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Abstract

We give a new, short proof of the formula for the first potentially non-zero
differential of the Hochschild–Serre spectral sequence for semiabelian varieties
over non-closed fields. We show that this differential is non-zero for the Ja-
cobian of a curve when the image of the torsor of theta-characteristics under
the Bockstein map is non-zero. An explicit example is a curve of genus 2
whose Albanese torsor is not divisible by 2. When the Albanese torsor is
trivial, we show that the Hochschild–Serre spectral sequence for the Jacobian
degenerates at the second page. We give a formula for the differential of
the Hochschild–Serre spectral sequence for a torus which computes its Brauer
group. Finally, we describe the differentials of the Hochschild–Serre spectral
sequence for a smooth projective curve, generalising a lemma of Suslin.

Introduction

For an algebraic variety X over a field k the action of the absolute Galois group
Γ = Gal(ks/k) on the étale cohomology groups Hi

ét(Xks ,Zℓ) contains arithmetic
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information about the variety X such as the number of rational points in the case
when k is a finite field.

The action of Γ on individual étale cohomology groups comes from its action
on the étale cohomology complex RΓét(Xks ,Zℓ). The phenomenon that we study in
this paper is that the quasi-isomorphism class of this complex in general contains
more information than individual cohomology Galois modules.

Remarkably, for a smooth projective variety X over k (with ℓ ̸= char(k)), by
Deligne’s decomposition theorem [Del68, Proposition 2.4], the rational étale coho-
mology complex RΓét(Xks ,Qℓ) is quasi-isomorphic to the direct sum

⊕
i≥0

Hi
ét(Xks ,Qℓ)[−i]

of individual cohomology groups, as an object of the derived category of Qℓ-vector
spaces equipped with an action of Γ.

This is no longer true for cohomology with integral coefficients, and is witnessed
by the fact that the Hochschild–Serre spectral sequence

Ep,q
2 = Hp(k,Hq

ét(Xks ,Zℓ)) ⇒ Hp+q
ét (X,Zℓ) (1)

in general has non-zero differentials. If X is a real curve with no real points and
ℓ = 2, then a differential on the 2nd (respectively, 3rd) page is non-zero if the genus
of X is odd (respectively, even), see Examples 6.2 and 6.7.

Our first main result is that (1) may fail to degenerate even for abelian varieties.
We denote by D(Γ,Z/n) the derived category of the abelian category of discrete
Z/n-modules with a continuous action of the Galois group Γ = Gal(ks/k).

Theorem 1 (Theorem 3.4). There exists a principally polarised abelian surface A
over Q such that RΓét(AQ,Z/2) is not quasi-isomorphic to

⊕
i≥0

Hi
ét(AQ,Z/2)[−i] in

the derived category D(Γ,Z/2) of discrete Z/2-modules with a continuous action of
Γ = Gal(Q/Q). Specifically, the differential

δ0,22 : H0(Q,H2
ét(AQ,Z/2)) → H2(Q,H1

ét(AQ,Z/2))

on the second page of the Hochschild–Serre spectral sequence for A is non-zero.

By Theorem 3 below, the Hochschild-Serre spectral sequence degenerates for any
abelian variety arising as a direct factor of a product of Jacobians of curves each
with a rational divisor class of degree 1. In particular, A from Theorem 1 is an
example of an abelian variety not of this form.

Let us sketch the proof of Theorem 1. Let C be a smooth proper curve of genus
g over k and let J be the Jacobian of C. We identify J with the dual abelian
variety using its canonical principal polarization. Using a general description of
δ0,22 given in Theorem 2 below, we show that the mod 2 first Chern class of the
canonical principal polarization is an element of H2

ét(Jks ,Z/2)Γ which is sent by δ0,22

to the image of the class of the torsor of theta-characteristics under the Bockstein
map H1(k, J [2]) → H2(k, J [2]). Thus δ0,22 ̸= 0 whenever [Picg−1

C/k] ∈ H1(k, J) is not
divisible by 2. A systematic method to construct such curves over number fields
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was found by B. Creutz [Cre13]. The idea is to exploit the fine arithmetic structure
available in this case, namely, that [Picg−1

C/k] is automatically a 2-torsion element of

the Tate–Shafarevich group X(J). The class [Picg−1
C/k] is divisible by 2 in H1(k, J)

if and only if its image in X2(k, J [2]) under the Bockstein map is orthogonal to
X1(k, J [2]) with respect to the Poitou–Tate duality pairing. Since the Poitou–Tate
pairing is compatible with the Cassels–Tate pairing, [Picg−1

C/k] is divisible by 2 in

H1(k, J) if and only if [Picg−1
C/k] is orthogonal to the image of X1(k, J [2]) in X(J)

with respect to the Cassels–Tate pairing. Following Manin, this can be interpreted
in terms of the Brauer–Manin obstruction on the everywhere locally soluble variety
X = Picg−1

C/k: any element t ∈ X(J) gives rise to an everywhere locally constant

element B of the Brauer group Br(X) whose Brauer–Manin pairing with an arbitrary
adelic point of X equals the Cassels–Tate pairing of t and [X]. When g = 2, the
variety X is the Albanese torsor of C, so C is a closed subvariety of X. If C itself
is everywhere locally soluble, we can take an adelic point of X to be an adelic point
of C and then we only need the restriction of B to C. The easiest way to arrange
for this is to consider hyperelliptic curves C given by the equation y2 = f(x), where
the separable polynomial f(x) ∈ k[x] of degree 6 is everywhere locally soluble. In
this setting, one can construct elements of Br(C) coming from H1(k, J [2]) by an
explicit formula, which allows one to compute the Brauer–Manin pairing with the
adelic points of f(x) = 0. A worked out example over k = Q when this pairing is
non-trivial is f(x) = 3(x2 + 1)(x2 + 17)(x2 − 17), see [Cre13, p. 941] and [CV15,
Theorem 6.7], so in this case [Picg−1

C/k] is not divisible by 2 in H1(k, J).
Let us now give a general description of the first potentially non-trivial extension

in the étale cohomology complex of a semi-abelian variety over an arbitrary field.
It is easy to see that all differentials on the i-th page of (1) are zero for ℓ > i,
see Corollary 1.3. For the study of the differentials on the second page we can
thus assume that ℓ = 2. For a Z2-module M we denote by Q2(M) the module of
quadratic functions on M∨ = HomZ2(M,Z2) with values in Z2. It fits into the exact
sequence

0 →M → Q2(M) →M⊗2 → Λ2M → 0 (2)

where the middle map sends a quadratic function f :M∨ → Z2 to the bilinear form
⟨x, y⟩ = f(x+y)−f(x)−f(y) which we view as an element of Hom(M∨⊗M∨,Z2) ∼=
M⊗2. The above sequence is natural in M , so if M is equipped with an action of Γ
then (2) becomes an exact sequence of Γ-modules.

Theorem 2 (Theorem 1.6). Let A be a semi-abelian variety over a field k of
characteristic not equal to 2. The class in Ext2Γ(H

2
ét(Aks ,Z2),H

1
ét(Aks ,Z2)) corre-

sponding to τ [1,2]RΓét(Aks ,Z2) is equal to the class of the Yoneda extension (2) for
M = H1

ét(Aks ,Z2).

In the case of abelian varieties this was proved in [P], but here we give a new
shorter proof exhibiting an explicit quasi-isomorphism between (2) and the bar com-
plex of the Tate module of A. Theorem 2, in particular, gives a description of the
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differentials Hi(k,H2
ét(Aks ,Z2)) → Hi+2(k,H1

ét(Aks ,Z2)) of (1), as well as the analo-
gous differentials in the Hochschild–Serre spectral sequence with Z/2n-coefficients,
for any n, see Theorem 1.10.

Theorem 1 shows that the class described in Theorem 2 is not always zero for
abelian varieties, but at the moment we do not know if it is ever non-zero for tori,
cf. Remark 4.2.

In contrast, for the Jacobians of curves with a rational divisor class of degree 1
the étale cohomology complex decomposes in all degrees. We give a proof of this
result, which may be well-known to the experts, but does not seem to be available
in the literature.

Theorem 3 (Theorem 2.1). Let C1, . . . , Cm be geometrically connected smooth proper
curves over k each admitting a k-rational divisor class of degree 1, for i = 1, . . . ,m.
Let A be a direct factor of the product

∏m
i=1 Jac(Ci) of Jacobians of C1, . . . , Cm. Let

n ≥ 0 be an integer not divisible by char k. Then RΓét(Aks ,Z/n) is quasi-isomorphic
to

⊕
i≥0

Hi
ét(Aks ,Z/n)[−i] in D(Γ,Z/n). In particular, the Hochschild–Serre spectral

sequence
Ei,j

2 = Hi(k,Hj
ét(Aks ,Z/n)) ⇒ Hi+j

ét (A,Z/n)

degenerates at the second page.

Another class of examples of non-zero differentials in the Hochschild–Serre spec-
tral sequence comes from varieties without a rational point. If a geometrically
connected k-variety X has a k-point, then RΓét(Xks ,Zℓ) is quasi-isomorphic to
Zℓ⊕τ≥1RΓét(Xks ,Zℓ) in the derived category of Γ-modules. This is no longer true for
varieties without a rational point, and we calculate the exact obstruction to splitting
off H0(Xks ,Zℓ) from τ≤1RΓét(Xks ,Zℓ) when X is a torsor for a semiabelian variety.
We denote by A(Γ,Z/n) the abelian category of discrete Z/n-modules equipped
with a continuous action of Γ.

Theorem 4 (Theorem 5.1). Let X be a torsor for a semiabelian variety A over a
field k. Let n ≥ 1 be an integer not divisible by char k. Then the class in

Ext2A(Γ,Z/n)(H
1(Xks ,Z/n),Z/n) ∼= Ext2A(Γ,Z/n)(H

1(Aks ,Z/n),Z/n) ∼= H2(k,A[n])

corresponding to τ [0,1]RΓét(Xks ,Z/n) is equal to the image of the class of X in
H1(k,A) under the Bockstein homomorphism H1(k,A) → H2(k,A[n]).

As we point out in Remark 5.2, in the setting of Theorem 4, the obstruction to
the existence of a rational 0-cycle of degree 1 coming from τ [0,1]RΓét(Xks , Ẑ) being
non-split coincides with the obstruction coming from the failure of the abelianised
fundamental exact sequence for the arithmetic fundamental group to have a section.

We give several complements of the above results, summarised below.
In Theorem 4.1 we describe a differential on the 3rd page of the Hochschild–Serre

spectral sequence with Gm-coefficients for a torus, which allows one to completely
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compute the Brauer group of any algebraic torus, answering a question raised in
[CTS21, p. 220]. When the first version of this paper was completed, Julian De-
meio told us about his result that for a torus T over a field k of characteristic zero
the natural map Br(T ) → Br(Tks)

Γ is surjective when T is quasi-trivial or when
k is a number field [Dem, Theorem 1.1]. This also follows from our Theorem 4.1,
see Corollary 4.3. Demeio’s proof is based on the elaborate analysis of differen-
tials of the Hochschild–Serre spectral sequence by L.S. Charlap, A.T. Vasques, and
C.H. Sah (see the references in [Dem]). The proof of Theorem 4.1 in this paper is
self-contained: it reduces the computation of the differential with Gm-coefficients to
the case of finite coefficients which is handled in our explicit proof of Theorem 2.

In Proposition 6.1 we combine Theorem 4 with Poincaré duality to describe
all differentials on the second page of the Hochschild–Serre spectral sequence with
coefficients in µn for a smooth proper curve. When all differentials on the second
page vanish, in Proposition 6.5 we describe the differentials on the 3rd page of this
spectral sequence, generalising a result of Suslin in the case of genus 0.

Notation. For an object C of the derived category D(A) of an abelian category
A its truncation τ [i,i+1]C in any two consecutive degrees fits into a distinguished
triangle

Hi(C)[−i] → τ [i,i+1]C → Hi+1(C)[−i− 1]
δi−→ Hi(C)[−i+ 1]

We refer to the map

δi ∈ HomD(A)(H
i+1(C)[−i− 1],Hi(C)[−i+ 1]) ≃ Ext2A(H

i+1(C),Hi(C))

as the extension class of τ [i,i+1]C.
For a profinite groupG and an integer n (possibly n = 0) we denote byA(G,Z/n)

the abelian category of discrete Z/n-modules equipped with a continuous action of
G, cf. [Wei94, 6.11]. We write D(G,Z/n) for the derived category of A(G,Z/n). For
a prime ℓ we denote by D(G,Zℓ) the derived category of sheaves of Zℓ-modules on
the pro-étale site BGproet, where Zℓ is the sheaf of rings obtained from the topological
ring Zℓ with a trivial action of G, cf. [BS15, 4.3]. Recall that an ℓ-adically complete
Zℓ-module M equipped with a continuous action of G gives rise to an object of
the triangulated category D(G,Zℓ), and HomD(G,Zℓ)(Zℓ,M [i]) is isomorphic to i-th
continuous cohomology group Hi

cont(G,M) defined using the complex of continuous
cochains on G.

When Γ = Gal(ks/k) is the absolute Galois group of a field k, we denote
Hi

cont(Γ,M) by Hi(k,M) for any continuous Γ-module M .

Acknowledgements. The first named author was supported by the Clay Re-
search Fellowship and was a member at the Institute for Advanced Study in Prince-
ton during the preparation of this paper. A part of this work was done during a
visit of the second named author to the IAS, whose hospitality is gratefully acknowl-
edged. We thank Jean-Louis Colliot-Thélène for telling us about Suslin’s lemma
[Sus82, Lemma 1] and Vadim Vologodsky for explaining to us the result obtained in
Theorem 3.
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1 Semiabelian varieties

Let A be a semiabelian variety over k. Let ℓ be a prime number, ℓ ̸= char(k). For
all i ≥ 0, n ≥ 1, we have Hi

ét(Aks ,Z/ℓn) = ∧iH1
ét(Aks ,Z/ℓn) compatibly with the

natural action of the Galois group Γ = Gal(ks/k).
We would like to study the differentials δp,qi : Ep,q

i → Ep+i,q−i+1
i of the Hochschild–

Serre spectral sequence

Ep,q
2 = Hp(k,Hq

ét(Aks ,Z/ℓ
n)) ⇒ Hp+q

ét (A,Z/ℓn). (3)

Let us make some simple remarks about these differentials.

Remark 1.1. The origin of the group law on A gives a section of the structure
morphism p : A → Spec(k), hence the natural maps Hr

ét(k,Z/ℓn) → Hr
ét(A,Z/ℓn)

are injective for all r ≥ 0. Therefore, we have δp,i−1
i = 0 for i ≥ 2.

Lemma 1.2. Let i ≥ 2, p ≥ 0, q ≥ i − 1 be integers, and let ℓ be a prime. When
ℓ− 1 divides i− 1 we define n = valℓ

(
(i− 1)/(ℓ− 1)

)
.

(a) Suppose ℓ ̸= 2. If ℓ − 1 does not divide i − 1, then δp,qi = 0. Otherwise, we
have ℓmin{q−i+1,n+1}δp,qi = 0.

(b) Suppose ℓ = 2. If i is even, then 2min{q−i+1,1}δp,qi = 0. If i is odd, then
2min{q−i+1,n+2}δp,qi = 0.

Proof. The spectral sequence (3) is functorial in A, so it is compatible with
multiplication by m map [m] : A → A, for any integer m. The induced map on
Hr

ét(Aks ,Z/ℓn) ∼= ∧rH1
ét(Aks ,Z/ℓn) is multiplication by mr. Thus we have

(mq −mq−i+1)δp,qi = mq−i+1(mi−1 − 1)δp,qi = 0.

Taking m = ℓ we see that ℓq−i+1 annihilates δp,qi . From now on we assume that
(m, ℓ) = 1. Then we have (mi−1 − 1)δp,qi = 0.

Suppose ℓ ̸= 2. If ℓ− 1 does not divide i− 1, then we can find an integer m such
that (m, ℓ) = 1 and mi−1 − 1 is non-zero modulo ℓ. Then δp,qi = 0.

If ℓ − 1 divides i − 1, we claim that the lowest value of valℓ(m
i−1 − 1), where

(m, ℓ) = 1, is n + 1. If (m, ℓ) = 1, then mrℓn(ℓ−1) − 1 is clearly divisible by ℓn+1, so
it is enough to check that valℓ((1 + ℓ)rℓ

n(ℓ−1) − 1) = n + 1 when (r, ℓ) = 1. This is
immediate for n = 0, and the general case follows by induction in n. This proves
(a).

Suppose ℓ = 2. If i is even, then taking m = −1 we prove the first statement
of (b). If i odd, so that n ≥ 1, we claim that the smallest value of val2(m

r2n − 1),
where r and m are odd, is n+ 2. We have

mr2n − 1 = (m2n − 1)(m(r−1)2n + . . .+ 1).

Since r and m are odd, the second factor in the right hand side is odd. Thus we
can assume that r = 1. For n = 1 the statement is obvious, and the general case
immediately follows by induction. This proves (b). □

Note that the statement of Remark 1.1 is a particular case of Lemma 1.2.
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Corollary 1.3. All differentials on the i-page of the spectral sequence (3) are zero
for ℓ > i.

Thus the differentials on the second page can be non-zero only for ℓ = 2. The
first non-trivial case is the differential δp,22 , where p ≥ 0. Explicit calculation of this
differential is easier for the limit spectral sequence

Ep,q
2 = Hp(k,Hq

ét(Aks ,Z2)) ⇒ Hp+q
ét (A,Z2), (4)

so we start with this case.

LetM be a free, finitely generated Z2-module. Recall that S2(M) is the quotient
of M⊗2 by the Z2-submodule generated by elements x⊗ y − y ⊗ x for all x, y ∈M ,
and that ∧2(M) is the quotient of M⊗2 by the Z2-submodule generated by x ⊗ x,
for all x ∈M .

Definition 1.4. For a free finitely generated Z2-module M let Q2(M) be the module
of quadratic functions on the dual module M∨. That is, Q2(M) is the module of
maps of sets f : M∨ → Z2 such that the function ⟨x, y⟩ := f(x + y) − f(x) − f(y)
is bilinear in x and y.

For example, Q2(Z2) is a free rank 2 module consisting of functions of the form
a · x+ b · x2−x

2
with a, b ∈ Z2.

There is a natural injection M → Q2(M) sending an element of M to the linear
function on M∨ that it defines. The cokernel of this map is HomZ2(S

2(M∨),Z2).
One immediately checks (for example, by choosing a basis of M and the dual basis
of M∨) that under the natural pairing

M⊗2 × (M∨)⊗2 → Z2

the Z2-submodules (M ⊗ M)S2 = ⟨m ⊗ m|m ∈ M⟩ and ⟨a ⊗ b − b ⊗ a|a, b ∈
M∨⟩ are exact annihilators of each other. Thus there is a canonical isomorphism
HomZ2(S

2(M∨),Z2) ∼= (M ⊗M)S2 . We obtain a canonical exact sequence

0 →M → Q2(M) →M⊗2 → ∧2M → 0. (5)

The Z2-module Q2(M) contains the submodule of quadratic forms M∨ → Z2. The
map Q2(M) →M⊗2 sends a quadratic form to the associated bilinear form.

The extension defined by (5) is equivalent to an extension with smaller terms.
Denote by (M⊗2)S2,sgn = (M⊗2)/⟨m1⊗m2+m2⊗m1|m1,m2 ∈M⟩ the coinvariants
of the involution m1 ⊗m2 7→ −m2 ⊗m1 acting on M⊗2. This module fits into the
following exact sequence:

0 →M
2−→M → (M⊗2)S2,sgn → ∧2M → 0, (6)

where the map M → (M⊗2)S2,sgn sends m to m⊗m, and the rightmost map sends
m1 ⊗m2 ∈ (M⊗2)S2,sgn to m1 ∧m2 ∈ Λ2M . A direct computation shows:
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Lemma 1.5. There is a commutative diagram given by

M Q2(M) M⊗2 Λ2M

M M (M⊗2)S2,sgn Λ2M2

where the map Q2(M) → M sends a quadratic function f on M∨ to the linear
function m 7→ 4f(m)− f(2m).

The extension (6) is the Yoneda product of

0 →M
2−→M →M/2 → 0 (7)

and
0 →M/2 → (M⊗2)S2,sgn → ∧2M → 0. (8)

All of the above constructions and exact sequences are compatible with the action
of the automorphisms of the Z2-module M . In particular, if M is a Z2-module
equipped with the 2-adic topology and a continuous action of Γ, all the sequences
above are naturally sequence of Γ-modules.

The following statement is the particular case p = 2 of [P, Corollary 9.5 (1)].
Here we give a short elementary proof of this result.

Theorem 1.6. Let k be a field of characteristic different from 2, and let A be a
semiabelian variety over k. Write M = H1

ét(Aks ,Z2) so that ∧iM ∼= Hi
ét(Aks ,Z2) are

continuous Γ-modules for i ≥ 0. The differential

δp,22 : Hp(k,∧2M) → Hp+2(k,M)

of the spectral sequence of Γ-modules (4) equals the connecting map of the 2-extension
of Γ-modules (5).

Proof. For any scheme X with a geometric base point x there is a natural map

RΓ(πét
1 (X, x),Z/n) → RΓét(X,Z/n) (9)

induced by the pullback along the map of sites Xét → Xfet, where the target site
consists of schemes finite étale over X, cf. [Ols09, §5]. Moreover, if X = Yks , where
Y is a scheme over k, and x is lying above a k-point of Y , this map is naturally a
map in D(Γ,Z/n).

The map (9) always induces an isomorphism on H1. For X = Aks , where A is a
semiabelian variety and char k does not divide n, the cohomology rings of both source
and target are free exterior algebras on H1, hence (9) is a quasi-isomorphism in this
case. Moreover, πét

1 (Aks) is the product of its 2-adic Tate module T2(Aks) ≃M∨ and
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a 2-divisible profinite group, hence we have a quasi-isomorphism RΓ(πét
1 (Aks),Z2) ≃

RΓ(M∨,Z2). We get a quasi-isomorphism in D(Γ,Z2):

RΓét(Aks ,Z2) ≃ RΓ(M∨,Z2).

Thus we can calculate RΓét(Aks ,Z2) using the standard bar complex for computing
continuous cohomology of the group M∨:

0 −→ Z2
d0=0−→ Func(M∨,Z2)

d1−→ Func(M∨ ×M∨,Z2)
d2−→ . . . ,

where Func denotes the Z2-module of continuous functions. The differential d1 sends
a function f : M∨ → Z2 to the function of two arguments (x, y) 7→ f(x+y)−f(x)−
f(y). The inclusion Q2(M) ⊂ Func(M∨,Z2) gives rise to a commutative diagram

Q2(M) //

��

M⊗2

��
Func(M∨,Z2)

d1 // Func(M∨ ×M∨,Z2)

(10)

The right-hand vertical map is the inclusion of bilinear functions on M∨ × M∨

into all continuous functions. Commutativity of the diagram is immediate from
the definitions of the maps. The submodule M ⊂ Q2(M) of linear functions maps
isomorphically to H1

cont(M
∨,Z2). Moreover, the right vertical map lands in the kernel

of the next differential d2, and the induced mapM⊗2 → H2
cont(M

∨,Z2) coincides with
the cup-product map H1

cont(M
∨,Z2)

⊗2 → H2
cont(M

∨,Z2).
Exactness of (5) then implies that (10) gives a quasi-isomorphism in D(Γ,Z2) be-

tween the two-term complexQ2(M) →M⊗2 and the truncation τ [1,2]RΓcont(M
∨,Z2) ≃

τ [1,2]RΓét(Aks ,Z2), as desired. □

The description of the same differential with coefficients Z/2m for m ≥ 2 is a
little more complicated. We work in the derived category D(Γ,Z2) of Z2-modules
with continuous Γ-action, introduced in notation section of the introduction.

When N is a free, finitely generated Z2-module with continuous action of Γ, we
denote by Bock the morphism N/2m → N [1] defined by the exact sequence

0 → N
2m−→ N → N/2m → 0.

For i ≥ 1, by a slight abuse of notation, we also denote by Bock the composition
N/2m → N [1] → (N/2i)[1]. This map is defined by the exact sequence

0 → N/2i → N/2m+i → N/2m → 0,

which is the push-out of the previous exact sequence by the map N → N/2i.
Let us also introduce the following notation. For an F2-vector space V , equipped

with an action of Γ continuous with respect to the discrete topology on V , consider
the short exact sequence

0 → V
v 7→v·v−−−→ S2V

v1·v2 7→v1∧v2−−−−−−−→ Λ2V → 0. (11)
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Its extension class is a map Λ2V → V [1] in D(Γ,F2) which we denote by α(V ).
Note that the extension (8) is obtained from (11) for V = M/2 by pulling back
along Λ2M → Λ2(M/2). Note that S2V = (V ⊗2)S2

∼= (V ⊗2)S2,sgn. The following
lemma shows that when the dimension of V is small, the connecting map α(V )
defined by (11) is zero.

Lemma 1.7. (i) If the rank of V is 2, then (11) is split.
(ii) If the rank of M is 3, then the connecting map (∧2V )Γ → H1(Γ, V ) defined

by (11) is zero.

Proof. (i) Let u, v, w be the three non-zero elements of V . Then the unique
non-zero element in ∧2V lifts to uv + vw + wu ∈ S2V . This lifting is GL(2,F2)-
equivariant.

(ii) Assume that there is a non-zero element x ∈ (∧2V )Γ. We have a perfect
bilinear pairing of F2-vector spaces V × ∧2V → F2. The elements of V that pair
trivially with x form an F2-subspace N ⊂ V of dimension 2 which is stable under
the action of Γ. Moreover, x ∈ ∧2N . We have a commutative diagram of Γ-modules
with exact rows

0 // N //

��

S2N //

��

∧2N //

��

0

0 // V // S2V // ∧2V // 0

By part (i), the top sequence is split. Thus x lifts to an element of (S2V )Γ. □

Lemma 1.8. (i) Suppose that V is a permutational Γ-module, that is, the action of
Γ on V preserves an F2-basis of V . Then (11) is split.

(ii) Suppose that k = R. Then (11) is split.

Proof. (i) Let e1, . . . , en be a Γ-stable basis of V . The union of sets {e2i } and
{eiej|i < j} is a Γ-stable basis of S2V , which gives a Γ-equivariant splitting of (11).

(ii) By (i) it is enough to show that any representation of Z/2 in V is permu-
tational, but this is well-known. Indeed, endow V with the structure of an F2[x]-
module by letting x act as the generator of Z/2. By the classification of finitely
generated torsion modules over a PID, the F2[x]-module V is a direct sum of cyclic
submodules isomorphic to F2 = F2[x]/(x − 1) or F2[x]/(x

2 − 1), both of which are
permutational. □

We will now derive from Theorem 1.6 a description of the extension class of
τ [1,2]RΓét(Aks ,Z/2m) in cohomology with coefficients modulo 2m. It will rely on the
following general computation:

Lemma 1.9. Let p be a prime. Let X, Y be free, finitely generated Zp-modules
equipped with a continuous action of Γ. Suppose we are given an extension

0 → X/p→ E → Y/p→ 0

10



of Fp-vector spaces equipped with an action of Γ. Let δE : Y/p → X/p[1] be the

corresponding map in D(Γ,Fp). Let Ẽ be the Zp-module with Γ-action obtained by
pulling back E ↠ Y/p along Y ↠ Y/p. The exact sequence

0 → X
p−→ X

ψ−→ Ẽ → Y → 0,

where ψ is the composition X → X/p ↪→ Ẽ, defines a map βE : Y → X[2] in
D(Γ,Zp).

Then the reduction of βE modulo pm is equal to the result of subtracting the
composition (12) from (13):

Y/pm
BockY/pm+1

−−−−−−−→ Y/p[1]
δE [1]−−−→ X/p[2] −→ X/pm[2] (12)

Y/pm → Y/p
δE−→ X/p[1]

BockX/pm+1 [1]

−−−−−−−−→ X/pm[2] (13)

Proof. The mod pm reduction of the map Y → X[2] is the Yoneda class of the

complex (X
ψ−→ Ẽ)⊗L

Zp
Z/pm concentrated in degrees −1 and 0. It can be computed

as the totalisation of the bicomplex

X Ẽ

X Ẽ

ψ

ψ

pm pm (14)

The compositions of (12) and (13) are represented, respectively, by the following
Yoneda extensions

0 → X/pm
a−→ Rm

b−→ Y/pm+1 c−→ Y/pm → 0 (15)

0 → X/pm
a′−→ X/pm+1 b′−→ Tm

c′−→ Y/pm → 0, (16)

where Rm (respectively, Tm) is the following pushout (respectively, pullback)

X/p E Tm Y/pm

X/pm Rm E Y/p

and the map b : Rm → Y/pm+1 is the composition Rm → Y/p ↪→ Y/pm+1, while b′ :
X/pm+1 → Tm is the composition X/pm+1 ↠ X/p→ Tm. The result of subtracting
the map Y/pm → X/pm[2] corresponding to (15) from that corresponding to (16) is
then represented by the extension

X/pm
(a,0)−−→ Rm ⊕X/pm+1

(a(x),−a′(x))|x ∈ X/pm
b⊕b′−−→ ker(Y/pm+1⊕Tm

c−c′−−→ Y/pm)
(c,c′)−−−→ Y/pm

(17)

11



We can now write down a chain level map from the totalisation of (14) to the
two-term complex from (17):

X Ẽ ⊕X Ẽ

Rm⊕X/pm+1

(a(x),−a′(x))|x∈X/pm ker(Y/pm+1 ⊕ Tm
c−c′−−→ Y/pm)

(ψ,−pm) (pm,ψ)

f1 f2

b⊕b′

(18)

Let f1 be the map induced by the direct sum of maps Ẽ → E → Rm and X →
X/pm → Rm, and f2 is the sum of compositions Ẽ → Y → Y/pm+1 and Ẽ ↠ Tm.
The map f2 indeed lands in the kernel of c − c′, the square in (18) commutes, and
the composition f1 ◦ (ψ,−pm) is zero.

The complexes given by rows of (18) both have two non-zero cohomology groups
given by X/pm and Y/pm, and the map of complexes induced by f1, f2 induces the
identity map, giving the desired identification between the two classes in Ext2(Y/pm, X/pm).
□

We now specialise the above computation to our case of interest. As before, for
our semi-abelian variety A we denote the continuous Γ-module H1

ét(Aks ,Z2) by M .
Recall that we write α(M/2) : ∧2 (M/2) → (M/2)[1] for the morphism in D(Γ,F2)
(as well as the corresponding morphism between the same objects in D(Γ,Z2))
defined by (11) with V =M/2.

The next statement is a more general variant of the particular case p = 2 of [P,
Corollary 9.5 (2)]. We give an elementary proof of this result using Lemma 1.9.

Theorem 1.10. Let k be a field of characteristic different from 2. Let A be a
semiabelian variety over k. Consider the spectral sequence

Ep,q
2 = Hp(k,Hq

ét(Aks ,Z/2
m)) ⇒ Hp+q

ét (A,Z/2m).

The differential δp,22 : Hp(k,∧2(M/2m)) → Hp+2(k,M/2m) is given by

α(M/2) ◦ Bockm,1Λ2M − Bock1,mM ◦ α(M/2),

where Bockm,1Λ2M : Hp(k,Λ2(M/2m)) → Hp+1(k,Λ2(M/2)) and Bock1,mM : Hp+1(k,M/2) →
Hp+2(k,M/2m) are Bockstein homomorphisms.

Proof. By Theorem 1.6 the degree 2 extension class corresponding to τ [1,2]RΓét(Aks ,Z2)
is equal to the composition

Λ2M → Λ2(M/2)
α(M/2)−−−−→M/2[1]

BockM−−−−→M [2]

To calculate the induced map on mod 2m reductions, we apply Lemma 1.9 to the
case p = 2 with X =M , Y = Λ2M , and the extension E given by

0 →M/2 → S2(M/2) → Λ2(M/2) → 0.

12



We obtain that the extension class of τ [1,2]RΓét(Aks ,Z/2m) is equal to the difference
between the following compositions:

∧2(M/2m) −→ ∧2(M/2)
α(M/2)−→ (M/2)[1]

Bock−→ (M/2m)[2], (19)

∧2(M/2m)
Bock−→ ∧2(M/2)[1]

α(M/2)[1]−→ (M/2)[2] −→ (M/2m)[2]. (20)

The differential δp,22 is equal to the map induced by this difference on the degree p
derived functor of Γ-invariants, which gives the desired result. □

2 Jacobians

Let C be a smooth, projective, geometrically integral curve over a field k. Let
PicC/k be the Picard scheme of C. Denote by J := Pic0C/k the Jacobian of C. The

connected component Pic1C/k ⊂ PicC/k parametrizing divisors of degree 1 is a torsor

for J , usually called the Albanese torsor. There is a canonical map C → Pic1C/k.
After a choice of a point x0 ∈ C(ks), this map is identified with the usual Abel–
Jacobi map Cks → Jks sending x to the class of the divisor x− x0.

It is well known that PicC/k(k) is canonically isomorphic to Pic(Cks)
Γ, see, e.g.,

[CTS21, Corollary 2.5.9]. Thus the class of the torsor Pic1C/k(k) in H1(k, J) is zero
if and only if C has a k-rational divisor classes of degree 1.

Let n be an integer not divisible by char(k). As before, we denote by D(Γ,Z/n)
the derived category of the abelian category of discrete Z/n-modules equipped with
a continuous action of Γ = Gal(ks/k).

Suppose that A and B are abelian varieties over k such that there are quasi-
isomorphisms

RΓét(Aks ,Z/n) ≃
⊕
i≥0

Hi
ét(Aks ,Z/n)[−i], RΓét(Bks ,Z/n) ≃

⊕
j≥0

Hj
ét(Bks ,Z/n)[−j]

in D(Γ,Z/n). The Künneth formula gives a quasi-isomorphism

RΓét(Aks ×Bks ,Z/n) ≃ RΓét(Aks ,Z/n)⊗L
Z/n RΓét(Bks ,Z/n).

The groups Hi
ét(Aks ,Z/n) and Hj

ét(Bks ,Z/n) are free Z/n-modules for all i and j,
thus for each m ≥ 0 we have isomorphisms

Hm
ét(Aks ×Bks)

∼=
⊕
i+j=m

Hi
ét(Aks ,Z/n)⊗Z/n H

j
ét(Bks ,Z/n).

We deduce a quasi-isomorphism

RΓét(Aks ×Bks ,Z/n) ≃
⊕
m≥0

Hm
ét(Aks ×Bks ,Z/n)[−m].

13



Conversely, given a quasi-isomorphism

RΓét(Aks ×Bks ,Z/n) ≃
⊕
m≥0

Hm
ét(Aks ×Bks ,Z/n)[−m],

we can produce a quasi-isomorphism

RΓét(Aks ,Z/n)
p∗1−→ RΓét(Aks ×Bks ,Z/n) ≃

⊕
m≥0

Hm
ét(Aks ×Bks ,Z/n)[−m]

(idAks
×eB)∗

−−−−−−−→
⊕
m≥0

Hm
ét(Aks ,Z/n)[−m]. (21)

Hence direct products of abelian varieties with decomposable etale cohomology
complex, as well as direct factors of such varieties also have decomposable etale
cohomology complexes. Therefore Theorem 3 of the introduction is a consequence
of the following

Theorem 2.1. Let C be a smooth, projective, geometrically integral curve over a
field k. Let n be an integer not divisible by char(k). If C has a k-rational divisor
class of degree 1, then there exists a quasi-isomorphism

RΓét(Jks ,Z/n) ≃
⊕
i≥0

Hi
ét(Jks ,Z/n)[−i] (22)

in D(Γ,Z/n). In particular, the spectral sequence

Ep,q
2 = Hp(k,Hq

ét(Jks ,Z/n)) ⇒ Hp+q
ét (J,Z/n)

degenerates at the second page, and for all r ≥ 0 there are isomorphisms

Hr
ét(J,Z/n) ∼=

⊕
i+j=r

Hi(k,Hj
ét(Jks ,Z/n)). (23)

Proof. We will deduce this decomposition from the fact that J admits integral
Künneth projectors defined over the field k, as proved in [Suh17, Theorem 1.4].

Composing the canonical map C → Pic1C/k with an isomorphism of torsors

Pic1C/k
∼= J provided by the given degree 1 divisor class, we get a map α : C → J .

Denote by αn : SymnC → J the maps from the symmetric powers of C induced by
α using the group structure on J . For each 1 ≤ n ≤ g, denote by w[n] ∈ Zn(J)
the codimension n cycle in the Jacobian variety obtained by pushing forward the
fundamental cycle [Symn−gC] along αn−g. We also denote by w[0] ∈ Z0(J) the
fundamental cycle of J itself.

Following [Suh17, Theorem 4.2.3], for each 0 ≤ i ≤ 2g we define a codimension
g cycle on J × J by the formula

πi := (−1)i
∑

2a+b=2g−i
b+2c=i

p∗1w
[a] · p∗2w[c] ·

∑
e+d+f=b

(−1)d+fp∗1w
[d] · µ∗w[e] · p∗2w[f ]
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where p1, p2 : J × J → J are the two projections, and µ : J × J → J is the
multiplication map.

We will use the following key property of the cycles πi, established in [Suh17]:

Proposition 2.2. The endomorphism Hj(Jks ,Z/n) → Hj(Jks ,Z/n) of cohomology
of Jks induced by the correspondence πi is zero for j ̸= i, and is the identity map for
j = i.

Proof. This is proved in [Suh17, Theorem 4.2.3] in the case ks = C. This
formally implies the case of an arbitrary field k of characteristic zero, because étale
cohomology is invariant under the base change along an extension of algebraically
closed fields of characteristic zero.

If k is a field of positive characteristic p, then we can find a lift C̃ of Cks to a
smooth projective curve over the ring of p-typical Witt vectors W (ks), and the cycle
(πi)ks can be extended to a cycle π̃i on Pic0

C̃/W (ks)
×Pic0

C̃/W (ks)
. LetK be the fraction

field ofW (ks). The base change isomorphisms Hj
ét(Jks ,Z/n) ≃ Hj

ét(J(C̃K),Z/n) then
intertwine the actions of the correspondences (πi)ks and (π̃i)K . This reduces the case
of the characteristic p field k to that of the characteristic zero field K, which we
already handled. □

Let us now upgrade the action of πi from individual cohomology groups to the
complex RΓét(Jks ,Z/n), as an object of D(Γ,Z/n).

Lemma 2.3. For a smooth proper geometrically integral variety Y of dimension d
over the field k, a cycle c ∈ Zi(Y ×k Y ) gives rise to a morphism in D(Γ,Z/n)

[c] : RΓét(Yks ,Z/n) → RΓét(Yks ,Z/n)(i− d)[2i− 2d]

such that the induced maps on cohomology Hr
ét(Yks ,Z/n) → Hr+2i−2d

ét (Yks ,Z/n(i−d))
coincide with the usual action of c via correspondences on individual cohomology
groups.

Proof. The two projections p1, p2 : Y × Y → Y define maps in D(Γ,Z/n):

p∗1 : RΓét(Yks ,Z/n) → RΓét((Y × Y )ks ,Z/n)

and
p2∗ : RΓét((Y × Y )ks ,Z/n) → RΓét(Yks ,Z/n)(−d)[−2d],

where (−d) referes to the twist by the (−d)-th power of the cyclotomic character
Γ → AutZ/n(µn).

There are cycle classes cl(c) ∈ H2i
ét(Y ×Y,Z/n(i)) in absolute étale cohomology of

Y ×Y , as defined in [SGA 41
2
, Cycle, 2.2.10]. The absolute étale cohomology complex

RΓét(Y ×Y,Z/n(i)) can be identified with the continuous group cohomology complex
RΓcont(Γ,RΓét((Y × Y )ks ,Z/n(i))) with coefficients in geometric étale cohomology,
hence cl(c) corresponds to a map cl(c) : Z/n[−2i] → RΓét((Y × Y )ks ,Z/n(i)) in the
derived category D(Γ,Z/n).
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We can now define the endomorphism of the complex RΓét(Yks ,Z/n) induced by
c as the composition

RΓét(Yks ,Z/n)
p∗1−→ RΓét((Y × Y )ks ,Z/n)

∪cl(c)−−−→
RΓét((Y × Y )ks ,Z/n)(i)[2i]

p2∗−−→ RΓét(Yks ,Z/n)(i− d)[2i− 2d]

Here the middle map ∪cl(c) denotes the composition

RΓét((Y × Y )ks ,Z/n)
id⊗cl(c)−−−−→ RΓét((Y × Y )ks ,Z/n)⊗2(i)[2i] −→

RΓét((Y × Y )ks ,Z/n)(i)[2i]

where the second map is the cup-product on the level of cohomology complexes. □

We can now construct the desired quasi-isomorphism (22). It suffices to produce,
for each i ≥ 0, a map RΓét(Jks ,Z/n) → Hi

ét(Jks ,Z/n)[−i] in D(Γ,Z/n) that induces
the identity map on the i-th cohomology. By Lemma 2.3, the cycle πi defines a
map [πi] : RΓét(Yks ,Z/n) → RΓét(Yks ,Z/n) in D(Γ,Z/n) inducing 0 on Hj for j ̸= i,
and the identity map on Hi. The endomorphism [πi] fits into the following map of
distinguished triangles

τ≤iRΓét(Yks ,Z/n) RΓét(Yks ,Z/n) τ≥i+1RΓét(Yks ,Z/n)

τ≤iRΓét(Yks ,Z/n) RΓét(Yks ,Z/n) τ≥i+1RΓét(Yks ,Z/n)

τ≤i[πi] [πi] τ≥i+1[πi]

The map τ≥i+1[πi] induces the zero map on all cohomology groups, but a priori
it may be a non-zero map in D(Γ,Z/n). Since the complex τ≥i+1RΓét(Yks ,Z/n)
has non-zero cohomology only in the range [i + 1, 2g], the (2g − i)-th power of the
endomorphism τ≥i+1[πi] is nonetheless equal to zero in D(Γ,Z/n), see Lemma 2.4
below.

Therefore [πi]
2g−i gives rise to a map RΓét(Yks ,Z/n) → τ≤iRΓét(Yks ,Z/n) induc-

ing the identity map on i-th cohomology. Composing it with the natural map

τ≤iRΓét(Yks ,Z/n) → τ [i,i]RΓét(Yks ,Z/n) ≃ Hi
ét(Yks ,Z/n)[−i]

we obtain the desired map RΓét(Yks ,Z/n) → Hi
ét(Yks ,Z/n)[−i] in D(Γ,Z/n) that

induces the identity map on Hi. Summing up these maps over all i ∈ [0, 2g] we
obtain the quasi-isomorphism (22).

Applying the derived functor of Γ-invariants to (22) gives the isomorphisms (23).
□

Lemma 2.4. Let A be an abelian category and let Db(A) be the bounded derived
category of A. Let C be an object of Db(A) such that Hi(C) = 0 for i /∈ [a, a + n],
for some integers a and n ≥ 0. Let f : C → C be an endomorphism in Db(A) such
that Hi(f) = 0 for every i. Then we have fn+1 = 0 in HomDb(A)(C,C).
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Proof. Without loss of generality we can assume a = 0. Proceed by induction
on n. If n = 0, then C is isomorphic in Db(A) to an object represented by the
one-term complex H0(C) in degree 0. Under this isomorphism, f corresponds to an
endomorphism induced by H0(f) ∈ HomA(H

0(C),H0(C)), but H0(f) = 0.

Now suppose that fn is zero on τ<nC. The composition C
f−→ C → Hn(C)[−n] is

zero, because it is equal to the composition C → Hn(C)[−n] → Hn(C)[−n], where
the last map is Hn(f) = 0. Given the distinguished triangle

τ<nC → C → Hn(C)[−n],

this implies that f : C → C factors as C
g−→ τ<nC → C for some map g. Then fn+1

is the composition C
g−→ τ<nC → C

fn−→ C. The truncation τ<nC is functorial in C,

so the composition of the last two maps is equal to τ<nC
fn−→ τ<nC → C. By the

induction assumption fn is zero on τ<nC, so the iterate fn+1 is zero on C. □

3 An abelian surface over Q with δ0,22 ̸= 0

In this section we present an abelian variety A over Q such that the differential δ0,22

of the spectral sequence

Ep,q
2 = Hp(k,Hq

ét(Aks ,Z2(1))) ⇒ Hp+q
ét (A,Z2(1)), (24)

and the same differential of the spectral sequence with coefficients Z/2, are both
non-zero.

For an abelian variety A over k we denote by β2 : H1(k,A) → H2(k,A[2]) the
connecting homomorphism induced by the short exact sequence of Γ-modules

0 → A[2](ks) → A(ks)
2−→ A(ks) → 0.

We use the following crucial proposition.

Proposition 3.1. Let A be an abelian variety over a field k of characteristic zero
with a polarization

λ ∈ NS (Aks)
Γ = Homk(A,A

∨)sym.

Let c1(λ) ∈ H2
ét(Aks ,Z2(1))

Γ be the first Chern class of λ. Let c′λ ∈ H1(k,A∨) be the
image of λ under the connecting map of the exact sequence of Γ-modules

0 −→ A∨(ks) −→ Pic(Aks) −→ NS (Aks) −→ 0. (25)

The image of δ0,22 (c1(λ)) ∈ H2(k,H1
ét(Aks ,Z2(1))) in H2(k,H1

ét(Aks ,Z/2)) is equal to
β2(c

′
λ) ∈ H2(k,A∨[2]). In particular, δ0,22 (c1(λ)) ∈ H2(k,H1

ét(Aks ,Z2(1))) is divisible
by 2 if and only if c′λ ∈ H1(k,A∨) is.
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Proof. The antipodal involution [−1] : A → A induces an action of Z/2 on
Pic(Aks) which turns (25) into an exact sequence of abelian groups with an action
of Z/2. The induced action on NS (Aks) is trivial. The involution [−1]A induces the
involution [−1]A∨ on A∨. Since A∨(ks) is 2-divisible, we obtain H1(Z/2, A∨(ks)) =
0. Thus the long exact sequence of cohomology for the group Z/2 gives an exact
sequence of Γ-modules

0 −→ A∨[2] −→ Pic(Aks)
[−1]∗ −→ NS (Aks) −→ 0. (26)

Let cλ ∈ H1(k,A∨[2]) be the image of λ under the connecting map of (26). It is clear
that c′λ is the image of cλ in H1(k,A∨).

Let T2(A
∨) be the 2-adic Tate module, and let e2 : A[2] × A∨[2] → Z/2 be the

Weil pairing. The short exact sequences (26) and (11) are compatible, so that there
is a commutative diagram (see diagram (16) in [PR11]):

0 // A∨[2] //

id
��

Pic(Aks)
[−1]∗ //

��

NS (Aks) //

��

0

0 // A∨[2] // S2(A∨[2]) // ∧2(A∨[2]) // 0

Furthermore, the right-hand vertical map sends λ to the element of ∧2(A∨[2]) cor-
responding to

e2(x, λ(y)) ∈ Hom(∧2A[2],Z/2).

This map factors as the first Chern class map c1

NS (Aks)
∼= Hom(Aks , A

∨
ks)

sym c1−→ Hom(T2(A), T2(A
∨))sym ∼= ∧2T2(A

∨)(−1) ∼= H2
ét(Aks ,Z2(1))

followed by reduction modulo 2 map H2
ét(Aks ,Z2(1)) → H2

ét(Aks ,Z/2), see [OSZ,
Lemma 2.6]. Theorem 1.6 gives

δ0,22 (c1(λ)) = BockT2(A∨)(cλ), (27)

where BockT2(A∨) is the connecting map attached to the exact sequence

0 → T2(A
∨)

[2]−→ T2(A
∨) → A∨[2] → 0.

This sequence fits into the following commutative diagram with exact rows:

0 // A∨[2] // A∨ [2] // A∨ // 0

0 // A∨[2] //

∼=

OO

A∨[4] //

OO

A∨[2] //

OO

0

0 // T2(A
∨)

[2] //

OO

T2(A
∨) //

OO

A∨[2] //

∼=

OO

0
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This implies a relation between connecting homomorphisms induced by the first and
last rows: the image of BockT2(A∨)(cλ) ∈ H2(k, T2A

∨) in H2(k,A∨[2]) equals β2(c
′
λ),

where β2 : H1(k,A∨) → H2(k,A∨[2]) is the connecting homomorphism induced by
the top exact row, as defined above. Combining this with (27) gives the desired
equality. □

Proposition 3.1 demonstrates the importance of the class c′λ. This class has
an explicit interpretation when A is the Jacobian of a curve, which is particularly
convenient when C is hyperelliptic.

Let C be a smooth, projective, geometrically integral curve of genus g over a
field k of characteristic not equal to 2. Let J := Pic0C/k be the Jacobian of C with

its canonical principal polarization λ. We have a canonical map C ↪→ Pic1C/k.
By [PR11, Theorem 3.9], cλ is the class of the torsor of theta characteristics,

which is the closed subvariety of Picg−1
C/k given by 2x = KC , where KC is the canon-

ical class. Thus c′λ is the class of Picg−1
C/k in H1(k, J). If C is a hyperelliptic curve

of odd genus g or with a rational Weierstrass point, then cλ = 0, see [PR11, Propo-
sition 3.11]. If g is even, then we have an isomorphism Picg−1

C/k
∼= Pic1C/k given by

subtracting g−2
2
HC , where HC is the hyperelliptic divisor class. Thus cλ is the class

of the torsor for J∨[2] in Pic1C/k given by 2x = HC , and c
′
λ = [Pic1C/k].

Now let k be a number field. In this case we have cλ ∈ Sel2(J
∨), see [PS99,

Corollary 2]. Thus c′λ ∈ X(J∨)[2]. By [PS99, Theorem 5] we have ⟨x, λ∗(x)+c′λ⟩ = 0
for any x ∈ X(J), where

⟨x, y⟩CT : X(J)×X(J∨) → Q/Z

is the Cassels–Tate pairing, see [Mil86, Ch. I, §6].
For a finite Γ-module M one defines X1(k,M) as the subgroup of H1(k,M)

consisting of the classes that go to zero under the restriction map to H1(kv,M), for
all places v of k. It is clear that X1(k, J [2]) ⊂ Sel2(J).

Over a number field, we can test the divisibility of c′λ in H1(k, J∨) in terms of the
Cassels–Tate pairing. Let us denote by i the natural map H1(k, J [2]) → H1(k, J).

Lemma 3.2. The class c′λ is divisible by 2 in H1(k, J∨) if and only if i(X1(k, J [2]))
is orthogonal to c′λ with respect to the Cassels–Tate pairing.

Proof. This is a particular case of [Cre13, Theorem 4], which is based on the
non-degeneracy of the Poitou–Tate pairing [Mil86, Ch. I, §4]

X1(k, J [2]))×X2(k, J∨[2]) → Z/2

and its compatibility with the Cassels–Tate pairing. □

Manin pointed out that the Cassels–Tate pairing can be interpreted as a par-
ticular case of what is now called the Brauer–Manin pairing. Let us recall this
interpretation.
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Let Br(C) be the Brauer group of C and let Br0(C) = Im[Br(k) → Br(C)]. Since
Br(Cks) = 0, the Leray spectral sequence Hp(k,Hq

ét(Cks ,Gm)) ⇒ Hp+q
ét (C,Gm) gives

an exact sequence

0 → Br0(C) → Br(C) → H1(k,Pic(Cks)) → 0, (28)

where we used that H3(k, ks
×) = 0 which holds since k is a number field. We have

an exact sequence of Γ-modules

0 → J(ks) → Pic(Cks)
deg−−→ Z → 0.

It induces an isomorphism of H1(k,Pic(Cks)) with the quotient of H1(k, J) by the
cyclic subgroup generated by [Pic1C/k]. For an element x ∈ H1(k, J) we call any
A ∈ Br(C) a Brauer class associated to x if the images of x and A in H1(k,Pic(Cks))
are equal. Similar considerations show that A extends to a Brauer class on Pic1C/k.

Lemma 3.3. Let C be a hyperelliptic curve of even genus g over a number field k
that is everywhere locally soluble. The class c′λ is not divisible by 2 in H1(k, J∨) if
the class in Br(C) associated to some element of i(X1(k, J [2])) ⊂ H1(k, J) obstructs
the Hasse principle on C.

Proof. Since cλ ∈ Sel2(J
∨), the k-variety Pic1C/k has points everywhere locally.

For each place of k choose a local point Pv ∈ C(kv). By a theorem of Manin [Sk01,
Theorem 6.2.3], we have∑

v

invv(A(Pv)) = −⟨x, c′λ⟩CT ∈ Q/Z,

for any x ∈ X(J) and A ∈ Br(C) associated to x, using that c′λ = [Pic1C/k] ∈
X(J∨). Therefore, Lemma 3.2 implies our statement. □

Using an explicit example due to Creutz [Cre13, p. 941] and Creutz and Viray
[CV15, Theorem 6.7] we get the following result.

Theorem 3.4. Let J be the Jacobian of the hyperelliptic curve of genus 2 over Q
given by

y2 = 3(x2 + 1)(x2 + 17)(x2 − 17).

Then the differential δ0,22 of the spectral sequence (4), and the same differential of
the analogous spectral sequence with coefficients in Z/2, are both non-zero.

Proof. We sketch the computation of Creutz and Creutz–Viray for the con-
venience of the reader. Let C be the hyperelliptic curve over a field k given by
y2 = cf(x) where c ∈ k× and f(x) ∈ k[x] is a separable monic polynomial of even
degree. Let J be the Jacobian of C. Let L = k[x]/(f(x)) and let θ ∈ L be the image
of x. The well-known identification of the group k-scheme J [2] with the quotient
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of the kernel of the norm map RL/k(µ2) → µ2 by the image of µ2 gives a natural
inclusion

(L×/k×L×2)1 ⊂ H1(k, J [2]),

where the subscript 1 denotes the subgroup of elements with norm 1 ∈ k×/k×2. To
l ∈ L× we associate the class of the quaternion algebra (l, x− θ) ∈ Br(L(x)), which
only depends on the image of l in L×/L×2. The corestriction

coresL(x)/k(x)
(
(l, x− θ)

)
∈ Br(k(P1

k))

is unramified away from the ramification locus of C → P1
k and the point at infinity.

If the norm of l is a square in k×, then it is unramified at the infinity. It follows
that the pullback of this element to Br(k(C)) is unramified, and so belongs to the
subgroup Br(C) ⊂ Br(k(C)). We denote the resulting element by Al ∈ Br(C).
Finally, multiplying l by s ∈ k× gives Als = Al + (s, c), so this does not change the
image of Al in Br(C)/Br0(C). An important property of this construction is that
the map sending l to Al coincides with the composition

H1(k, J [2])
i−→ H1(k, J) −→ Br(C)/Br0(C),

where the second arrow is given by (28).
Now let C be the hyperelliptic curve of genus 2 over Q given by

y2 = c(x2 + 1)(x2 + 17)(x2 − 17),

where c is a positive integer. The 0-dimensional scheme (x2+1)(x2+17)(x2−17) = 0
is everywhere locally soluble, hence C is everywhere locally soluble too.

We have L = Q(
√
−1)⊕Q(

√
−17)⊕Q(

√
17). Take l = (1, 1,−1) ∈ L. We note

that l gives rise to an everywhere locally trivial element of (L×/Q×L×2)1, that is,
to an element of X1(Q, J [2]). We have Al = (−1, x2 − 17). A local computation
[CV15, Lemma 6.8] shows that if the number of odd prime factors p of c such that
neither 17 nor −1 is a square modulo p is odd, then

∑
v invv(Al(Pv)) = 1/2. For

example, one can take c = 3. Thus Lemma 3.3 can be applied, so that c′λ is not
divisible by 2 in H1(k, J∨), hence δ0,22 is non-zero by Proposition 3.1. □

4 The Brauer group of a torus

Let T be a torus over a field k of characteristic exponent p. Let T̂ = Homks−gps(Tks ,Gm)
be the Γ-module of characters of T . The Brauer group Br(T ) = H2

ét(T,Gm) is com-
puted by the spectral sequence

Ep,q
2 = Hp(k,Hq

ét(Tks ,Gm)) ⇒ Hp+q
ét (T,Gm). (29)

We denote by dp,qr the differential on the rth page emanating from the (p, q)-entry.
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Since Tks is a dense open subscheme of An
ks
, we have H1(Tks ,Gm) ∼= Pic(Tks) = 0.

Thus d0,22 = 0, and the first interesting differential is d 0,2
3 : Br(Tks)

Γ → H3(k, ks[T ]
×).

The origin e ∈ T (k) of the group law on T gives a section of the structure
morphism T → Spec(k), hence Hr(k,Gm) → Hr

ét(T,Gm) is injective for all r ≥ 0.
Likewise, the natural map Br(k) → Br(T ) is injective. Let Bre(T ) = Ker[Br(T ) →
Br(k)] be the kernel of specialisation at e.

We have an isomorphism of Γ-modules H0
ét(Tks ,Gm) = ks[T ]

× ∼= k×s ⊕ T̂ . The
spectral sequence (29) thus gives rise to an exact sequence

0 → H2(k, T̂ ) → Br(T )e → Br(Tks)
Γ d̄ 0,2

3−−→ H3(k, T̂ ). (30)

To compute Br(T ) one needs to describe the map d̄ 0,2
3 : Br(Tks)

Γ → H3(k, T̂ ), which
is the composition of the differential d0,23 with the map induced by the projection

ks[T ]
× → T̂ .

Let ℓ be a prime number not equal to p. For an abelian group A we write A(p′)
for the subgroup of A consisting of the elements of finite order not divisible by p.

Since Pic(Tks) = 0, the Kummer sequence gives rise to an isomorphism

κ : H2
ét(Tks , µℓn)−̃→Br(Tks)[ℓ

n].

Using the isomorphism of Γ-modules H0
ét(Tks ,Gm) ∼= k×s ⊕ T̂ , we also deduce from

the Kummer sequence a natural isomorphism

T̂ /ℓn−̃→H1
ét(Tks , µℓn).

We note that H2
ét(Tks ,Z/ℓn) ∼= ∧2H1

ét(Tks ,Z/ℓn) and thus multiplication by m map
[m] : T → T acts on H2

ét(Tks , µℓn), and hence on Br(Tks)(p
′), as m2. On the other

hand, [m] acts on T̂ as m. Taking m = −1 we see that 2d̄ 2,0
3 = 0, so that d̄ 2,0

3 sends
the elements of Br(Tks)(p

′) of odd order to zero. Then it follows from (30) that every
element of odd order in Br(Tks)(p

′)Γ lifts to Br(T ).
The question of an explicit description of the map d̄ 2,0

3 on the 2-primary torsion
subgroup of Br(Tks)

Γ was asked on top of [CTS21, p. 220]. We now give such a
description.

Theorem 4.1. Let T be a torus over a field k of characteristic different from 2. Let
d̄ 0,2
3 be the composition

Br(Tks)
Γ d 0,2

3−→ H3(k, ks[T ]
×) → H3(k, T̂ ),

where the last map is induced by the projection ks[T ]
× ∼= k×s ×T̂ → T̂ . The restriction

of d̄ 0,2
3 to the 2n-torsion subgroup is the composition

Br(Tks)[2
n]Γ

κ−1

−−→
≃

∧2(T̂ /2n)(−1)Γ
Bock−→ H1(k,∧2(T̂ /2))

α[1]−→ H2(k, T̂ /2)
Bock−→ H3(k, T̂ ).
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Proof. We will show that the restriction of d0,23 to the 2n-torsion subgroup can
be read off from the Hochschild–Serre spectral sequence for the cohomology of T
with coefficients in µ2n . The natural map τ≤2RΓét(Tks , µ2n) → τ≤2RΓét(Tks ,Gm) of
truncations in degrees ≤ 2 induces a commutative diagram relating the extensions
between H2 and τ≤1 in these complexes:

H2
ét(Tks , µ2n) τ≤1RΓ(Tks , µ2n)[3]

H2
ét(Tks ,Gm) H0

ét(Tks ,Gm)[3]

(31)

where we used that H1
ét(Tks ,Gm) = Pic(Tks) vanishes. The differential d

0,2
3 is obtained

by applying the functor H0(k,−) to the bottom horizontal map in the diagram.
Galois invariants of the left vertical map is exactly the inclusion of the 2n-torsion

Λ2(T̂ /2n)(−1)Γ ∼= H2
ét(Tks , µ2n) into the Galois invariants in the Brauer group of Tks ,

so we are looking to compute the result of applying H0(k,−) to the counter-clockwise

composition in (31), composed with the projection H3(k,H0
ét(Tks ,Gm)) → H3(k, T̂ ).

From the Kummer sequence, we see that τ≤1RΓét(Tks , µ2n) can be represented

by the two-term complex H0
ét(Tks ,Gm)

2n−→ H0
ét(Tks ,Gm) with the right vertical arrow

in (31) given by shift by [3] of the projection onto the 0th term of this complex.

This map followed by the projection to T̂ sends H0
ét(Tks , µ2n) to zero, so the com-

position factors through τ [1,1]RΓét(Tks , µ2n). Applying H0(k,−) to this composition,
we obtain a map that factors as follows:

H0(k, τ≤1RΓét(Tks , µ2n)[3]) → H2(k,H1
ét(Tks , µ2n)) ∼= H2(k, T̂ /2n)

−Bock
T̂−−−−→ H3(k, T̂ ).

Therefore the clock-wise composition in (31) evaluated on H0(k−, ), composed with

the projection onto H3(k, T̂ ), is given by

H2
ét(Tks , µ2n)

Γ δ0,22−−→ H2(k,H1
ét(Tks , µ2n))

−Bock
T̂−−−−→ H3(k, T̂ )

where δ0,22 is a differential of the spectral sequence

Ep,q
2 = Hp(k,Hq

ét(Tks , µ2n)) ⇒ Hp+q
ét (T, µ2n).

By Theorem 1.10, δ0,22 is obtained by applying − ⊗L
Z2
µ2n to the terms of the 2-

extension given by the difference of the maps (19) and (20) with M = H1
ét(Tks ,Z2).

The composition of two Bockstein maps is zero, so only (20) contributes to d̄ 0,2
3 ,

thus proving that d̄ 0,2
3 is the composition of four maps in the theorem. □

Remark 4.2. It would be interesting to construct a torus with a non-zero map d̄ 0,2
3 ,

or prove that none exist.
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When the first version of this paper was completed, the authors became aware
of the following result of Julian Demeio [Dem, Theorem 1.1]. Recall that a torus

is called quasi-trivial if T̂ is a permutational Γ-module, that is, T̂ has a Γ-stable
Z-basis.

Corollary 4.3. Let k be a field of characteristic zero. If T is a quasi-trivial torus,
or if k is a local or global field, then the natural map Br(T ) → Br(Tks)

Γ is surjective.

Proof. Let us show that d̄ 0,2
3 = 0. The case of quasi-trivial torus is immediate

from Theorem 4.1 and Lemma 1.8 (i). If k is a p-adic field, then H3(k, T̂ ) = 0 since
k has strict cohomological dimension 2 [Har20, Theorem 10.6], so there is nothing
to prove. The case kv = R follows from Theorem 4.1 and Lemma 1.8 (ii). If k is a

number field, we have an isomorphism H3(k, T̂ )−̃→
∏

H3(kv, T̂ ), where the product
is over the real places of k, see [Har20, Exercise 18.1], so this case follows from the
case of local fields. □

5 Torsors

Let X be a k-torsor for a semiabelian variety A. In this section we address the
problem of computing the étale cohomology groups Hi

ét(X,Z/n), where n is not
divisible by char(k).

Since Aks is connected, translations by elements of A(ks) act trivially on the étale
cohomology groups Hi

ét(Xks ,Z/n). Therefore, any choice Xks ≃ Aks of a trivializa-
tion of the torsor X over ks gives rise to the same Γ-equivariant isomorphism

Hi
ét(Xks ,Z/n) ∼= Hi

ét(Aks ,Z/n), i ≥ 0.

But the complexes RΓét(Xks ,Z/n) and RΓét(Aks ,Z/n) need not be isomorphic as
objects of D(Γ,Z/n): the truncation of the latter in degrees [0, 1] is the direct sum
of its cohomology groups, but the truncation τ [0,1]RΓét(Xks ,Z/n) need not be split
as we demonstrate in this section.

The Hochschild–Serre spectral sequence for X has the form

Ep,q
2 = Hp(k,Hq

ét(Aks ,Z/n)) ∼= Hp(k,Hq
ét(Xks ,Z/n)) ⇒ Hp+q

ét (X,Z/n).

The question we address is the explicit form of the differentials

δp,12 : Hp(k,H1
ét(Aks ,Z/n)) → Hp+2(k,Z/n),

where p ≥ 0. Each of these differentials is induced by the map in the derived
category Z/n-modules with a continuous discrete action of Γ

δX : H1
ét(Aks ,Z/n) ∼= H1

ét(Xks ,Z/n) → Z/n[2]

arising from the complex τ [0,1]RΓét(Xks ,Z/n) ∈ D(Γ,Z/n).
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Recall from notation section of the introduction that A(G,Z/n) is the abelian
category of discrete Z/n-modules equipped with a continuous action of G. Writing
M = H1

ét(Aks ,Z/n), we can think of δX as an element of Ext2A(G,Z/n)(M,Z/n). Since
HomA(G,Z/n)(M,Z/n) = HomZ/n(M,Z/n)Γ, we have a spectral sequence

Ep,q
2 = Hp(k,ExtqZ/n(M,Z/n)) ⇒ Extp+qA(G,Z/n)(M,Z/n). (32)

In our case, M is a free, hence projective Z/n-module, thus ExtqZ/n(M,Z/n) = 0 for

q > 0. Now (32) gives a natural isomorphism

Ext2A(G,Z/n)(M,Z/n) ∼= H2(k,HomZ/n(M,Z/n)) ∼= H2(k,A[n]), (33)

where the second isomorphism is the Z/n-linear dual of a natural isomorphism
of Γ-modules HomZ/n(A[n],Z/n) ∼= H1

ét(Aks ,Z/n) induced by the map (9). Using
isomorphisms (33), we identify δX with an element of H2(k,A[n]).

We will express the class δX in terms of the class of the torsor X. The exact
sequence of Γ-modules

0 → A[n] → A→ A→ 0 (34)

gives rise to the homomorphism of Galois cohomology groups

βn : H
1(k,A) → H2(k,A[n]). (35)

Theorem 5.1. Let k be a field and let n be a positive integer not divisible by char k.
Let X be a k-torsor for a semiabelian variety A over k with class [X] ∈ H1(k,A).
The class δX ∈ H2(k,A[n]) is equal to the image of [X] under the map βn. In
particular, the differentials δp,12 are given by cupping with the class

βn([X]) ∈ H2(k,A[n]) ∼= Ext2A(G,Z/n)(H
1(Aks ,Z/n),Z/n).

Proof. Our goal is to compute the morphism

δX : HomZ/n(A[n],Z/n) ∼= H1
ét(Xks ,Z/n) → H0

ét(Xks ,Z/n)[2] ∼= Z/n[2]

in D(Γ,Z/n) corresponding to the complex τ [0,1]RΓét(Xks ,Z/n). The Z/n-linear
dual of the map δX shifted by [2] is a map δ∨X [2] : Z/n → (A[n])[2] which is the
following composition

Z/n ∆−→ EndZ/n(A[n]) = HomZ/n(A[n],Z/n)⊗L
Z/n A[n]

δX⊗id−−−→ Z/n[2]⊗L
Z/n A[n],

where ∆ sends 1 ∈ Z/n to idA[n] ∈ EndZ/n(A[n]). After applying the derived
functor of the functor of Γ-invariants, we see that idA[n] ∈ EndZ/n(A[n])

Γ goes to
δX ∈ H2(k,A[n]).

The map δX ⊗ idA[n] can be identified with the connecting map of the complex
τ [0,1]RΓét(Xks ,Z/n)⊗L

Z/n A[n] ≃ τ [0,1]RΓét(Xks , A[n]). Thus the differential

d : H1
ét(Xks , A[n])

Γ → H2
ét(k,A[n])
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of the spectral sequence

Ep,q
2 = Hp(k,Hq

ét(Xks , A[n])) → Hp+q
ét (X,A[n])

is induced by δX ⊗ idA[n]. There are natural isomorphisms of Γ-modules

H1
ét(Xks , A[n])

∼= H1
ét(Aks , A[n])

∼= H1
ét(Aks ,Z/n)⊗Z/n A[n] ∼= EndZ/n(A[n]).

In the notation of [Sk01, Proposition 3.2.2], under these isomorphisms, idA[n] ∈
EndZ/n(A[n]) corresponds to the class τ ∈ H1

ét(Xks , A[n]) of the Xks-torsor for A[n]
given by (34) after an identification of Xks with Aks . (Note that τ does not depend
on the choice of a ks-point of X, thus τ ∈ H1

ét(Xks , A[n])
Γ.) This gives d(τ) = δX .

On the other hand, by [Sk01, Proposition 3.2.2], which is a restatement of [Gir71,
Proposition V.3.2.9], we have d(τ) = βn([X]). □

Remark 5.2. Using [Sk01, Lemma 2.4.5] as in [HS09, Proposition 2.2], one sees
easily that βn([X]) ∈ H2(k,A[n]) can also be interpreted as the class of the group
extension

0 → A[n] → GX,n → Γ → 0

obtained from the fundamental exact sequence

1 → πét
1 (Xks) → πét

1 (X) → Γ → 1

by pushing out along the surjection πét
1 (Xks)

∼= πét
1 (Aks) → A[n].

Among the k-torsors X for a semiabelian variety A whose class in H1(k,A) is
not divisible by n, we have the following well-known examples in dimension 1.

Example 5.3. (i) Let k be a field of characteristic not equal to 2. Let X be the
affine curve x2 − ay2 = b, where a, b ∈ k×. This is a torsor for the norm 1 torus

S = R1
k(
√
a)/k(Gm,k(

√
a)) := Ker[Rk(

√
a)/k(Gm,k(

√
a)) → Gm,k],

where the arrow is given by the norm N: k(
√
a) → k. Hilbert’s Theorem 90 gives

an isomorphism H1(k, S) ∼= k×/N(k(
√
a)×). This group is annihilated by 2, so if

[X] ̸= 0 then [X] is not divisible by 2. The class [X] ∈ H1(k, S) is zero if and only if
the projective conic x2 − ay2 = bz2 has a k-point, that is, if and only if the symbol
(a, b) ∈ H2(k,Z/2) is zero. In fact, we have an isomorphism of group k-schemes
S[2] ∼= Z/2, and δX = β2([X]) = (a, b) ∈ H2(k,Z/2), as follows, for example, from
[CTS21, Proposition 7.1.11].

(ii) Let k = R and let X be a smooth projective curve of genus 1 over R such that
X(R) = ∅. Let E be the Jacobian of X. The group H1(R, E) is annihilated by 2,
and since [X] ̸= 0, we see that δX = β2([X]) ̸= 0.
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Remark 5.4. (i) More generally, if X is a geometrically connected scheme over
k, then the map Z/n ∼= H0

ét(Xks ,Z/n) → RΓét(Xks ,Z/n) admits a splitting in
D(Γ,Z/n) if X has a 0-cycle of degree coprime to n. Indeed, for a 0-cycle

∑
i

ai[Zi]

with each fi : Zi ↪→ X isomorphic to Spec(Li), where Li is a finite extension of k,
consider the induced maps

ri : RΓét(Xks ,Z/n)
f∗i−→ RΓ(Spec(Li ⊗k ks),Z/n) ∼=

⊕
Li,s↪→ks

Z/n Σ−→ Z/n.

Here the direct sum is taken over all embeddings of the maximal separable subex-
tension Li,s of Li into ks. The map Σ is Γ-equivariant because the Galois group
permutes the summands in the direct sum. The map on H0 induced by ri is then
the multiplication by the degree [Li,s : k], so the sum

∑
ai · [Li : Li,s] · ri is a map

RΓét(Xks ,Z/n) → Z/n inducing multiplication by the degree of the cycle
∑
i

ai[Zi].

(ii) In particular, if X is a geometrically connected smooth proper variety over k,
then the map Z/n→ RΓét(Xks ,Z/n) admits a splitting if n is coprime to the Euler
characteristic χ(Xks) (defined, e.g., as

∑
i

(−1)idimQℓ
Hi

ét(Xks ,Qℓ) for any ℓ ̸= char k).

Indeed, the top Chern class cdimX(TX) ∈ CHdimX(X) of the tangent bundle is a 0-
cycle of degree χ(X), by the Hirzebruch–Riemann–Roch formula. By (i), such a
cycle gives a map RΓét(Xks ,Z/n) → Z/n which induces χ(X) · id on H0.

6 Curves

Let C be a smooth, projective, geometrically integral curve over a field k. Let
J := Pic0C/k be the Jacobian of C and let X := Pic1C/k be the Albanese torsor of C.
The canonical map C → X gives isomorphisms of Γ-modules

H1
ét(Cks ,Z/n) ∼= H1

ét(Xks ,Z/n) ∼= H1
ét(Jks ,Z/n).

We use this identification in the following proposition.

Proposition 6.1. Let n be an integer not divisible by char k.
(a) For all i ∈ Z and all p ≥ 0 the differential δp,12,C of the spectral sequence

Ep,q
2 = Hp(k,Hq

ét(Cks , µ
⊗i
n )) ⇒ Hp+q

ét (C, µ⊗i
n ),

is equal to δp,12,X , and is induced by the class βn([X]) ∈ H2(k, J [n]), as in Theorem 5.1;

(b) the differential δ0,22,C of the spectral sequence

Ep,q
2 = Hp(k,Hq

ét(Cks , µn)) ⇒ Hp+q
ét (C, µn) (36)

sends the generator of H2(Cks , µn)
Γ ∼= H2(Cks , µn)

∼= Z/n to the image of [X] under
the map

H1(k, J)
βn−→ H2(k, J [n]) ∼= H2(k,H1

ét(J
∨
ks , µn))

∼= H2(k,H1
ét(Jks , µn)).
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Here the last isomorphism is induced by the principal polarization of J . Conse-
quently, for all p ≥ 0 the differential δp,22,C is given by cupping with this class in
H2(k,H1

ét(Jks , µn)).

Proof. The canonical map C → X induces a map RΓét(Xks , µ
⊗i
n ) → RΓét(Cks , µ

⊗i
n )

in D(Γ,Z/n), which induces isomorphisms of cohomology groups in degrees 0 and
1. This gives (a).

Poincaré duality states that inD(Γ,Z/n) the objects HomZ/n(RΓét(Cks ,Z/n), µn)
and RΓét(Cks ,Z/n)[2] are canonically isomorphic. Since each cohomology group of
RΓét(Cks ,Z/n) is a free Z/n-module, this implies a duality on truncations: the
objects HomZ/n(τ

[0,1]RΓét(Cks ,Z/n), µn) and τ [1,2]RΓét(Cks ,Z/n)[2] are canonically

isomorphic. Therefore the differential δ0,22,C of the Leray spectral sequence with co-

efficients Z/n is given by the class of a 2-extension in Ext2k(Z/n,H1
ét(J

∨
ks
, µn)) that

is dual to the extension defining δ0,12,C . It follows that δ0,22,C sends the generator of

H2
ét(Cks , µn)

Γ ∼= Z/n to the image of [X] in H2(k, J [n]) ∼= H2(k,H1
ét(J

∨
ks
, µn)). □

Example 6.2. Let C be a smooth, projective, geometrically integral curve over R
such that C(R) = ∅. If the genus of C is odd, then the Albanese torsor is non-
trivial, that is, [X] ̸= 0 in H1(R, J), see [GH81, Proposition 3.3 (2)]. Since H1(R, J)
is annihilated by 2, we have β2([X]) ̸= 0, thus for n = 2 the differential δ0,22,C is
non-zero. See the next example and Example 6.7 below for the case of even genus.

Example 6.3. The differentials on the 3rd page of the Hochschild–Serre spectral
sequence of a smooth projective curve can be non-zero. Indeed, consider the spectral
sequence (36) for n = 2, where C is the conic ax2 + by2 = z2 with a, b ∈ k×,
char k ̸= 2. Then H1

ét(Cks ,Z/2) = 0, so all differentials on the 2nd page are zero.
On the 3rd page we have a differential

δ0,23,C : H
2
ét(Cks ,Z/2)Γ → H3(k,Z/2).

Suslin’s lemma [Sus82, Lemma 1] states that the generator of H2
ét(Cks ,Z/2)Γ ∼= Z/2

goes to the symbol (a, b,−1). In particular, if k = R and a = b = −1, then δ0,23,C ̸= 0.

Example 6.4. More generally, let X be a smooth, projective, geometrically integral
variety over R such that X(R) = ∅. Then the spectral sequence

Ep,q
2 = Hp(R,Hq

ét(XC,Z/2)) ⇒ Hp+q
ét (X,Z/2) (37)

necessarily has non-zero differentials by the following argument that we learned
from Vadim Vologodsky. The Artin comparison quasi-isomorphism RΓét(XC,Z/2) ≃
RΓsing(X(C),Z/2) can be made Gal(C/R)-equivariant with the Galois group acting
on the left on the scheme XC by functoriality, and on the right on the topological
space X(C) via the continuous automorphisms of C. Hence RΓét(X,Z/2) can be
identified with RΓ(Gal(C/R),RΓsing(X(C),Z/2)) which is the equivariant cohomol-
ogy of the topological space X(C) with respect to the action of Gal(C/R). Since
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X(R) is empty, the Galois action on X(C) is free, and hence this equivariant coho-
mology coincides with the cohomology of the quotient space X(C)/Gal(C/R) which
is necessarily concentrated in finitely many degrees. But if the spectral sequence (37)
had no non-zero differentials, the cohomology of the complex RΓét(X,Z/2) would
be non-zero in infinitely many degrees.

In fact, one can describe the differentials δp,23 in the spectral sequence (36) in
general, assuming that all differentials on the 2nd page vanish. It follows from
Proposition 6.1 that the term E0,2

2 = H2
ét(Cks , µn)

Γ ≃ Z/n remains intact on the 3rd
page if and only if the class of Albanese torsor [Pic1C/k] ∈ H1(k, J) is divisible by
n. Let us assume that this is the case and choose a k-torsor for J , which we denote
Pic

1/n
C/k, together with an isomorphism [n]∗Pic

1/n
C/k ≃ Pic1C/k. Equivalently, we have

a pushout diagram of extensions of group schemes

J A Z

J PicC/k Z

π

g [n] (38)

with Pic
1/n
C/k isomorphic to the fibre of π over 1 ∈ Z.

The Picard stack of C is a Gm-gerbe over the Picard scheme PicC/k and it has
the structure of a group stack compatible with the group structure on PicC/k. In
particular, it defines a degree 2 extension of Galois modules

δ : PicC/k(ks) → k×s [2].

By definition, the map g in the diagram (38) defines a short exact sequence of Galois
modules

0 → PicC(ks)
g−→ A(ks) → Z/n→ 0 (39)

and we define a degree 3 extension as the composition

Z/n→ PicC(ks)[1]
δ[1]−−→ k×s [3] (40)

with the first map being the connecting morphism in D(Γ,Z) induced by (39).
Recall that for an object M ∈ D(Γ,Z) there are natural isomorphisms for all i:

Hi(k,M ⊗L
Z Z/n) ∼= Exti+1

Γ (Z/n,M) (41)

Indeed, the right-hand side can be calculated as Hi+1(k,RHomZ(Z/n,M)) and
RHomZ(Z/n,M) ∈ D(Γ,Z) is quasi-isomorphic to M ⊗L

Z Z/n[−1].
For a Galois moduleM , which is n-divisible as an abelian group, there is a natural

isomorphism ExtiΓ(Z/n,M) ∼= ExtiΓ(Z,M [n]) = Hi(k,M [n]). Let c1/n ∈ H3(k, µn)
be the image of the composition of maps in (40) under this isomorphism forM = k×s .
As a consequence of the following proposition, the class c1/n does not depend on the

choice of the torsor Pic
1/n
C/k.
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Proposition 6.5. Let Pic
1/n
C/k be a k-torsor for J such that [n]∗[Pic

1/n
C/k] = [Pic1C/k]

in H1(k, J). Then all differentials on the second page of the Hochschild–Serre spectral
sequence

Ep,q
2 = Hp(k,Hq

ét(Cks , µn)) ⇒ Hp+q
ét (C, µn)

are zero. The only non-zero differentials on the 3rd page

Ep,2
3 = Hp(k,H2

ét(Cks , µn)) = Hp(k,Z/n) →
→ Ep+3,0

3 = Hp+3(k,H0
ét(Cks , µn)) = Hp+3(k, µn)

are induced by the class c1/n.

Proof. Under the assumption that [Pic1C/k] is divisible by n, all differentials on
the second page vanish by Proposition 6.1. To access the differentials on the next
page we will relate the extensions between the cohomology modules of the complex
RΓét(Cks , µn) to those of RΓét(Cks ,Gm).

The complex τ≤2RΓét(Cks ,Gm) has non-zero cohomology modules only in degrees
0 and 1, isomorphic to k×s and PicC/k(ks), respectively, cf. [CTS21, Theorem 5.6.1
(iv)]. The degree 2 extension between them is exactly the class δ. According to the
Kummer sequence, applying the functor − ⊗L

Z Z/n : D(Γ,Z) → D(Γ,Z/n) to the
object RΓét(Cks ,Gm) gives RΓ(Cks , µn)[1], and the extension

H0
ét(Cks ,Gm) → τ≤2RΓét(Cks ,Gm) → H1

ét(Cks ,Gm)[−1]

is carried to

H0
ét(Cks , µn)[1] → RΓét(Cks , µn)[1] → (τ [1,2]RΓét(Cks ,Gm))[1].

Hence the extension
τ [1,2]RΓét(Cks , µn)[2] → µn[3] (42)

arising from the complex RΓét(Cks , µn) is the result of applying the functor −⊗L
ZZ/n

to the map δ : PicC/k(ks) → k×s [2].
Under the assumption that [Pic1C/k] is divisible by n, the natural map

τ [1,2]RΓét(Cks , µn)[2] ≃ PicC/k(ks)⊗L
Z Z/n→ Z/n (43)

has a section inD(Γ,Z/n) and the task of computing the 3rd differential is equivalent
to computing the composition of this section with (42).

Recall from (41) that for any Galois module M there is a natural isomorphism
ExtiΓ(Z/n,M [1]) ∼= Hi(k,M ⊗L

Z Z/n). The morphism h : Z/n → PicC/k(ks)[1]
corresponding to the extension 0 → PicC/k(ks) → A(ks) → Z/n → 0 is carried to
a class in H0(k,PicC/k(ks) ⊗L

Z Z/n) which defines a splitting of (43) because the
composition

Z/n h−→ PicC/k(ks)[1]
deg[1]−−−→ Z[1]
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is the Bockstein map.
The composition of this splitting with (42) is then the map Z/n → µn[3] whose

class in H3(k, µn) corresponds to the composition Z/n h−→ PicC/k(ks)[1]
δ[1]−−→ k×s [3],

and we arrive at the definition of the class c1/n, as desired. □.

If the torsion order of the Albanese torsor [Pic1C/k] ∈ H1(k, J) is coprime to n
then we can make the above formula for the 3rd differential more explicit. The map
δ arising from the Picard stack of C induces a map PicC/k(k) → Br(k) sending a
rational point to the obstruction to lifting it to an actual line bundle on C. We
denote by BockGm : Br(k) = H2(k,Gm) → H3(k, µn) the connecting homomorphism
of the Kummer sequence.

Corollary 6.6. Suppose that [Pic1C/k] ∈ H1(k, J) is annihilated by an integer m
coprime to n. Then all differentials on the second page of the Hochschild–Serre
spectral sequence

Hp(k,Hq
ét(Cks , µn)) ⇒ Hp+q

ét (C, µn)

are zero. Let x ∈ PicdC/k(k), where d ≡ 1 mod n. The only non-zero differentials

Ep,2
3 = Hp(k,Z/n) → Hp+3(k, µn) = Ep+3,0

3

on the 3rd page are given by cupping with BockGm(δ(x)) ∈ H3(k, µn).

Proof. Since n is invertible modulo m, the class [Pic1C/k] is divisible by n, so we
are in the setup of Proposition 6.5. Specifically, choose m′ to be any integer such
that m′ · n ≡ 1 mod m and let Pic

1/n
C/k := [m′]∗Pic1C/k. The point x defines a map of

Galois modules fx : Z → PicC/k(ks) sending 1 ∈ Z to x. The composition

Z fx−→ PicC/k(ks)
δ−→ k×s [2]

BockGm−−−−→ µn[3]

corresponds under the isomorphism H3(k, µn) ≃ Ext3Γ(Z/n, k×s ) to the composition

Z/n→ Z[1] fx[1]−−→ PicC/k(ks)[1]
δ[1]−−→ k×s [3]. (44)

The composition of the first two maps in (44) equals

Z/n
fx⊗L

ZZ/n−−−−−→ PicC(ks)⊗L
Z Z/n id⊗Bock−−−−−→ PicC(ks)[1].

Since fx⊗L
Z Z/n is a section of the natural map PicC(ks)⊗L

Z Z/n→ Z/n, the above
composition (44) is the map inducing the differentials on the 3rd page of our spectral
sequence, as in the proof of Proposition 6.5. □.

Example 6.7. Let C be a smooth, projective, geometrically integral curve over R
such that C(R) = ∅. The spectral sequence

Ep,q
2 = Hp(R,Hq

ét(CC,Gm)) ⇒ Hp+q
ét (C,Gm)
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gives rise to the short exact sequence

0 → Pic(C) → Pic(CC)
Gal(C/R) = PicC/R(R)

δ−→ Br(R) → 0,

as follows from [GH81, Proposition 2.2 (2)]. If the genus of C is even, then the
Albanese torsor is trivial, that is, [Pic1C/R] = 0 ∈ H1(R, J), see [GH81, Proposition
3.3 (1)]. Moreover, by the second statement of [GH81, Proposition 2.2 (2)], for any
x ∈ Pic1C/R(R) we have δ(x) ̸= 0 in Br(R). By Corollary 6.6 the 3rd page differentials
Hp(R,Z/2) → Hp+3(R,Z/2) are cup-products with the generator (−1,−1,−1) of
H3(R,Z/2), so they are isomorphisms Z/2−̃→Z/2 for all p ≥ 0.

Remark 6.8. One can also give an explicit degree 3 Yoneda model for the ex-
tension Z/n → µn[3] discussed above, at least after applying the forgetful functor
D(Γ,Z/n) → D(Γ,Z).

Let DivCks
be the group of divisors on Cks , that is, the free abelian group with

the set of closed points of Cks as the basis. The exact sequence

0 → k×s −→ ks(C)
× −→ DivCks

→ PicC/k(ks) → 0 (45)

represents the extension class of τ≤1RΓét(Cks ,Gm), see [CTS21, Proposition 5.4.5,
Remark 5.4.6]. From diagram (38) we see that multiplication by n on PicC/k factors
as

PicC/k ↪→ A
f−→ PicC/k

for some map f . Let D̃iv be the Γ-module defined as the pushout

D̃iv DivCks

A(ks) PicC/k(ks)
f

We will view elements of D̃iv as pairs (α,D) ∈ A(ks)⊕DivCks
satisfying f(α) = [D].

We can then form the complex

0 → µn → ks(C)
× a−→ ks(C)

× ⊕DivCks

b−→ D̃iv
c−→ Z/n→ 0. (46)

Here the map a sends a rational function φ to the pair (φn, div(φ)) ∈ ks(C)
×⊕DivCks

.
The map b on ks(C)

× is induced from the map −div : ks(C)
× → DivCks

, and on

DivCks
the map b sends a divisor D to the element of D̃iv given by (g([D]), n ·D).

Finally, c is the composition D̃iv → A(ks) → coker g ≃ Z/n.
The sequence (46) is exact and hence defines a map Z/n → µn[3] in D(Γ,Z).

Unwinding definitions one checks that it is equal to the image of c1/n ∈ H3(k, µn)
under the map H3(k, µn) → Ext3Γ,Z(Z/n, µn).
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We finally explain why Corollary 6.6 implies Suslin’s lemma [Sus82, Lemma 1]
discussed in Example 6.3.

Lemma 6.9. Suppose that char k ̸= 2. Consider the extension of Γ-modules

0 → Z/2 → µ4 → Z/2 → 0. (47)

For even n the connecting map Hn(k,Z/2) → Hn+1(k,Z/2) of (47) is the cup-product
with the class of −1 in H1(k,Z/2) = k×/k×2.

Proof. The spectral sequence Hp(k,ExtqZ(Z/2,Z/2)) ⇒ Extp+qΓ,Z (Z/2,Z/2) gives
an exact sequence

0 → H1(k,Z/2) → Ext1Γ,Z(Z/2,Z/2) → Ext1Z(Z/2,Z/2).

As pointed out in [Sus82, the proof of Lemma 4], the difference between the image
of [−1] ∈ H1(k,Z/2) in Ext1Γ,Z(Z/2,Z/2) and the class of (47) is the class of the
extension where Z/4 is equipped with the trivial Galois action

0 → Z/2 → Z/4 → Z/2 → 0. (48)

By the Milnor–Bloch–Kato conjecture, the natural map

Hn(k, µ⊗n
4 ) → Hn(k, µ⊗n

2 ) = Hn(k,Z/2)

is surjective. For even n we have µ⊗n
4

∼= Z/4, so the connecting map of (48) is zero
on Hn(k,Z/2). □

If C is a conic, then δ sends 1 ∈ Z ∼= Pic(Cks)
Γ ∼= PicC/k(k) to the class of the

associated quaternion algebra in Br(k) (see [CTS21, Proposition 7.1.3]), that is, to
the image of the symbol (a, b) under the natural map H2(k,Z/2) → H2(k,Gm). By
Lemma 6.9 the image of (a, b) under the Bockstein map H2(k,Gm) → H3(k,Z/2) is
(a, b,−1). We of course do not need to invoke the Milnor–Bloch–Kato conjecture for
this particular computation, because the Kummer classes of a and b in H1(k,Z/2)
lift to H1(k, µ4), so (a, b) ∈ H2(k,Z/2) lifts to H2(k, µ⊗2

4 ) ∼= H2(k,Z/4).
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14 (1981) 157–182.

[Har20] D. Harari. Galois cohomology and class field theory. Universitext. Springer,
Cham, 2020.

[HS09] D. Harari and T. Szamuely. Galois sections for abelianized fundamental groups.
Math. Ann. 344 (2009) 779–800.

[Mil86] J.S. Milne. Arithmetic duality theorems, Persp. Math. 1, Academic Press, 1986;
2nd ed., Kea Books, BookSurge, 2004.

[Ols09] M. Olsson. On Faltings’ method of almost étale extensions. Algebraic geometry
(Seattle, 2005). Part 2, pp. 811–936.

[OSZ] M. Orr, A.N. Skorobogatov, and Yu.G. Zarhin. On uniformity conjectures for
abelian varieties and K3 surfaces. Amer. J. Math. 143 (2021) 1665–1702.

[P] A. Petrov. Non-decomposability of the de Rham complex and non-semisimplicity
of the Sen operator. arXiv:2302.11389

[PR11] B. Poonen and E. Rains. Self cup product and the theta characteristic torsor.
Math. Res. Letters 18 (2011) 1305–1318.

[PS99] B. Poonen and M. Stoll. Cassels–Tate pairing on polarized abelian varieties.
Ann. Math. 150 (1999) 1109–1149.

[SGA 41
2 ] Cohomologie étale (SGA 41
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