation of de Rham stack of a scheme commutes with fiber products. Therefore,
for an open affine U ↪→ S we have (X|U )dR ≃ XdR ×SdR UdR, and the LHS of (3.11) can
be likewise expressed as colim

U↪→S
j∗RνX|U/U∗O(X|U/U)dR . The natural equivalence (3.11) for

affine S gives rise to an equivalence between functors {j : U ↪→ S} → D(X(1)) given by
U 7→ j∗RνX|U/U∗O(X|U/U)dR and U 7→ j∗FX|U/U∗Ω

•
X|U/U . Passing to colimits over these

functors gives the desired equivalence. □

The key additional leverage for studying de Rham cohomology that the de Rham stack
provides for us is the structure of a gerbe on the morphism νX/S . For a vector bundle
E on a scheme Y , let us view its total space TotY (E) → Y as a group scheme over Y ,
fiberwise isomorphic to GrkE

a . We denote by E♯ the divided power envelope of the zero
section in TotY (E), viewed as a group scheme over Y .

Proposition 3.7. For a smooth morphism f : X → S the morphism νX/S : (X/S)dR →
X(1) establishes (X/S)dR as a gerbe over X(1) for the group scheme T ♯

X(1)/S
.

Proof. In the case of an affine S = Spec k this is [Bha22, Proposition 2.7.1]. If k is a
perfect Fp-algebra, this also follows from [BL22b, Proposition 5.12] applied to the prism

(A, I) = (W (k), (p)) and the smooth scheme X(1) over A/I ≃ k. The case of a general S
follows by Zariski descent, as in Proposition 3.6: for each affine open U ⊂ S we have a

natural map X(1)|U → B2

X
(1)
U

T ♯
X

(1)
U /U

classifying the gerbe (XU/U)dR → X
(1)
U . By Zariski

descent they define a map X(1) → B2
X(1)T

♯
X(1)/S

such that the pullback of the universal

gerbe X(1) → B2
X(1)T

♯
X(1)/S

along it is equivalent to (X/S)dR → X(1). □

Given this gerbe structure, we can readily deduce that the de Rham complex decom-
poses after Frobenius pullback. This has been previously observed by Bhargav Bhatt,
and by Vadim Vologodsky via a different method relying on the Azumaya property of the
algebra of differential operators.

Proposition 3.8 ([Bha22, Remark 2.7.5]). For a smooth morphism f : X → S there is
a natural quasi-isomorphism in D(X)

(3.12) F ∗
X/SFX/S∗Ω

•
X/S ≃

⊕
i≥0

F ∗
X/SΩ

i
X(1)/S [−i]

that induces the Frobenius pullback of the Cartier isomorphism on all cohomology sheaves.

Proof. Since the composition X
πX/S−−−→ (X/S)dR

νX/S−−−→ X(1) is equal to the relative Frobe-
nius morphism FX/S , the pullback of the morphism νX/S along FX/S admits a section:

(3.13)

(X/S)dR ×X(1) X (X/S)dR

X X(1)

ν′
X/S

νX/S

FX/S

(πX/S ,idX)

As (X/S)dR is a gerbe for T ♯
X(1)/S

over X(1), the pullback (X/S)dR ×X(1) X is a gerbe

for the group scheme (F ∗
X/STX(1)/S)

♯. Since the morphism ν′X/S has a section, this gerbe

is trivial, so the stack (X/S)dR ×X(1) X is isomorphic to the relative classifying stack
BX(F ∗

X/STX(1)/S)
♯.
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For a vector bundle E on X the derived pushforward of the structure sheaf along
BXE

♯ → X is identified with
⊕
i≥0

ΛiE∨[−i], by [BL22b, Lemma 7.8] or [Bha22, Remark

2.4.6]. Therefore, we have an equivalence

(3.14) Rν′X/S∗O(X/S)dR×
X(1)X ≃

⊕
i≥0

F ∗
X/SΩ

i
X(1)/S [−i]

On the other hand, pushforward along νX/S satisfies flat base change by Lemma 3.9
below. That is, Rν′X/S∗O(X/S)dR×

X(1)X is equivalent to F ∗
X/SRνX/S∗O(X/S)dR which in

turn is identified with F ∗
X/SFX/S∗Ω

•
X/S by Proposition 3.6. Hence the equivalence (3.14)

provides the desired decomposition.
The final assertion about the effect of (3.12) on cohomology sheaves can always be

ensured by composing with an appropriate automorphism of the RHS. □

Lemma 3.9 ([Bha22, Remark 2.5.5]). Let X be a smooth S-scheme, and f : Y → X(1)

be a flat morphism. Consider the fiber square

(3.15)

Y ×X(1) (X/S)dR (X/S)dR

Y X(1)

ν′
X

νX

f

The pullback f∗FX/S∗Ω
•
X/S of the de Rham complex is naturally identified with

R(ν′X)∗OY×XXdR .

Let us also record a version of Proposition 3.8 for de Rham cohomology with coefficients
in an arbitrary DX -module with nilpotent p-curvature:

Proposition 3.10. For a smooth morphism f : X → S of Fp-schemes, let E be a quasi-
coherent sheaf on X equipped with a flat connection ∇ : E → E ⊗ Ω1

X/S relative to f .

Assume that ∇ has locally nilpotent p-curvature. The Frobenius pullback of the de Rham
complex of E is quasi-isomorphic to the following Higgs complex

(3.16) F ∗
X/SFX/S∗(E ⊗ Ω•

X/S) ≃ E
ψ−→ E ⊗ F ∗

X/SΩ
1
X/S

ψ−→ E ⊗ F ∗
X/SΩ

2
X/S

ψ−→ . . .

constructed out of the p-curvature map ψ : E → E ⊗ F ∗
X/SΩ

1
X/S of the connection ∇.

Remark 3.11. It was proven in [Ogu04] that individual cohomology sheaves of left- and
right-hand sides of (3.16) are naturally isomorphic: Theorem 1.2.1 of loc. cit. proves
the stronger assertion that for each i the i-th cohomology sheaf of the RHS of (3.19) is
a quasi-coherent sheaf with a flat connection with vanishing p-curvature whose sheaf of
flat sections is naturally isomorphic to Hi(FX/S∗(E ⊗ Ω•

X/S)).

Proof. We have an equivalence between QCoh((X/S)dR) and the abelian category of
quasi-coherent sheaves on X equipped with a flat connection (relative to f) with locally
nilpotent p-curvature. Denote by E ∈ QCoh((X/S)dR) the quasi-coherent sheaf corre-
sponding to E under this equivalence. The de Rham complex FX/S∗(E ⊗ Ω•

X/S) is the

derived pushforward RνX/S∗E of E .
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The pullback of the de Rham stack νX/S : (X/S)dR → X(1) along the Frobenius map

FX/S : X → X(1) is the split gerbe and diagram (3.13) can be drawn as:

(3.17)

BX(F ∗
X/STX(1)/S)

♯ (X/S)dR

X X(1)

F ′
X/S

ν′
X/S

νX/S

FX/S

The category of quasi-coherent sheaves on BX(F ∗
X/STX(1)/S) is equivalent to the cat-

egory of quasi-coherent sheaves on X equipped with an action of the sheaf of algebras
SymOX

F ∗
X/STX(1)/S . By [Gleb????], under this equivalence F ′∗

X/SE corresponds to E with

its p-curvature action. Therefore Rν′X/SF
′∗
X/SE is the Higgs complex

(3.18) E
ψ−→ E ⊗ F ∗

X/SΩ
1
X/S

ψ−→ E ⊗ F ∗
X/SΩ

2
X/S

ψ−→ . . .

and the base change equivalence F ∗
X/SRνX/S∗E ≃ Rν′X/SF

′∗
X/SE provides the desired

quasi-isomorphism (3.16). □

Remark 3.12. Proposition 3.10 remains true for arbitrary E, without the assumption on
the nilpotence of the p-curvature. This can be shown by an analog of the above argument
for the version of the de Rham stack constructed as the transmutation of the ring stack

cone(Ĝ♯a → Ga).

Recall that for a morphism f : X → S of Fp-schemes we say that X is Frobenius-
split relative to S if there exists an OX(1)-linear map τ : FX/S∗OX → OX(1) such that

the composition OX(1)

F#
X/S−−−→ FX/S∗OX/S

τ−→ OX(1) is the identity map. Proposition 3.8
implies that a smooth Frobenius split scheme has decomposable de Rham complex:

Proposition 3.13. If a smooth S-scheme X is Frobenius-split relative to S, then there
is a quasi-isomorphism FX/S∗Ω

•
X/S ≃

⊕
i≥0

Ωi
X(1)/S

[−i] in D(X(1)).

Proof. Applying pushforward FX/S∗ along the finite flat morphism FX/S : X → X(1) to

the quasi-isomorphism (3.12) we obtain a quasi-isomorphism in D(X(1)):

(3.19) FX/S∗OX ⊗O
X(1)

FX/S∗Ω
•
X/S ≃ FX/S∗OX ⊗O

X(1)

⊕
i≥0

ΩiX(1)/S [−i].

Given a Frobenius splitting τ : FX/S∗OX → OX(1) we will define the desired quasi-
isomorphism as the composition

(3.20) FX/S∗Ω
•
X/S

F#
X/S

⊗id
−−−−−−→ FX/S∗OX ⊗O

X(1)
FX/S∗Ω

•
X/S ≃

≃ FX/S∗OX ⊗O
X(1)

⊕
i≥0

ΩiX(1)/S [−i]
τ⊗id−−−→

⊕
i≥0

ΩiX(1)/S [−i]

By the final sentence of Proposition 3.8 the map induced by quasi-isomorphism (3.19)
on cohomology sheaves is obtained by extending scalars from OX(1) to FX/S∗OX . This
implies that the composition (3.20) induces an isomorphism on cohomology sheaves. □
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4. Quasi-F -split varieties

We will now strengthen Proposition 3.8 to prove that de Rham complex of a smooth va-
riety splits already after being pulled back along the morphism sX,n :Wn(X)×Z/pn Fp →
X, for every n, and consequently smooth quasi-F -split varieties have a decomposable de
Rham complex.

We restrict ourselves to working over a perfect Fp-algebra k. For a smooth k-scheme
X we denote by F∗Ω

•
X the de Rham complex, viewed as a complex of coherent sheaves on

X, dropping the perfect base ring k from the notation. Recall that for all n ≥ 1 we denote
by F∗Wn(OX)/p the sheaf of algebras on X endowed with a structure of an OX -algebra
via the map sX,n : OX → F∗Wn(OX)/p given by r 7→ [rp] on local sections. As in (2.7),
we denote by the same symbol sX,n : Wn(X) ×Z/pn Fp → X the corresponding map of
schemes.

Theorem 4.1. For a smooth scheme X over a perfect Fp-algebra k, for each n there is
a natural equivalence

(4.1) F∗Wn(OX)/p⊗OX
F∗Ω

•
X ≃

⊕
i≥0

F∗Wn(OX)/p⊗OX
ΩiX [−i]

in the derived category of quasi-coherent F∗Wn(OX)/p-modules on X.

We will obtain this decomposition as a consequence of the fact that the morphism
νX : XdR → X acquires a section over Wn(X) ×Zp

Fp. We first recall the following
criterion for the morphism νX itself to have a section.

Proposition 4.2. Let X̃ be a flat p-adic formal scheme over Spf Zp equipped with an

endomorphism F̃ : X̃ → X̃ whose restriction to the special fiber X := X̃×Zp
Fp is equal to

the Frobenius endomorphism of X. Then the morphism νX : XdR → X admits a natural
section sF̃ : X → XdR.

Proof. This is established in the course of the proof of [BL22b, Proposition 5.12], but we
record the proof here for the sake of completeness.

We can now define the section sF̃ : X → XdR of the morphism νX . Since XdR is a
Zariski sheaf (Remark 3.2(3)), it suffices to produce such a section on every affine Zariski
open U ↪→ X provided that this construction is functorial, in the sense that it extends to
a functor from the poset of affine opens {U ⊂ X} to the slice category over XdR. For this
it suffices to produce a section of νU : UdR → U for every affine open U ⊂ X. Each U is
equipped with a unique flat formal lift over Zp together with a Frobenius lift, compatible
with the given lift of X. Hence we may assume from now on that X = SpecS is affine.

Let S̃ be a flat Zp-algebra equipped with an endomorphism F̃S : S̃ → S̃ that lifts

the Frobenius endomorphism on S := S̃/p. There is a natural ring homomorphism

w̃F̃ : S̃ → W (S̃) whose composition with rS̃ : W (S̃) → S̃ is the identity map on S̃,
by the adjunction between W (−) and the forgetful functor from δ-rings to all rings,
cf. [Joy85, Théorème 4]. In particular, we get a natural map of rings

(4.2) wF̃ : S̃
w̃F̃−−→W (S̃)→W (S)

where the second map is induced by the mod p reduction map S̃ → S. Applying the
functor −⊗Zp

Fp to the map wF̃ we obtain a point of the groupoid MapFp
(S,W (S)⊗LZp
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Fp) = (SpecS)dR(S) and we define the section sF̃ : SpecS → (SpecS)dR to be the map
corresponding to that point.

This is indeed a section, because the composition νSpecS ◦ sF̃ is induced by the map
of (discrete) Fp-algebras S → S given by the composition

(4.3) S̃ ⊗Zp Fp
w̃F̃−−→W (S̃)⊗LZp

Fp →W (S)⊗LZp
Fp

rS−→ S

The composition of the last two maps in (4.3) is equivalent toW (S̃)⊗LZp
Fp → S̃⊗LZp

Fp ≃ S
where the first map is the mod p reduction of the projection onto 0-th Witt coordinate.

Hence the composition (4.3) is the identity map, because the composition S̃
w̃F̃−−→W (S̃)→

S̃ is the identity. □

Remark 4.3. Bhargav Bhatt and Vadim Vologodsky proved that for a smooth scheme
X over a perfect field k the map νX : (X/k)dR → X(1) admits a section if and only if X
can be lifted over W2(k) together with its Frobenius endomorphism, but we will not need
this stronger fact.

For an Fp-scheme X denote by W (X) the ind-scheme obtained as the colimit
colim
n

Wn(X) along closed embeddingsWn(X) ↪→Wn+1(X) of finite length Witt schemes.

Its base change W (X)×Zp
Fp can be likewise described as the colimit colim

n
Wn(X)×Z/pn

Fp. The maps OX → Wn(OX)/p of sheaves of rings on X given on local sections
by r 7→ [rp] give rise to a map sX : W (X) ×Zp

Fp → X such that the composition

X ≃W1(X) ↪→W (X)×Zp Fp
sX−−→ X is the Frobenius endomorphism of X.

Corollary 4.4. For a reduced Fp-scheme X there is a natural morphism σ : W (X)×Zp

Fp → XdR fitting into the commutative diagram

(4.4)

XdR

W (X)×Zp Fp X.

νX
σ

sX

.

Proof. Note that W (X) is in general not a p-adic formal scheme because for an affine
open SpecR ⊂ X the ring W (R) is complete for the V -adic topology that is stronger
than the p-adic topology. We make the following construction that lets us ignore the
V -adic topology on the mod p reduction of W (R). Consider the Zariski sheaf of sets on
the category of Fp-algebras obtained as the colimit

(4.5) W(X)Fp
:= colim

SpecR↪→X
SpecW (R)/p

taken over the category of all affine open subschemes of X. Each schemeWn(X)×Z/pnFp,
being the colimit (in Zariski sheaves) of SpecWn(R)/p for affine opens SpecR ↪→ X,
admits a natural map Wn(X) ×Z/pn Fp → W(X)Fp . These maps for varying n give rise
to a map W (X)×Zp

Fp → W(X)Fp
that can be interpreted as the map from the V -adic

formal completion of the target.
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For each affine open ι : SpecR ↪→ X, consider the commutative diagram induced by
the functoriality of the de Rham stack and the map νX :

(4.6)

(SpecW (R)/p)dR XdR

SpecW (R)/p SpecR X

(ι◦sR)dR

νW (R)/p νX

sR

sFW (R)

ι

The map νW (R)/p has a section sFW (R)
, natural in R, by Proposition 4.2 applied

to the p-adic formal lift SpfW (R) of SpecW (R)/p equipped with its usual Frobe-
nius lift. The compositions (ι ◦ sR)dR ◦ sFW (R)

for varying R then give rise to a

map W(X)Fp
= colim

SpecR↪→X
SpecW (R)/p → XdR and its composition with the map

W (X)×Zp Fp →W(X)Fp is our desired section σ. □

We can now deduce Theorem 4.1 as in the proof of Proposition 3.8.

Proof of Theorem 4.1. Consider the pullback of the de Rham stack onto Wn(X)Fp
:=

Wn(X)×Zp
Fp:

(4.7)

XdR ×X Wn(X)Fp
XdR

Wn(X)Fp
X

ν′
X

νX

sX,n

Corollary 4.4 provides us with a section of the morphism ν′X . Since ν′X is a gerbe for the
group scheme (s∗X,nTX)♯, a section provides a trivialization

(4.8) XdR ×X Wn(X)Fp
≃ BWn(X)Fp

(s∗X,nTX)♯

Hence Rν′X∗O is equivalent to
⊕
i≥0

s∗X,nΩ
i
X [−i].

By Lemma 2.3 the morphism sX,n : Wn(X)Fp
→ X is flat, and the base change along

it (Lemma 3.9) gives an equivalence

(4.9) Rν′X∗O ≃ s∗X,nRνX∗O(X/k)dR ≃ s∗X,nF∗Ω
•
X(1)/k

which gives rise to the decomposition s∗X,nF∗Ω
•
X ≃

⊕
i≥0

s∗X,nΩ
i
X [−i]. Since sX,n :

Wn(X)Fp
→ X is an affine morphism with sX,n∗OWn(X)/p ≃ FX∗Wn(OX)/p, this is

equivalent to the desired decomposition (4.1). □

By construction, the above splittings for varying n are compatible with restriction
maps. Passing to the inverse limit over n, using that F∗Ω

•
X is a bounded complex of

coherent sheaves so tensoring with it commutes with inverse limits, we get:

Corollary 4.5. For a smooth scheme X over a perfect Fp-algebra k there is a natural
quasi-isomorphism

(4.10) F∗W (OX)/p⊗OX
F∗Ω

•
X ≃

⊕
i≥0

F∗W (OX)/p⊗OX
ΩiX [−i]

in the derived category of quasi-coherent F∗W (OX)/p-modules on X.
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We can now deduce the first main result of this paper by repeating the argument from
Proposition 3.13.

Corollary 4.6. For a quasi-F -split smooth scheme X over a perfect ring k there is a
quasi-isomorphism F∗Ω

•
X/k ≃

⊕
i≥0

Ωi
X(1)/k

[−i].

Proof. By definition, for some n there exists an OX -linear map τn : F∗Wn(OX)/p→ OX
splitting the map OX → F∗Wn(OX)/p.

We may and do assume that the F∗Wn(OX)/p-linear equivalence (4.1) induces on
each cohomology sheaf the base change to F∗W (OX)/p of the Cartier isomorphism
Hi(F∗Ω

•
X) ≃ ΩiX . If this is not true on the nose, we can always replace the equiva-

lence (4.1) with its composition with an appropriate automorphism of the RHS to make
this true.

The natural map sX,n ⊗ id : F∗Ω
•
X/k → F∗Wn(OX)/p⊗O

X(1)
F∗Ω

•
X/k in D(X) admits

a splitting τn ⊗ id : F∗W (OX)/p ⊗OX
F∗Ω

•
X/k → F∗Ω

•
X/k. Composing the natural map⊕

i≥0

ΩiX [−i]→
⊕
i≥0

F∗Wn(OX)/p⊗OX
ΩiX [−i] with the inverse of the equivalence (4.1) and

the map τn ⊗ id we get a map in D(X(1)):

(4.11)
⊕
i≥0

ΩiX [−i]→ F∗Ω
•
X/k

By our assumption on the effect of (4.1) on cohomology sheaves, (4.11) induces the Cartier
isomorphism on cohomology sheaves, and in particular is a quasi-isomorphism, as desired.

□

Remark 4.7. In view of the decomposition (4.10), the proof of Corollary 4.6 would go
through given only that the map OX → F∗W (OX)/p into the ring of full Witt vectors
modulo p admits a section, which might appear to be a weaker property than being
quasi-F -split. However, we will see below in Corollary A.2 that for a smooth scheme X
over a perfect field k a section of OX → F∗W (OX)/p automatically factors through an
n-quasi-F -splitting for some n ≥ 1.

Let us mention explicitly the following classes of examples of F -split and quasi-F -split
varieties, whose de Rham complex is therefore decomposable. This answers some of the
questions raised in [Ill96, 7.11]:

Corollary 4.8. For the following classes of smooth varieties over a perfect field k the de
Rham complex is decomposable:

(1) Generalized flag varieties G/P , where P is a smooth parabolic subgroup in a
reductive group G. In particular, every smooth quadric hypersurface Q ⊂ Pn+1

k

in a projective space has decomposable de Rham complex.
(2) Finite height Calabi-Yau varieties, i.e. smooth proper connected varieties X with

ωX ≃ OX , Hi(X,OX) = 0 for 0 < i < dimX, and HdimX(X,W (OX))⊗Q ̸= 0.

Proof. Generalized flag varieties are Frobenius-split by [MR85, Theorem 2], which implies
the first assertion. The assertion about smooth quadrics now follows, because they are
examples of generalized flag varieties for orthogonal groups SO(n).

Alternatively, we can give a direct construction of a Frobenius splitting of a smooth
quadric Q ⊂ Pnk . By [BK05, Excercies 1.3.E (1)+(3)] a homogeneous polynomial σ ∈
k[x0, . . . , xn] of degree (p−1)(n+1) defines a splitting of a hypersurface in Pn cut out by
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equation {f = 0} if fp−1 divides σ, and (x0x1 . . . xn)
p−1 appears in fp−1 with a non-zero

coefficient.
Since the property of being Frobenius split can be checked after an extension of the

base perfect field, we may assume that k is algebraically closed. If p > 2, then Q is
isomorphic to the quadric cut out by the equation f = x20 + . . . + x2n. The coefficient
of (x0x1 . . . xn)

2 in fp−1 is (p − 1)! ̸= 0, so we can take σ = fp−1 · (x0x1 . . . xn)n−1 as
a degree (n + 1)(p − 1) polynomial defining a splitting of Q. For p = 2 the quadric
Q is isomorphic ([SGA73, Expose XII, Proposition 1.2]) to one of the following two:
f = x0x1 + x2x3 + . . .+ xn−1xn or f = x20 + x1x2 + x3x4 + . . .+ xn−1xn, depending on
the parity of n. In either of the cases σ = f · (x2x3 . . . xn) defines a splitting.

Finally, the fact that finite height Calabi-Yau varieties are quasi-F -split was proven by
Yobuko [Yob19, Theorem 4.5]. □

Corollary 4.9. Let X be a smooth proper quasi-F -split variety over a perfect field k,
equidimensional of dimension d.

(1) Hodge-to-de Rham spectral sequence Ei,j1 = Hj(X,ΩiX/k)⇒ Hi+j
dR (X/k) degener-

ates at the first page.
(2) For an ample line bundle L on X, the cohomology group Hi(X,ΩjX/k⊗L) vanishes

for i+ j > d.

Proof. (1) follows from Corollary 4.6 by [DI87, Corollaire 4.14]. (2) follows by the
argument from the proof of [DI87, Corollaire 2.8]: by Serre’s vanishing the groups
Hi(X,Ωj ⊗ LN ) are zero for large enough N and i > 0, hence Lemma 2.9 of loc. cit.
implies that Hi(X,Ωj ⊗ L) = 0, which is equivalent to (2) by Serre duality. □

Remark 4.10. (1) For d ≤ p Corollary 4.9 follows directly from the results [DI87,
Corollaire 2.4, Corollaire 2.8] of Deligne-Illusie-Raynaud, by the result of Yobuko
that a quasi-F -split variety lifts over W2(k). The case d = p + 1 for an F -split
variety has also been proven previously by Achinger-Suh [AS23, Theorems A.2,
A.4].

(2) Kodaira vanishing for quasi-F -split varieties of arbitrary dimension (the case
j = d in (2) above) has been proven in [NY21, Theorem 1.7], and for F -split
varieties it was proven in [MR85]. The above result in full generality appears to
be new even for F -split varieties.

5. Frobenius splitting of classifying stacks

In this section we generalize the decomposition result from Proposition 3.8 to smooth
Artin stacks over a perfect field and observe that the classifying stack of a reductive group
is Frobenius split, which leads to the main result of this section:

Theorem 5.1. For a reductive group G over a perfect field k of characteristic p, Hodge-to-
de Rham spectral sequence Ei,j1 = Hj(BG,ΛiLBG/k) ⇒ Hi+j

dR (BG/k) for the classifying
stack of G degenerates at the first page.

Remark 5.2. (1) The Hodge cohomology groups Hj(BG,ΛiLBG/k) of BG can be

identified with the cohomology Hj−i(G,Sj(g∗)) of the group G with coefficients
in the symmetric powers of the dual to the adjoint representation, cf. [Tot18,
Corollary 2.2].
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(2) The fact that there are no non-zero differentials coming out of terms Ei,jr in the
range i + j < p was proven in [KP22, Corollary 1.3.24] by a generalization to
stacks of the method of Deligne-Illusie. Our proof also proceeds by proving first
that the conjugate spectral sequence degenerates for BG.

(3) We do not know if Theorem 5.1 remains true over an arbitrary base ring k.
Degeneration trivially holds when k is a Q-algebra because in this case the entries
Ei,j1 of the spectral sequence are zero for i ̸= j. The case of k = Z/pn for n ≥ 2
seems to require a new idea.

(4) We find it somewhat curious that replacing a reductive group G by a quotient
G′ = G/Γ by a central finite subgroup scheme Γ ⊂ Z(G) of multiplicative type
(e.g. G = GLn and G′ = PGLn) might make the Hodge cohomology of the
classifying stack much more complicated but the Frobenius-splitting of BG′ easily
follows (Lemma 5.13) from that of BG, so our proof of Theorem 1.4 for G′ is no
more harder than it is for G.

We refer the reader to [KP22, 1.1] or [ABM21, Construction 2.7] for the definition and
basic properties of Hodge and de Rham cohomology of smooth stacks. Following the same
principle as in these references, we introduce the de Rham complex of a smooth stack X
in characteristic p, viewed as an object of the derived category of quasi-coherent sheaves
on X(1), by formally extending it from the corresponding invariant for smooth schemes.

For the duration of this section, k is a perfect Fp-algebra. The definition of the de
Rham complex for a stack will be a special case of the following construction that, given
a functorial way of assigning to every smooth k-scheme S an object FS ∈ D(S), extends
it to arbitrary smooth Artin stacks. To simplify the exposition, we restrict ourselves to
stacks with affine diagonal.

Construction 5.3. Following [Lur24, 020S], we denote by QCobj the ∞-category of
∞-categories equipped with a distinguished object. Its objects are pairs (C, C) where
C is an ∞-category, and C ∈ C is an object, and 1-morphisms from (C, C) to (D, D)
are pairs F : C → D, α : F (C) → D where F is a functor and α is any 1-morphism
in D, which does not have to be invertible. Likewise, QC denotes the ∞-category of
∞-categories [Lur24, 0208].

Let Sm be the category of smooth affine schemes over k. Denote by StSm the category
of smooth Artin stacks over k with affine diagonal, in the sense of [Sta24, 026O].

Suppose we are given a functor F : Smop → QCobj such that the underlying functor

Smop F−→ QCobj → QC is the functor D(−), sending S ∈ Sm to the derived category
of quasi-coherent sheaves on S, and a morphism f : S → S′ to the pullback functor
f∗ : D(S′) → D(S). For an affine scheme S ∈ Sm we denote the distinguished object of

D(S) provided by F by FS ∈ D(S). Let F̃ : StopSm → QCobj be the left Kan extension of

F along Smop ↪→ StopSm. Explicitly, for a stack X ∈ StopSm we have F̃(X) = (D(X), F̃X)

where the object F̃X ∈ D(X) is given by

(5.1) F̃X = lim
f :S→X

f∗FS

where the limit is taken over all smooth affine schemes mapping to X. By the assumption
that X has affine diagonal, each morphism f is necessarily affine.

Lemma 5.4. If the functor F : Smop → QCobj satisfies smooth descent, then so does the

extended functor F̃ .
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Proof. Let π : X ′ → X be a smooth cover in StSm. If π
′ : U → X ′ is a smooth cover by a

scheme, then it suffices to check descent along morphisms π′ and π ◦π′ both of which are
representable, because X ′ and X are assumed to have affine diagonal. Hence it suffices
to treat the case of a representable smooth cover π.

The Čech nerve of π consists of stacks πn : X ′×X(n+1) → X. We need to show that
the natural map

(5.2) F̃X → lim
[n]∈∆

πn∗F̃X′×X (n+1)

is an equivalence.
Consider the 1-categories C and C′ defined as follows. An object of C consists of a

pair ([n], fn : T → X ′×X(n+1)) where [n] is an object of ∆op, and fn is an arbitrary
morphism from a smooth affine scheme T ∈ Sm. The other category C′ consists of pairs
([n], f : S → X) where [n] ∈ ∆op, and S is a smooth affine scheme. There is a functor
C′ → C sending ([n], S → X) to ([n], S ×X X ′×X(n+1) → X ′×X(n+1)).

We have a functor Fπ : C → D(X) sending ([n], fn : T → X ′×X(n+1)) to πn∗fn∗FT . By
definition, the codomain of (5.2) is computed as lim

Cop
Fπ. For each morphism f : S → X

from a smooth affine scheme S ∈ Sm the fiber product f : S′ := S ×X X ′ → S is

a smooth affine cover of S. By smooth descent for F , we can then calculate F̃X as

lim
f :S→X

lim
[n]∈∆

f∗πn,S∗FS′×S(n+1) . In other words, F̃X is equivalent to the limit lim
C′ op
Fπ|C′ .

The functor C′ → C is cofinal by Quillen’s theorem A [Lur09, Theorem 4.1.3.1], because
for an object ([n], fn : T → X ′×X(n+1)) the slice category C′ ×C C([n],T )/ has the initial

object S = T
fn−→ X ′×X(n+1) πn−−→ X and is therefore weakly contractible. Hence limits of

Fπ over categories Cop and C′ op are equivalent, as desired. □

Specializing the above construction to functors S 7→ FS/k∗Ω
•
S/k ∈ D(S(1)) and S 7→

τ≤nFS/k∗Ω
•
S/k ∈ D(S(1)) we can define the de Rham complex of a smooth Artin stack,

together with its conjugate filtration:

Definition 5.5. For a smooth Artin stackX with affine diagonal over a perfect Fp-algebra
k define the following object of D(X(1)):

(5.3) F∗Ω
•
X := lim

f :S→X
f
(1)
∗ FS/k∗Ω

•
S/k

where the limit is taken over all morphisms f : S → X from affine smooth schemes to
X. Similarly, for n ≥ 0 define the n-th step of the conjugate filtration on the de Rham
complex as

(5.4) Filconjn F∗Ω
•
X := lim

f :S→X
f
(1)
∗ τ≤nFS/k∗Ω

•
S/k

where the limit is taken over the same category of affine schemes that are smooth over
X.

Note that F∗Ω
•
X is an indivisible piece of notation here: we did not define the de Rham

complex itself as a sheaf-theoretic object on X.

Remark 5.6. For a smooth affine scheme X over k the above definition correctly recovers
the Frobenius pushforward of the de Rham complex, because the diagram of smooth
schemes over X has an initial object. For a general stack, a more finitary method of
computing F∗Ω

•
X/k is given by the smooth descent for it, as in Lemma 5.7 (4) below.
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For a stack Y over k we denote by RΓ(Y,−) : D(Y )→ D(k) the derived pushforward
functor along the morphism Y → Spec k.

Lemma 5.7. For a smooth Artin stack X with affine diagonal over k the following holds.

(1) The complex of k-modules RΓ(X(1), F∗Ω
•
X/k) is naturally equivalent to the de

Rham cohomology RΓdR(X/k) of the stack X, as defined e.g. in [KP22, Definition
1.1.3].

(2) Conjugate filtration on F∗Ω
•
X/k is exhaustive, that is the natural map

(5.5) colim
n

Filconjn F∗Ω
•
X → F∗Ω

•
X

is an equivalence.
(3) The n-th graded piece grconjn := cone(Filn−1F∗Ω

•
X → FilnF∗Ω

•
X) of the conjugate

filtration is equivalent to ΛnLX(1)/k[−n] where LX(1)/k is the cotangent complex

of the stack X(1).
(4) For a smooth surjective morphism f : U → X of smooth Artin stacks with affine

diagonals there is a natural equivalence

(5.6) Filconjn F∗Ω
•
X ≃ lim

[i]∈∆
fi∗Fil

n
conjF∗Ω

•
U×X (i+1)

where fi : U
×X(i+1) → X are structure maps from the terms of the Cech nerve of

f .

Proof. (1) follows from the natural equivalence RΓ(S(1), FS∗Ω
•
S) ≃ RΓdR(S/k) for smooth

schemes S and the fact that RΓ(X(1),−) commutes with limits.

Statement (2) is equivalent to proving that colim
n

lim
f :S→X

f
(1)
∗ τ>nF∗Ω

•
S vanishes. Since

f
(1)
∗ is left exact with respect to the standard t-structures on D(S(1)) and D(X(1)),

each object f
(1)
∗ τ>nF∗Ω

•
S is concentrated in degrees > n. The subcategory of objects

concentrated in cohomological degrees> n is closed under limits [Lur17, Corollary 1.2.1.6].

Therefore for each n the object lim
f :S→X

f
(1)
∗ τ>nF∗Ω

•
S ∈ D(X(1)) is concentrated in degrees

> n, and their colimit along n vanishes, finishing the proof of (2).
By Cartier isomorphism, for a smooth scheme S, the n-th graded piece of the conjugate

filtration on F∗Ω
•
S is naturally equivalent to Ωn

S(1)/k
[−n]. Hence grconjn F∗Ω

•
X is computed

by the limit lim
S→X

f
(1)
∗ Ωn

S(1)/k
[−n], which coincides with the shifted n-th exterior power

of the cotangent complex LX(1)/k, as a consequence of smooth descent for cotangent

complex, cf. [KP22, Proposition 1.1.4] or [ABM21, Remark 2.8]. This proves statement
(3).

By smooth descent for cotangent complex and its exterior powers [Bha12, Remark 2.8],
the assignment S 7→ τ≤nF∗Ω

•
S satisfies smooth descent, so (4) follows by Lemma 5.4. □

Example 5.8. Explicitly, for a smooth affine group scheme G over k the object
F∗Ω

•
BG/k ∈ D+(BG(1)) ≃ D+(RepkG

(1)) is a complex of k-linear representations of

G(1) that can be represented by the totalization of the cosimplicial complex

(5.7) FG/k∗Ω
•
G/k FG×G/k∗Ω

•
G×G/k . . .

obtained by applying the functor of Frobenius linearized de Rham complex to the Čech
nerve of the map G → Spec k. For each n ≥ 1, the group scheme G acts on Ω•

G×n/k via
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diagonal translations, and consequently G(1) acts on FG×n∗Ω
•
G×n/k, giving an action of

G(1) on the cosimplicial complex (5.7).

Proposition 5.9. For a smooth Artin stack X with affine diagonal over a perfect Fp-
algebra k there is an equivalence

(5.8) F ∗
X/kF∗Ω

•
X/k ≃

⊕
i≥0

F ∗
X/kΛ

iLX(1)/k[−i]

Proof. Given Proposition 3.8, this follows formally from smooth descent for Frobenius
pullback of the cotangent complex, established in Lemma 5.10 below. □

For a future application, we prove the following in a larger generality of not necessarily
smooth stacks. The Frobenius endomorphism FX for a non-smooth stack X might not be
flat, and everywhere below for a morphism f : X → Y we denote by f∗ : D(Y )→ D(X)
the derived pullback functor.

Lemma 5.10. Let f : U → X be a flat surjective morphism of arbitrary Artin stacks
over Fp. Consider the simplicial Čech nerve U• := U×X•, each term equipped with the

structure map fi : U
×X(i+1) → X. For all n the natural map

(5.9) F ∗
XΛnLX → lim

∆
f•∗F

∗
U•

ΛnLU•

is an equivalence.
In particular for a smooth Artin stack X with affine diagonal over a perfect Fp-algebra

k, the natural map F ∗
XΛnLX → lim

f :S→X
f∗F

∗
SΛ

nLS, where the limit is taken over all smooth

affine schemes S mapping to X, is an equivalence.

Proof. The proof follows the same idea as Bhatt’s proof [BMS19, Theorem 3.1] of de-
scent for cotangent complex itself. First of all, as in the proof of Lemma 5.4, for the
first assertion of the lemma it suffices to treat the case of a representable f . By flat de-
scent for quasi-coherent sheaves, F ∗

XΛnLX is equivalent to the limit lim
∆
f•∗f

∗
•F

∗
XΛnLX ≃

lim
∆
f•∗F

∗
U•
f∗•Λ

nLX . Hence the fact that (5.9) is an equivalence in D(X) is equivalent to

the vanishing of the object

(5.10) lim
∆
f•∗F

∗
U•

cone(f∗•Λ
nLX

df•−−→ ΛnLU•) ∈ D(X).

Using the fundamental triangle f∗•LX → LU• → LU•/X , we can endow the cone cone(df• :

f∗•Λ
nLX → ΛnLU•) with a finite filtration whose graded pieces are ΛjLU•/X⊗f∗•Λn−jLX

with 0 < j ≤ n.
Hence it suffices to check that the limit lim

∆
f•∗F

∗
U•

(ΛjLU•/X ⊗ f∗•Λn−jLX) vanishes

for all 0 < j ≤ n. This can be checked flat locally on X and étale locally on U , so we
may and do assume that X = SpecA and U = SpecB are both affine schemes.

We need to check that the totalization of the following cosimplicial object of D(A)

(5.11) ∆ ∋ [i] 7→ F ∗
B⊗A(i+1)(Λ

jLB⊗A(i+1)/A)⊗A F
∗
AΛ

n−jLA

is zero. Since A → B if a faithfully flat map, this can be checked after tensoring this
cosimplicial A-module with B. We will now prove that the cosimplicial object [i] →
F ∗
B⊗A(i+1)(Λ

jLB⊗A(i+1)/A)⊗AB ofD(B) is contractible. This implies the desired vanishing

of the totalization of (5.11) because this cosimplicial object remains contractible after
tensoring with the complex F ∗

AΛ
n−jLA over A.
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By base change for the cotangent complex, for an A-algebra C there is an equivalence
F ∗
CΛ

nLC/A ⊗A B ≃ F ∗
C⊗AB

ΛnL(C⊗AB)/B natural in C. In particular, the cosimplicial

object [i] 7→ F ∗
B⊗A(i+1)Λ

jLB⊗A(i+1)/A⊗AB of D(B) is equivalent to the result of applying

the functor D 7→ F ∗
DΛ

nLD/B from B-algebras to complexes of B-modules to the Čech

nerve of the map idB ⊗1 : B → B ⊗A B. This Čech nerve is homotopy equivalent to the
constant cosimplicial B-algebra B, hence the result of applying functor D 7→ F ∗

DΛ
nLD/B

is homotopy equivalent to the constant cosimplicial object with value F ∗
BΛ

nLB/B = 0, as
desired.

The second assertion of the lemma follows formally from the descent statement that
we just established: the map in question is an equivalence when X is a smooth scheme,
and by Lemma 5.4 its codomain satisfies descent as well, hence it is an equivalence for all
smooth Artin stacks. □

We introduce a generalization of the notion of Frobenius splitting to Artin stacks:

Definition 5.11. For an Artin stack X over Fp a Frobenius splitting is a map τ :
RFX∗OX → OX in the derived category of quasi-coherent sheaves on X, such that

composition OX
F−→ RFX∗OX

τ−→ OX equals the identity.

For a scheme X the Frobenius endomorphism is affine, so the derived pushforward
RFX∗OX is identified with the plain pushforward FX∗OX , but e.g. for the classifying
stack X = BG of a non-commutative connected reductive group the derived pushforward
RFBG∗OBG is concentrated in infinitely many cohomological degrees [Jan03, Proposition
II.12.13].

Proposition 5.12. For a connected reductive group G over a perfect field k the classifying
stack BG admits a Frobenius splitting.

Proof. We will deduce this from properties of the Steinberg representation of G, following
the idea of the proof of [CPS83, Theorem 2.1]. We denote by G(1) the Frobenius twist of
G, viewed as a group scheme over k. Note that its clasiffying stack BG(1) is the Frobenius
twist of the k-stack BG, and the Frobenius morphism FBG : BG→ BG(1) is induced by
the Frobenius map FG : G→ G(1) of k-group scheme G.

Recall that the bounded below derived category D+(BG(1)) is equivalent to the de-
rived category D+(RepG(1)) of the abelian category of algebraic representations of G(1).
Under this equivalence the structure sheaf OBG(1) gets carried to the trivial 1-dimensional
representation of G(1).

Denote by G1 := ker(G
FG−−→ G(1)) the Frobenius kernel of G, it is a finite local

group scheme over k. In terms of representations, the functor FBG∗ : D+(BG) →
D+(BG(1)) is described as sending V ∈ D+(BG) ≃ D+(RepG) to the cohomology
complex RΓ(G1, V |G1

) of the Frobenius kernel, equipped with the residual action of
G(1) ≃ G/G1. The statement of the proposition is then equivalent to proving that the
map k → RΓ(G1, k) in D(RepG(1)) has a splitting.

For an extension k ⊂ k′ of perfect fields the natural map RΓ(G1, k) ⊗k k′ →
RΓ((Gk′)1, k

′) is an equivalence, so for the purposes of proving the proposition we may
assume that k is algebraically closed. In particular, we may choose a Borel subgroup
B ⊂ G with a split maximal torus. Furthermore, we may assume that G is semi-simple
and simply connected because our statement is invariant under replacing G by an isoge-
nous reductive group:
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Lemma 5.13. Let ψ : G→ G′ be a surjection of reductive groups over k such that kerψ
is a group scheme of multiplicative type (i.e. embeddable into Grm,k) contained in the

center of G. The map k → RΓ(G1, k) has a splitting in D+(RepG(1)) if and only if the

map k → RΓ(G′
1, k) has a splitting in D+(RepG

′(1)).

Proof. We have a short exact sequence of finite group schemes 1 → (kerψ)1 → G1 →
G′

1 → 1, and since the group scheme (kerψ)1 has no higher cohomology, the natural map
RΓ(G′

1, k)→ RΓ(G1, k) is a quasi-isomorphism. This equivalence is compatible with the

actions of G(1) and G
′(1): the complex RΓ(G1, k) is the object of D+(RepG(1)) obtained

from RΓ(G′
1, k) ∈ D+(RepG

′(1)) by restricting along the map ψ(1) : G(1) → G
′(1).

Therefore the class in HomD(G(1))(τ
≥1RΓ(G1, k), k[2]) obstructing the splitting of k →

RΓ(G1, k) is the image of the analogous obstruction for G′ under the map

(5.12) HomD(G′(1))(τ
≥1RΓ(G1, k), k[2])→ HomD(G(1))(τ

≥1RΓ(G1, k), k[2])

which is injective because kerψ(1) has no higher cohomology. Hence one of these two
obstructions vanishes if and only if the other does. □

The assumption that G is simply connected allows us to consider the Steinberg rep-
resentation St of G defined as the irreducible representation of highest weight (p − 1)ρ,
where ρ is the weight of the maximal torus T ⊂ B equal to the half sum of all positive
roots. For example, for G = SL2 the Steinberg representation is the (p− 1)th symmetric
power Symp−1 V of the 2-dimensional tautological representation V .

The restriction of St to the Frobenius kernel G1 is an irreducible projective object of
the category of representations of G1 by [Jan03, II.3.10(3), II.3.18, Proposition II.10.2].
In particular, Q := Homk(St,St) ≃ St ⊗ St∨ is a projective object, and since every
finite-dimensional projective representation of a group scheme is also injective, Hi(G1, Q)
vanishes for i > 0, while H0(G1, Q) is 1-dimensional, spanned by idSt ∈ Q.

Therefore the map k
idSt−−→ Q gives rise to a map RΓ(G1, k) → RΓ(G1, Q|G1) ≃ k

in D(RepG(1)) inducing an isomorphism on 0th cohomology, and this is the desired
splitting. □

We can now deduce Theorem 5.1, just as in Corollary 4.6.

Proof of Theorem 5.1. Let us check that the morphism FBG : BG → BG(1) satisfies
projection formula on the derived category of bounded below objects D+(BG(1)) ≃
D+(RepG(1)). For a complex of representations V ∈ D+(RepG(1)) the natural map
V ⊗OBG

RF∗OBG → RFBG∗F
∗
BGV is described in terms of group cohomology as the map

V ⊗k RΓ(G1, k) → RΓ(G1, V
triv). This map is an equivalence because k[G1] is finite-

dimensional over k, so the formation of the standard bar complex of a G1-representation
W commutes with arbitrary colimits in W .

Therefore Proposition 5.9 applied to X = BG can be restated as

(5.13) RFBG∗OBG ⊗O
BG(1)

F∗Ω
•
BG/k ≃

⊕
i≥0

RFBG∗OBG ⊗O
BG(1)

ΛiLBG(1)/k[−i]

As in the proof of Corollary 4.6, the fact that the map OBG(1) → RFBG∗OBG admits a
section gives a quasi-isomorphism

(5.14) F∗Ω
•
BG/k ≃

⊕
i≥0

ΛiLBG(1)/k[−i]
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We can now finish the proof via the Deligne-Illusie argument using finite-dimensionality
of Hodge cohomology for BG, cf. [KP22, Corollary 1.3.24]. Decomposition (5.14) im-

plies that the conjugate spectral sequence Ei,j2 = Hi(BG(1),ΛjLBG(1)/k)⇒ Hi+j
dR (BG/k)

for the stack BG degenerates at the second page. For all i, j the term Ei,j2 ≃
Hi−j(G,Sj(g∗))(1) is a finite-dimensional k-vector space by [Jan03, Proposition II.4.10(a)
+ Corollary II.4.7(c)]. Hence degeneration of the conjugate spectral sequence gives equal-
ity of dimensions dimkH

n
dR(BG/k) =

∑
i+j=n

dimkH
i(BG(1),ΛjLBG(1)/k), and the Hodge-

to-de Rham spectral sequence degenerates by dimension reasons. □

6. Decomposition after Frobenius pullback via semi-perfect descent

In this section we give another proof of the decomposition (1.2), in the case S = Spec k
is the spectrum of a perfect field, which does not use the de Rham stack, but rather
appeals to computing de Rham cohomology of a smooth scheme in characteristic p via
descent from quasiregular semi-perfect algebras.

Definition 6.1 ([BMS19, Definition 8.8]). An Fp-algebra R is quasiregular semiperfect if
the Frobenius φR : R→ R is surjective, and the cotangent complex LR/Fp

is concentrated

in cohomological degree −1, with H−1(LR/Fp
) being a flat R-module.

We denote by R♭ := lim
φR

R the inverse limit perfection of R. It surjects onto R, and

we denote the kernel of the surjection by I := ker(R♭ ↠ R). The derived de Rham
cohomology of R relative to Fp is concentrated in degree 0 and can be described, together
with its conjugate filtration, as follows.

Let DI(R
♭) denote the divided power envelope of the ideal I ⊂ R♭. By its universal

property, there is a surjection DI(R
♭) → R, and the natural map R♭ → DI(R

♭) factors
through R♭/φR♭(I), making DI(R

♭) into a R♭/φR♭(I)-algebra. Since R♭ is perfect, its
Frobenius endomorphism gives rise to an isomorphism R = R♭/I ≃ R♭/φR♭(I) and we
view DI(R

♭) as an R-algebra via this isomorphism.
Following [BMS19, Section 8], we define the N-indexed increasing conjugate filtration

on DI(R
♭). Let Filconjn DI(R

♭) be the R♭-submodule of DI(R
♭) generated by elements of

the form a
[l1]
1 · . . . · a[lm]

m with a1, . . . , am ∈ I and l1, . . . lm ∈ N such that
∑
li < (n+ 1)p.

We denote by dRR/Fp
the derived de Rham cohomology of R, equipped with the conjugate

filtration. The 0th step of the conjugate filtration is R itself, which makes dRR/Fp
into a

(a priori derived) R-algebra.

Proposition 6.2 ([BMS19, Proposition 8.12]). There is a natural isomorphism dRR/Fp
≃

DI(R
♭) of discrete R-algebras, carrying the conjugate filtration on the de Rham cohomol-

ogy to the filtration Filconj• DI(R
♭) defined above.

Recall also that associated graded algebra of the conjugate filtration Filconj• DI(R
♭) is

identified with the free divided power algebra generated by the flat R-module I/I2, via
the map3

(6.1) a
[l1]
1 · . . . · a[lm]

m 7→ (−1)l1+...+lm ã[pl1]1 · . . . · ã[plm]
m : ΓnR(I/I

2) → grconjn DI(R
♭)

3In [BMS19, Proposition 8.11(3)] one finds a different formula, but it simplifies modulo p because
(pk)!

pkk!
equals (−1)k modulo p, for all k ≥ 1.
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where ãi ∈ I ⊂ R♭ are arbitrary lifts of ai ∈ I/I2; the image of the element ã
[pl1]
1 ·. . .·ã[plm]

m

under the map Filconjn DI(R
♭)→ grconjn DI(R

♭) does not depend on the choice of the lifts.

Proposition 6.3. There is a natural isomorphism of filtered R-algebras

(6.2) s :
⊕
n≥0

φ∗
RΓ

n
R(I/I

2) ≃ φ∗
RDI(R

♭)

identifying the base change of the conjugate filtration on the right-hand side with the
filtration induced by the grading on the left-hand side.

Proof. Since φR is surjective, we can identify the base change φ∗
RDI(R

♭) = DI(R
♭)⊗R,φR

R with the quotient DI(R
♭)/(kerφR ·DI(R

♭)). Define the splitting map s on an element

a
[l1]
1 · . . . · a[lm]

m ⊗ 1 ∈ ΓnR(I/I
2)⊗R,φR

R by

(6.3) s(a
[l1]
1 · . . . · a[lm]

m ⊗ 1) := (−1)l1+...+lm ã[pl1]1 · . . . · ã[plm]
m ∈ Filconjn DI(R

♭)/ kerφR

where ãi ∈ I ⊂ R♭ are arbitrary lifts of ai ∈ I/I2. Let us check that the value of (6.3) does
not depend on the choice of these lifts. Recall that an element r ∈ R acts on DI(R

♭) via

multiplication by r̃p ∈ R♭ where r̃ ∈ R♭ is any lift of r. In particular, kerφR ·Filconjn DI(R
♭)

is simply I · Filconjn DI(R
♭).

For elements a ∈ I, b ∈ I2 we have (a + b)[l] = a[l] +
∑
i>0

a[l−i] · b[i] for any l ≥ 0.

For i > 0 the divided power b[i] ∈ DI(R
♭) lies in kerφR ·DI(R

♭), because b is a sum of

elements of the form b1 · b2 with b1, b2 ∈ I and the element (b1b2)
[i] = bi1 · b

[i]
2 belongs to

I · Filconjn DI(R
♭). Therefore, for a given a ∈ I the element (a + b)[l] in DI(R

♭)/ kerφR
does not depend on the choice of b ∈ I2.

The image of ã
[pl1]
1 · . . . · ã[plm]

m under the map

Filconjn DI(R
♭)/ kerφR → grconjn DI(R

♭)/ kerφR

goes to a
[l1]
1 · . . . ·a

[lm]
m under the map (6.1), hence s extends to a map of R-modules, which

is necessarily an isomorphism, as desired. □

We can now deduce the corresponding statement for smooth varieties over k.

Proof of (1.2) from Theorem 1.1. For a smooth scheme X over k the perfection Xperf :=

lim
FX

X is a faithfully flat cover of X, and the Čech nerve of this cover

(6.4) Xperf Xperf ×X Xperf . . .

consists of quasiregular semiperfect schemes (i.e. schemes that locally are spectra of
quasiregular semiperfect k-algebras), cf. [BMS19, Remark 8.15]. For all n ≥ 0, denote by

fn : X
×X(n+1)
perf → X the structure morphism down to X.

By descent for Frobenius pullback of the cotangent complex established in Lemma 5.10,
the complex F ∗

XFX∗Ω
•
X can be described by descent as the totalization of the following

cosimplicial sheaf on X:

(6.5) f0∗F
∗
Xperf

dRXperf
f1∗F

∗
X

×X2

perf

dR
X

×X2

perf

. . .

The decomposition constructed in Proposition 6.3 gives rise to the splitting of the
conjugate filtration on this cosimplicial sheaf, giving the desired decomposition of
F ∗
XFX∗Ω

•
X . □
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Appendix A. Automatic continuity of module homomorphisms

In this appendix we prove that often a map out of an infinite product of modules is
automatically continuous for the product topology, and apply this to show that a splitting
of the map OX → F∗W (OX)/p gives rise to a n-quasi-F -splitting for some n ≥ 1. The
following result has been shown by Lady [Lad73, Example 6], we give here a self-contained
proof. Arguments of this type go back to Specker [Spe50, Satz III].

Lemma A.1. Let R be a smooth domain over a field k, of Krull dimension > 0. Then

(1) For a collection of R-modules M1,M2, . . . any map
∞∏
i=1

Mi → R factors through a

finite product
N∏
i=1

Mi.

(2) Given an inverse system . . . ↠ N2 ↠ N1 of projective R-modules indexed by
N, with all transition maps surjective, for any finite projective R-module M the
natural map is an isomorphism:

(A.1) colim
i

HomR(Ni,M)→ HomR(lim
i
Ni,M)

Proof. Let us first deduce (2) from (1). Choosing arbitrary sections of the surjections

Ni+1 → Ni we may assume that the inverse system has the form Ni =
i∏

j=1

Pj , for

some projective R-modules P1, P2, . . ., with transition maps
i+1∏
j=1

Pj →
i∏

j=1

Pj given by the

projection onto first j factors. Since M can be embedded into a finite free R-module, we
may assume that M = R, so we arrived at a special case of (1).

Let us now prove (1). Using Noether normalization, choose a polynomial subring
k[x1, . . . , xn] ⊂ R such that R is a finite k[x1, . . . , xn]-module. We assumed that R is
a smooth k-algebra, in particular, it is a Cohen-Macaulay ring [Sta24, 00NQ], so by
miracle flatness [Sta24, 00R4] the ring R is flat over k[x1, . . . , xn]. Therefore, R is a
finite projective k[x1, . . . , xn]-module, so it admits a k[x1, . . . , xn]-linear embedding into
a finite free k[x1, . . . , xn]-module (it is in fact free itself by Quillen-Suslin theorem, but
we do not need to use this), and therefore it is enough to prove the lemma in the case
R = k[x1, . . . , xn].

We assume that R is the polynomial ring k[x1, . . . , xn] from now on. Given a map of

R-modules f :
∞∏
i=1

Mi → R we will first prove that it satisfies the following continuity

property. Consider any sequence of elements aj ∈
∞∏
i=j

Mi ⊂
∞∏
i=1

Mi, for j ≥ 0. Given any

strictly increasing sequence n1, n2, . . . of non-negative integers we denote by
∞∑
i=1

xni
1 ai the

element of
∞∏
i=1

Mi whose projection onto
j∏
i=1

Mi equals to
j∑
i=1

xni
1 ai, for all j ≥ 1. We will

check that the composition
∞∏
i=1

Mi
f−→ R ↪→ k[x2, . . . , xn][[x1]] takes

∞∑
i=1

xni
1 ai to the series

∞∑
i=1

xni
1 f(ai).
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Indeed, for every m the difference

(A.2) f(

∞∑
i=1

xni
1 ai)−

∞∑
i=1

xn1
1 f(ai) = f(

m∑
i=1

xni
1 ai)−

m∑
i=1

xn1
1 f(ai)+

+ f(

∞∑
i=m+1

xni
1 ai)−

∞∑
i=m+1

xn1
1 f(ai) = f(

∞∑
i=m+1

xni
1 ai)−

∞∑
i=m+1

xn1
1 f(ai)

is divisible by x
nm+1

1 . We assumed that integers nm+1 tend to infinity as m goes to
infinity, so this difference must be zero in k[x2, . . . , xn][[x1]].

We will now conclude that f factors through the projection onto a finite product
j∏
i=1

Mi.

Assume, on the contrary, that for every j there exists an element aj+1 ∈
∞∏

i=j+1

Mi ⊂
∞∏
i=1

Mi

such that f(aj+1) ̸= 0. As we just established, for any increasing sequence n1, n2, . . . the

element
∞∑
i=1

xni
1 ai is mapped to

∞∑
i=1

xni
1 ai ∈ k[x2, . . . , xn][[x1]] by the composition of f with

the embedding R ↪→ k[x2, . . . , xn][[x1]].

But we will now prove that for varying sequences n1, n2, . . . the elements
∞∑
i=1

xni
1 ·f(ai)

span a subspace of k[[x1, . . . , xn]] that has uncountable dimension over k. Denote the
maximal power of x1 appearing in the polynomial f(ai) ∈ k[x1, . . . , xn] by di. For a
sequence ϵ1, ϵ2, . . . of elements of {0, 1} consider the series

Fϵ1,ϵ2,... =

∞∑
i=1

x
d1+...+di−1+2(i−1)+ϵi
1 · f(ai)

For varying sequences (ϵi)i∈N they form a linearly independent set, because the power

series Fϵ1,ϵ2,... has a non-zero coefficient of xd1+...+di+2i−1
1 if and only if ϵi = 1. But,

by construction, all Fϵ1,ϵ2,... are in the image of the map f and are therefore contained
in the subspace R ⊂ k[[x1, . . . , xn]] of countable dimension over k, which gives us a
contradiction. □

Corollary A.2. Let X be a smooth scheme of finite type over a perfect field k. If the
map OX → F∗W (OX)/p admits an OX-linear splitting, then so does the map OX →
F∗Wn(OX)/p, for some n ≥ 1.

Proof. We can right away discard all zero-dimensional connected components of X be-
cause over those the maps in question are isomorphisms. We therefore assume that every
connected component of X is positive-dimensional.

For each n, the sheaf F∗Wn(OX)/p is a locally free sheaf of OX -modules of finite rank,
see e.g. [KTT+22, Proposition 2.9]. We will prove that a section τ : F∗W (OX)/p→ OX
necessarily factors through some F∗Wn(OX)/p. Since X is quasi-compact, it suffices to
check this Zariski-locally on X. On an affine open SpecR ⊂ X this follows from Lemma
A.1 applied to the inverse system Ni = F∗Wi(R)/p and M = R. □
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[SGA73] Groupes de monodromie en géométrie algébrique. II, volume Vol. 340 of Lecture Notes in

Mathematics. Springer-Verlag, Berlin-New York, 1973. Séminaire de Géométrie Algébrique
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