ARITHMETIC LOCAL SYSTEMS AND p-ADIC HODGE THEORY

ALEXANDER PETROV

Cohomology groups H"(X(C),Z) of a complex algebraic variety X admit a remark-
ably rich array of additional structures: (mixed) Hodge structure, Galois action coming
from étale cohomology, crystalline Frobenii, and the list goes on. The presence of these
structures leads to interesting constraints on the topology of algebraic varieties and maps
between them.

Another! type of structure that has proven to be very useful in algebraic geometry is
monodromy. If a smooth proper variety X is established as a fiber X = X of a smooth
proper morphism 7 : X — S of complex algebraic varieties over a point s € S(C), then
the groups H"(X(C),Z) have a natural action of the fundamental group 71 (S(C),s) of
the base of the family.

In this expository survey, we focus on the action of the Galois group on cohomology
coming from the theory of étale cohomology, and on its interaction with monodromy.
This interaction has a long history of fruitful applications. For example, Deligne’s proof
of Weil’s conjectures, which is a statement about the Galois action on the cohomology of
a variety, proceeds by establishing the variety at hand as the total space of a family with
non-trivial enough monodromy representation, and studying the variation of the Galois
action on the cohomology of the fibers of the family. One general point that we will try to
make is that many seemingly unrelated structures on cohomology can be recovered from
the Galois action.

In Section 1 we review the definition of étale fundamental group and the Galois action
on it, and give two applications of this structure to the topology of maps between complex
algebraic varieties. In Section 2 we state a conjectural arithmetic characterization of
monodromy representations coming from families of algebraic varieties. In Section 3
we briefly introduce some of the constructions of p-adic Hodge theory, and discuss an
application to the construction of a mixed Hodge structure on the cohomology of open
singular complex varieties. Finally, in Sections 4 and 5 we discuss evidence for Conjecture
1 coming from Langlands correspondence and p-adic Hodge theory, respectively.

None of the material presented here is original, and we have attempted to give proper
references, though our attributions are at best approximate, especially for the more foun-
dational results. We are only able to scratch the surface, and refer the reader to excellent
recent surveys such as [Esn23], [Lit24] for a more comprehensive discussion of some other
aspects of this story.

Version of January 10th, 2026. The author was supported by the Clay Research Fellowship. I am
grateful to Hélene Esnault for comments and corrections on the draft of this text.
m fact, we will see that monodromy was already essentially mentioned in the list of structures in the
previous paragraph
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1. ETALE COHOMOLOGY AND ETALE FUNDAMENTAL GROUP

A fundamental result of Grothendieck and his collaborators is that singular cohomology
groups H™(X(C),Z) of a complex algebraic variety X can be reconstructed by a purely
algebraic procedure from X via the theory of étale site and étale cohomology, if one is
content with replacing the coefficient group Z with a finite group Z/n or the group Z; of
{-adic integers for some prime number /.

This theory has a much wider scope than algebraic varieties over complex numbers
and provides, for any scheme X, the Z,-modules

(1.1) HE (X, Zy)
indexed by integers n > 0, for every prime ¢, satisfying the following properties:

(1) If X is a separated scheme of finite type over C, then there is a natural isomor-
phism HZ (X, Z;) ~ H"(X(C), Z,) with singular cohomology groups of the space
X (C) with its complex-analytic topology.

(2) If £ C k' is an extension of algebraically closed fields with £ # char(k) then for
a finite type scheme X over k the natural map H%(X,Z,) — HZ (X X k', Zy) is
an isomorphism.

Note that this theory is absolute, that is groups HZ% (X, Z,) naturally depend just on the
scheme X, without reference to the structure map to any base. In particular, if X is
a scheme over a field F' then étale cohomology H(Xo xr F,Z¢) of its base change to
an algebraic closure F' of F has a natural action of the absolute Galois group Gp :=
Aut(F/F) of F.

Any finite type scheme X over C admits a descent X to a finitely generated subfield
F c C. Combining properties (1) and (2) above we have an isomorphism

(1.2) H™(X(C),Z¢) ~ He (X, Ze) ~ He (X 7+ Ze)

with the last group having a natural action of the Galois group G, that induces an action
on the singular cohomology, by transport of structure. The choice of a descent X is not
unique, but any two such descents X, X{, over subfields F, F' C C become isomorphic
over a common finite extension F”” D F, F’ and in particular the resulting actions of G
and G are identified on a common finite index subgroup.

It turns out to be fruitful to think of this Galois action as an additional structure
intrinsic to a complex algebraic variety — the mild dependence on the descent will be
erased by some of the constructions one makes.

Etale fundamental group. We will not review the definition of étale cohomology here,
and will limit ourselves to recalling the definition of étale fundamental group, which in
particular captures the value of étale cohomology in degree 1. Many foundational results
about étale cohomology are reduced to the case of the étale fundamental group that can
be accessed by geometric arguments.

Given a connected scheme X equipped with a geometric point z, that is with a map
from the spectrum of an algebraically closed field to X, consider the following category
of covers of X. Its objects are pairs (Y,y) where Y is a scheme equipped with a finite
étale map f:Y — X and y is a geometric point of Y such that f(y) is equivalent to x.

Recall that a finite étale map f : Y — X is a Galois covering if the group of auto-
morphisms Aut(Y/X) of Y relative to X has order equal to the degree of f. If a Galois

covering f : Y — X factors as Y — Y’ Iy X where f' Y — X is another Galois



covering, every automorphism of Y over X is compatible with a unique automorphism
of Y, hence defining a group homomorphism Aut(Y/X) — Aut(Y'/X). We now define
the étale fundamental group as the inverse limit of these automorphism groups over the
category of pointed Galois covers of (X, x):

(1.3) (X, z) := lim Aut(Y/X)
(Yyy)

Note that the chosen points y of schemes Y do not play a role in the definition of the
functor we are taking the limit of, but it is crucial to take the limit over the category of
pointed covers: the limit over the category of covers without a base point would give the
abelinization of the correct fundamental group.

This construction captures degree 1 étale cohomology of an arbitrary scheme, and
partially recovers the topological fundamental group:

(1) For a connected finite type scheme X over C with a geometric point above a
C-point z € X(C) the group 7§*(X,x) is naturally isomorphic to the profinite
completion 71 (X (C), z) of the topological fundamental group.

(2) For each prime /¢, for any connected scheme X the 1st cohomology
group HL (X,Z,) is isomorphic to the group of continuous homomorphisms

Homeont (758 (X, ), Zy).

For a scheme X over a field F' equipped with a geometric base point above an F-point
x € X(F) we get a natural action of the Galois group G on the profinite fundamental
group 7{"(X4, z), analogously to the Galois action on étale cohomology. Let us compute
this action in two examples:

Example 1.1. Let F' be any field of characteristic zero, and consider the punctured affine

line X = G, r. Using Riemann-Hurwitz formula one can check that every connected

finite étale cover of X% = G, 7 is of the form X,, =G, & i G,, 7 for some integer

n > 1. Every such cover is Galois, with the Galois group naturally isomorphic to the
group of n-th roots of unity u,(F) in F, with ¢ € u,(F) acting via ¢t — ¢ - t. Hence the
étale fundamental group of G, 7 with respect to any base point a € G (F) is

(14) TG,y @) = lim py (F) = Z(1)

Each j,,(F) is of course isomorphic to Z/nZ as an abelian group, but the natural action
of the Galois group Gal(F/F) on ©$*(G, #,a) is via its action on the roots of unity on

F'. In particular, this action is non-trivial unless o, (F) is entirely contained in F.

Example 1.2. Let Y be a proper rational curve with a single (split) nodal singularity,
over a field F' C C of characteristic 0. Explicitly, Y is isomorphic to the plane curve
cut out by equation zy? = a:Q(x + 2) in P[Qx:yzz] and can be presented as the categorical
quotient PL /(0 ~ oo). Note that Y (C) is homotopy equivalent to S Vv S? so by the
comparison isomorphism with the profinite completion of the topological fundamental
group, we expect 7$*(Y) to be isomorphic to Z, just like in the case of G, %.

Indeed, Y7 has just one isomorphism class of connected etale covers of aegree n, for
each n > 1. For n > 1 the unique such cover is a circle of n projective lines:



The automorphism group of this cover is isomorphic to Z/n, with all automorphisms
given by rotations of the circle. In particular, all of these automorphisms are already
defined over the base field F, so the natural action of the Galois group Gal(#'/F’) on

(1.5) (V) = limZ/n = Z
is trivial.

Corollary 1.3. For a smooth algebraic variety X over C any map f :Y — X from a
proper rational curve with a single node induces the zero map f. : Q ~ H1(Y(C),Q) —
H,(X(C),Q) on rational homology in degree 1.

Proof. We can choose a map fy : Yy — X of varieties over a finitely generated subfield
F C C descending f, where Yj is again a rational curve with a single split node, and X
is necessarily smooth. It suffices to check that the induced map f§ : H} (Xo7: Qo) =
H'(Y, %,Q¢) on 1st étale cohomology is zero. Crucially, this map commutes with the
action of G F, but this action on cohomology of Y,z is trivial by Example 1.2 while
the action on the cohomology of Xy in positive degrees has no non-zero invariants by
Theorem 1.4 below. g

The key property of the Galois action on étale cohomology used above is the final Weil
conjecture, proved by Deligne:

Theorem 1.4. For a smooth variety X over a finitely generated field F of char(F) # ¢
there exists a finitely generated subalgebra R C F with F' = Frac R such that the action
of Gp on HJ\(X%,Qy) factors through an action of w§*(Spec R). After replacing R by a
localization, the Frobenius element Fr, € nf'(Spec R) at every closed point x € |Spec R|
acts in HJ, (X%, Q) via an endomorphism with eigenvalues that are Weil numbers of
weight > n.

If X is also proper, the eigenvalues (for a small enough choice of Spec R) are Weil
numbers of weight equal to n.

Quasi-unipotence of local monodromy. We will now start discussing how the Galois
action on cohomology interacts with the monodromy action, and, as an illustration, will
review Grothendieck’s proof of the local monodromy theorem. Recall that for a smooth
proper map f : X — S of complex algebraic varieties there is a natural action of the
fundamental group of the base 7 (S(C), s) on the cohomology of the fiber H*(X(C),Z)
at a given point s € S(C).

While this action manifestly depends only on the homotopy class of the map X (C) —
S(C), it often contains non-trivial information about the algebraic structure of the family.
Here is a simple example of this phenomenon:

Proposition 1.5. Let f : £ = S be a family of elliptic curves over a connected variety S
over C. If the monodromy representation pg : m1(S(C),s) — GL(H'(&s,Q)) ~ GL2(Q)



has infinite image, then the family € is completely determined by the conjugacy class of
PE-

Proof. This is a special case of [Del71, Proposition 4.4.12] whose assumptions are satisfied,
because pg is absolutely irreducible under our condition. Indeed, pg is always semi-simple
by [Del71, 4.2.6], and if pg is not absolutely irreducible, pg ®g Q is a direct sum of
characters, but every character of geometric origin has finite order as we will see below
in Proposition 2.6. O

Suppose now that S is a non-empty open in a smooth proper curve S over C. We will
look at the monodromy action of a specific class of elements of 71(S(C),s). For one of
the finitely many points x € (S\ S)(C) let v, € m1(S(C), s) be an element obtained by
traveling from s to a point in a punctured neighborhood of x along any path, circling
around z once in the clockwise direction with respect to the orientation defined by the
complex structure, and then traveling back to s along the very same path. Element
v, in general depends on the choice of the path, but its conjugacy class is completely
well-defined.

The action of 7, in monodromy representations on the cohomology of a family of
varieties turns out to be very special:

Theorem 1.6. Let S be a non-empty open in a smooth proper curve S over C. For any
smooth proper morphism f : X — S, and any boundary point x € S\ S the action of v,
on H*(X,(C),Q) is quasi-unipotent, that is the eigenvalues of px (v.) are roots of unity.

Proof. Our first maneuver, already familiar from the proof of Corollary 1.3, is to introduce
arithmetic to the problem, by descending the family X — S to a smooth proper family
Xo — Sp over a finitely generated subfield FF C C. We take F' to be large enough to be
able to assume that = and s descend to F-points of Sg.

The cohomology group H*(X,(C), Q) of the fiber is now equipped with two structures:
the action of the topological fundamental group 7 (S(C), s) and the action of the Galois
group G via the isomorphism H*(X;(C), Q) ~ HE (Xo s xr F, Qy).

These actions do not commute with each other, but rather interact as follows. There
is an action of the étale fundamental group 7$*(Sp, s) of the scheme Sy (as a scheme over
F, without base changing to F) on HE (Xo s xp F, Q) that encompasses both the action
of Gp and 7, (S(C), s). Etale fundamental group m¢*(Sy, s) with respect to a geometric
base point lying above a rational F-point is identified with the semi-direct product:

7§ (S, 8) ~ Gp X ﬂi’t(Sof, s).

This is a reformulation of the ‘homotopy exact sequence’ [Gro63, Corollaire X.2.2] and
stems from the fact that every finite étale cover of Sy x  F' descends to a finite étale cover
of Sog xr F' for some finite extension F’ of F.

In turn, ﬁft(SOf, s) is the pro-finite completion of the topological fundamental
group m1(S(C),s). The fact that the monodromy representation of m1(S(C),s) into
GL(H*(X(C),Qy)) extends to its pro-finite completion is in fact automatic, because
this action preserves a Zg-lattice. But the crucial new piece of structure is that the
monodromy representation Eliher extends to the above semi-direct product.

The action of G on 71 (S(C), s) is in general very complicated, and getting a tangible
description of it would solve several central problems of arithmetic geometry. But elements



of 7, that we are interested in are special in that we can compute the action of the Galois
group on them, and crucially it is non-trivial:

Lemma 1.7 ([SGATII, Exposé XIV, 1.1.10]). For every element of the Galois group

g € Gp we have that g(v;) € m1(S(C), s) is conjugate to 'y;“yd(g). Here Xcyel(g) € 7" is
the value of the cyclotomic character on g, and what we mean by 'y;“y“l(g) is the image of

Xeyel(9) € Z under the pro-finite completion of the map 7 120, m1(S(C), s).

Proof idea of Lemma 1.7. Computing the conjugacy class of g(v,) is a problem that can
be solved locally in a formal neighborhood of the point x, so one reduces to computing the
Galois action on the étale fundamental group of Spec F((t)), which in turn is equivalent
to the computation from Example 1.1. g

We can now conclude that px (7,) is quasi-unipotent. As the field F is finitely generated
over Q, it contains only finitely many roots of unity, that is the image of the cyclotomic

character Gp — Z* is a finite index open subgroup in the target. In particular, we may
Xeyel

choose an element g € G such that the composition Gp —— 7x = ZeX sends g to an
element r € Z; for some integer Z > r # =£1.
Eigenvalues of px(7;) on H*(X,(C),Q,) are a priori invertible elements of Z, C Q,.

The fact that px extends to Gp x w1 (S(C),s) implies that px(7y,) is conjugate to
px(g(7z)) which by Lemma 1.7 is conjugate to px(7,)X<(@. By our choice of the
element g, this implies that the set of eigenvalues of px (7, ) is invariant under raising to
the rth power. This forces all of them to be roots of unity, as desired. a

It will be convenient for us to have another term for representations of étale funda-
mental group:

Definition 1.8. For a connected scheme X with a geometric base point = an étale local
system on X with coefficients in any of the topological rings R = Z;, Z/l%,Q., Q, is a
conjugacy class of continuous representations 7§*(X,xz) — GL,(R).

This is not formally obvious from the way we set up the definition, but the category
of étale local systems on X is functorially independent of the choice of the base point. In
particular, a local system on X can be restricted to every field-valued point Spec L — X
to obtain a representation of the Galois group G.

2. CLASSIFICATION OF LOCAL SYSTEMS OF GEOMETRIC ORIGIN

Note that the only property of the monodromy representation of 71(S(C),s) on
H*(X4(C),Q) that was used in the proof of Theorem 1.6 is that it extends to a rep-
resentation of m¢*(Sp, s) with coefficients in Q. Let us give this property a name:

Definition 2.1 ([Lit18, Definition 1.1.1]). For a connected finite type scheme S over
C a representation p : m1(S(C),s) — GL,(Q,) is arithmetic if there exists a finitely
generated subfield F' C C and a descent Sy of S to F such that p extends to a continuous
representation p : 7§ (S, s) — GL,(Qy).

The fact that p extends to the profinite completion 7$*(Sg,s) ~ m (g(a,s) of the
topological fundamental group is equivalent to p being conjugate to a representation
landing in GL,,(Og), for a finite extension E of Q,. Extendability to the fundamental
group of Sy is the most serious part of the ‘arithmetic’ property.



Remark 2.2. One might reasonably object that it is strange to treat arithmeticity as a
property, rather than keeping track of the chosen extension of p. For now, let us just point
out that this ambiguity is not very serious if p is irreducible: if p, o’ are two extensions,
for a given field F, then Schur’s lemma implies that p’ is conjugate to p ® x for some
character xy : Gp — @ZX of the Galois group. In particular, an irreducible arithmetic
representation has a unique extension to m$*(Sy) as a projective representation.

This is of course an interesting property only if the Galois action on the fundamental
group of S, 7 is sufficiently non-trivial. We already saw that this is the case for So = G, r
but let us point out a much stronger non-triviality property of this action:

Theorem 2.3 ([Bel79, Corollary on p. 256], [Gro]). For any choice of base point a €
PY(Q) \ {0,1,00} every non-trivial element g € Gg acts on Wft(IE%\ {0,1,00},a) via a
non-inner automorphism.

Let us now discuss more systematically the relation between arithmetic representations
and monodromy representation on cohomology of families of varieties.

Definition 2.4. For a normal connected algebraic variety S over C a representation
p:m(S(C),s) = GL,(Q,) is of geometric origin if there exists a non-empty Zariski open
U C S such that the restriction 71 (U(C)) — m1(S(C)) — GL,(Q,) is a subquotient of
the monodromy representation on the k-th cohomology of the fiber of a smooth proper
family f: X — U, for some k.

Remark 2.5. (1) We restrict to the case of a normal S to ensure that passing to an
open U induces a surjection on fundamental groups [FL81, (0.7)B]. In particular,
the isomorphism class of p is completely determined by p|~, w(c))-

(2) Tt is not currently known whether every representation of geometric origin is a
subquotient of the cohomology of a smooth proper family over all of S, but that
seems rather unlikely. One reason to allow the flexibility of restricting to an open
is that Drinfeld-L. Lafforgue’s Theorem 4.1 proves that a given local system is of
geometric origin in that sense.

(3) The definition relies on the choice of a prime ¢ — we work with Q, coefficients
for the convenience of relating this notion to arithmetic representations later on.
But the notion of geometric origin is independent of ¢ in the following sense: if p
is of geometric origin, then it is conjugate to a representation factoring through
GL,(Q) C GL,(Q,). Conversely, if a representation p : 71(S(C),s) — GL,(Q)
is of geometric origin when viewed as a Q,-valued representation for one ¢, the
same is true for all values of /.

(4) In this definition ‘subquotient’ can be replaced by ‘direct summand’, as the repre-
sentation of m (U(C)) on H*(X,, Q) for a smooth proper family X — U is always
semi-simple. This can be proven either using that this representation underlies a
polarized variation of Hodge structures [Del87, 1.12], or using that it gives rise to
a pure local system on the reduction of U over some finite field [Del80, Corollaire
3.4.13].

As we discussed in the proof of Theorem 1.6, every representation of the form
H*(X,,Q,) is arithmetic, and the flexibility of choosing the field F' implies that moreover
every representation of geometric origin is arithmetic [Lit21, Proposition 3.1.7]. It turns
out to be reasonable to conjecture the converse:
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Conjecture 1 ([Pet23, Conjecture 1bis]). For a normal finite type scheme S over C a
semi-simple representation of m(S(C),s) is arithmetic if and only if it is of geometric
origin.

One of the goals of this survey is to discuss evidence for this conjecture which comes
from two disparate directions in arithmetic geometry. Let us begin by proving the con-
jecture for rank 1 representations:

Proposition 2.6 ([Del80, Théoréme 1.3.1)). For a normal scheme S, a character p :
m1(S(C),s) — @[X is arithmetic if and only if it has finite image.

Proof. Suppose that p extends to a character of Gp X m (?((C\), s) 2 Oy C @Z of the
arithmetic fundamental group, where F is some finite extension of QQy, and the action
of G is defined by some descent of S over a finitely generated field F C C. Since O

is abelian, the restriction of p to 71 (S(C),s) factors through the group of coinvariants

m1(S(C), )¢, which is to say that it defines a Galois-invariant element of HJ (S, OF).
As we already discussed, Theorem 1.4 implies that every Galois-invariant element in
positive-degree cohomology of a smooth variety is torsion. O

3. p-ADIC HODGE THEORY

All the additional structures on cohomology and properties of the monodromy discussed
in Section 1 are consequences of the action of a single Frobenius element, that is of the
Galois group of a finite field. It is very interesting to consider how these Frobenii elements
at different primes interact with each other, and this is far from being fully understood.

A much better understood piece of structure is the action of the Galois group of a local
field. Let us fix a prime p, and consider algebraic varieties over a p-adic field K with a
perfect residue field. Here by a p-adic field we mean the fraction field K = Frac(Og) of a
complete discrete valuation ring Ok such that residue field k = Ok /mg has characteristic
p, but K has characteristic zero. The main examples of such K are finite extensions of
Qp, but most constructions in p-adic Hodge theory apply to arbitrary K, with the notable
exception of the results that rely on finiteness of Galois cohomology and Tate duality.

The subject of p-adic Hodge theory is representations of the Galois group G'x on Q,-
vector spaces, with some of the important examples being provided by étale cohomology
of algebraic varieties over K. To appreciate the fact that the action of G on Hf (X7, Qr)
contains more information for £ = p than for other ¢, consider the following example:

Example 3.1. Let Y := PL /(0 ~ o0) be a rational curve with one nodal singularity over
a finite extension K of Q,, as in Example 1.2, and consider the complement X, = Y\ {a}
to a K-point a # 0,00. We have a short exact sequence of representations of G g-modules:

(3.1) Zy — HY(X, 52 Ze) = Zo(—1)

with the first map induced by the embedding X, — Y, and the second map induced
by the pullback along the map P \ {a} — X,. One can show, by considering the
relevant quotient of 7$*(X a,?) and extending the discussion of Example 1.2, that the
extension class of (3.1) in the continuous cohomology H!(G,Z(1)) of the Galois group
is represented by the Kummer cocycle ¢,. Here ¢, sends an element g € Gk to the
element c,(g) € Zy such that g(a'/*") = (jﬁ(g) -a'/*" for a chosen compatible system of
l-power roots of 1 and @ in K.



Varying a, we have the Kummer map
(3.2) acq: K* — HY Gk, Zy)

that can be identified with mapping the abelian group K* to its f-adic completion (K *);'.
But for ¢ # p a finite index subgroup of Oy is (-divisible, hence lies in the kernel of the
Kummer map. On the other hand, for ¢ = p the kernel of Kummer map is finite, which is
to say that the isomorphism class of the Galois representation H (X, %, Q,) remembers
the value of a, up to being multiplied by a root of unity. 7

In complex algebraic geometry, an important additional structure on cohomology is
the Hodge filtration. From our point of view that all additional structures on cohomology
should be recoverable from the arithmetic data of Galois action, it is natural to wonder
if the Hodge structure, or at least the Hodge numbers, are recoverable from the Galois
action. Over p-adic fields, this is partially achieved by Fontaine’s ‘mysterious functor’:

Theorem 3.2. There exists a functor

(3.3) Dar : {continuous Q,-representations of Gk} — {Z-filtered K-vector spaces}

such that for any smooth proper variety X over K for the representation HJ(Xz,Qp)
there is a natural isomorphism Dar(H (X%, Qp)) ~ Hly(X/K) where de Rham coho-

mology is equipped with the Hodge filtration F* .= H"(X, Q)Z(Z/K)

In the remainder of this section, we will give a construction of D4ygr and discuss one
application. Even when we are studying a single representation of the Galois group of a
p-adic field K, it is useful to be motivated by the Riemann-Hilbert correspondence for
local systems on complex manifolds.

Recall that for a connected complex manifold M there is an equivalence

(3.4) {conjugacy classes of representations m (M) — GL,(C)} ~
{rank n vector bundles with a flat connection on M}

sending a C-local system L to the vector bundle . ®c Oyps. For this construction to
make sense, it is crucial that the ring of functions on our space is linear over the ring of
coeflicients for our local systems. For local systems with coefficients in C this construction
does not immediately apply in algebraic geometry, because a local system L on S(C) is
not locally constant in Zariski or étale topology on the algebraic variety S.

However, for local systems with coefficient in a finite field IF, a very similar-looking
equivalence exists for schemes of characteristic p:

Proposition 3.3 ([Kat73, Proposition 4.1.1]). For a scheme Y over F, there is an equiv-
alence

(3.5) {étale local systems of finite-dimensional Fy-vector spaces } ~
{vector bundles E on'Y with an isomorphism Fy E ~ E}
The equivalence (3.5) sends an Fj-local system M to the étale sheaf Ml ®p, Oy which
gives rise to a vector bundle, because vector bundles satisfy étale descent. Explicitly,

if Y = Spec A is an affine scheme and M is trivialized by a finite étale G-Galois cover
f : Spec B — Spec A then the resulting vector bundle corresponds to the A-module

(3.6) I'(Spec B, f*M)¢
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of G-invariants.
Before describing the construction of Dgg, let us discuss how far we can get by trying
to generalize (3.4) and (3.5) in the most direct way.

Example 3.4. Given a continuous representation p : Gxg — GL(V) of the Galois group
of a p-adic field K on a finite-dimensional Q,-vector space V', we can analogously pass to
the ind-étale extension K of K that tautologically trivializes p and consider the space
(3.7) (V &g, K)°*

of invariants with respect to the diagonal action. Using Hilbert’s theorem 90 one checks
that this space is naturally identified with Vi ®q, K where Viin is the subspace of v € V
such that the Galois orbit Gk - v is finite. However, this space is typically too small, for

example for any smooth proper variety X over K that admits a smooth proper model
over Ok the representation H; (X7, Q) has no non-zero finite vectors for any n > 0.

Put differently, the faithfully flat extension K — K of course has descent for vector
bundles (vector spaces, in this case) but the diagonal action of Gx on V ®x K does
not provide a descent datum, unless the action of Gx on V factors through a finite
quotient. To remedy this, let us choose a G -stable Z,-lattice V™ C V, consider finite
Gx-modules V*/p' for varying i and form invariants (V1 /p" @z, Og/p')¢<. This
Ok /p*-module is still not guaranteed to be locally free of rank dim V', because the exten-
sion Ok /p* — Of/pi is no longer ind-étale, so a descent datum for it amounts to more
than an equivariance for G.

Remarkably, this issue essentially disappears if we replace Ok with a larger exten-
sion Ok_, where Ko := K(up~) is the p-cyclotomic extension of K. The following
‘almost purity’ theorem, proven in this case by Tate and vastly generalized by Faltings
and Scholze, is the driving force of most of the results in rational p-adic Hodge theory:

Theorem 3.5 ([Tat67, Proposition 9]). The extension O_ /p" — Oz/p" is almost
étale for each i, in particular the p-adic completion of the module of Kdhler differentials

9%97/01(00 is annihilated by every element a € O of positive valuation.

We denote by C, := (lim O/ pl)[%} the field obtained by p-adically completing the
K3
algebraic closure K, and similarly let Ko be the p-adic completion of the cyclotomic field
K. The action of G on K extends uniquely to a continuous action on C,,.

Corollary 3.6 ([Sen81, Theorem 2|). For any continuous Qy,-representation V' of G
the space

Gal(K /Koo
of invariants has dimension dimV' over [?oo ~ CSaI(K/KW).

The assignment V ~ (V ®g, C,) ¢ (F/K<) comes close to being an analog of (3.4) and
(3.5) except that we have not yet used all of the available structure: these invariants still
carry residual action of I'x := Gal(K/K) which can be identified with a finite index
subgroup of Z via the cyclotomic character map.

A slightly cruder version of the desired functor Dggr is obtained by passing to the
subspaces on which ' acts through integral powers of the cyclotomic character:

(3.8)  Dur(V) = @V @q, Cp(d)%* =~ Homr (D x&yur. (V ®q, Cp) S IE/H))
deZ deZ
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It was conjectured by Tate, and proven by Faltings, that for any smooth proper variety
X over K the graded vector space Dur(Hg (X%, Qp)) is isomorphic to the n-th Hodge
cohomology space B H™ (X, Q).

The functor Dgyr is a refinement of Dyt that recovers the de Rham cohomology groups,
rather than just the associated graded of the Hodge filtration. It is based on the following

refinement of the graded ring €@ C,(d).
deZ
For a field L of characteristic zero every local Artinian ring A with residue field L has

a natural L-algebra structure. This is markedly false in characteristic p, as the example
L = F,, A = Z/p* shows. The field C, is of characteristic 0, but it turns out to have
interesting non-split nilpotent extensions if one keeps track of the topology on C,:

Theorem 3.7 ([Fon04, Proposition 3.2], [Col25]). There exists a unique topological
Qp-algebra B(TR with a pro-nilpotent surjection 0 : B(;FR — C, with each B(;FR (ker )
a Banach algebra, such that for any Banach Qp-algebra A any continuous Q,-linear
surjection A — C, with nilpotent kernel factors through a unique continuous map
B&"R — A. By universality, Bg‘R has a natural induced G g -action, and the i-th graded
piece (ker §)!/(ker 0)**1 of the complete filtration defined by the ideal ker 6 is isomorphic
to Cp(3) as a Gx-module.

We also denote by Bqr the ring (which happens to be a field) Bqr := Bl [1/t] where
t is any generator of the principal ideal ker #. The functor Dgr on any continuous Q-
representation V of Gk is now defined as

(39) DdR(V) = (V ®Qp BdR)GK

where invariants are taken with respect to the diagonal action of Gk, and the filtration
on Dar (V) is given by F'Dar(V) := (V ®q, t* - Biz)“* This functor, as well as Dyr, is
not faithful essentially by design:

Example 3.8. For each integer n € Z the value DdR(X?ycl) on the n-th tensor power of
the cyclotomic character is a 1-dimensional vector space K, equipped with the filtration
given by F"K = K, F~"+1 = (.

For any a € Z, that is sufficiently (depending on the number of roots of unity in K)
close to an integer we can also consider the a-th power xg, ., of the cyclotomic character.

For example, when p > 2 or v/—1 € K, the cyclotomic character admits a square root
1/2 1/2
Xeyel and the value Dar(Xcye

Indeed, the ring structures on Bgr and @ C,(d) induce lax monoidal structures on
d

1) is zero.

functors Dgr and Dy, that is there are natural injective maps Dgr(V) ® Dar (W) —
Dar(V®@W) and similarly for Dyr. If DdR(X(l;b/,f]) was non-zero, the 1-dimensional filtered
vector space Dyr(Xcye1) would admit a square root with respect to the tensor product,
which is false because the filtration has the only non-trivial jump at an odd degree.

We have an important subclass of representations on which the functor Dyg is faithful:

Definition 3.9. A finite-dimensional Q-representation V of Gk is de Rham if
dimg Dqr(V) equals dimg, V.

For each de Rham representation V' there is a natural isomorphism V ®q, Bar =~
Dar (V) ®k Bar. In particular, Dqg is an exact monoidal functor on the category of de
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Rham representations. For any variety X over Q, the representations H (X4, Q,) are
de Rham for all n, as we will discuss in Theorem 3.11 below.

Deligne’s Hodge filtration. Let us finish this introduction to p-adic Hodge theory by
demonstrating that functor Dgg is versatile enough to recover the Hodge filtration on
the cohomology of a non-smooth and non-proper variety from the Galois action on p-adic
étale cohomology.

Recall that a mixed Q-Hodge structure is the data of a Q-vector space V together
with an increasing weight filtration ... C W,,V C W,,,.1V C ... by Q-subspaces, and a
decreasing filtration F" by C-subspaces of V ®q C. These filtrations satisfy an additional
compatibility [Del71, Definition 2.3.1]. This additional property has as a remarkable
consequence that the category of mixed Hodge structures is abelian and any map h :
(V,W,F) — (VW' F') of mixed Hodge structures is automatically strictly compatible
with the filtrations, that is W/V' N (V) = h(W;V) and h(FIV¢) = h(Ve) N FIVE.

Deligne constructed a mixed Hodge structure on the cohomology of every complex
algebraic variety, generalizing the ‘béte’ filtration on the de Rham complex in the case of
a smooth proper variety:

Corollary 3.10. For every (possibly non-proper and singular) algebraic variety X over
C there is a natural filtration F'* on H"(X(C),C) such that

(1) For X smooth and proper F* coincides with the Hodge filtration H™(X, Q)z(l) C
HR(X/C) ~ H"(X(C),C) under the comparison isomorphism with de Rham
cohomology.

(2) For every map f : X — Y of algebraic varieties the pullback map f*
H™(Y(C),C) —» H™"(X(C),C) is strictly compatible with the Hodge filtration.

It turns out that this Hodge filtration can be also recovered formally from the Galois
action on étale cohomology:

Theorem 3.11 ([Kis02, Theorem 3.3]). For any (possibly non-proper and singular) va-
riety X over K there is a natural isomorphism Dar(H},(X%, Qp)) ~ Hiz(X/K) with
Hartshorne’s de Rham cohomology such that the natural filtration on Dgr corresponds to
Deligne’s Hodge filtration.

Remarkably, this formulation makes property (2) of Corollary 3.10 obvious®. A map
h: (V,F) — (V',F’) of finite-dimensional filtered vector spaces is strictly compatible
with the filtrations if and only if A has the same rank as the associated graded map
grh gtV = ng/ V/. Any map f : X — Y of varieties over K induces a morphism

o HY (Y, Qp) — HL (X%, Qp) of de Rham representations, and both functors Dar
and Dyt are exact on the subcategory of de Rham representations. Kernels of the
map fig : Hig(Y/K) — HJz (X/K) and its associated graded gr fi; are, respectively,
identified with Dqgg (ker f%) and Dyr(ker f ) which have the same dimension as ker f3,.

2According to [Bha, 12:04], Tate’s conjectured Hodge-Tate decomposition was one of the motivations
for Deligne to expect to have a Hodge filtration on the cohomology fo any variety that is moreover strictly
respected by the pullback along any algebraic map. This led to the discovery of the abelian category of
mixed Hodge structures.
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4. LOCAL SYSTEMS OF GEOMETRIC ORIGIN OVER FINITE FIELDS.

The analog of Conjecture 1 with C replaced by the algebraic closure I, of a finite field
is settled over curves, as a consequence of the proof of the Langlands correspondence for
GL,, over global function fields.

Theorem 4.1. Let S be a smooth geometrically connected curve over a finite field F, of
characteristic p # £. A semi-simple continuous representation p : Wft(SFq) — GL,(Qy)

1s of geometric origin if and only if it extends to a representation of Wft(SFq,) for some
finite field extension Fy D F,.

Proof. Here by ‘geometric origin’ we mean the condition exactly analogous to Definition
2.4, that is the restriction p|ﬁ§t(UFq) for some non-empty U C S is a subquotient of the
monodromy representation on the cohomology of a smooth proper family f: X — U@q
in some degree.

The ‘only if’ statement is then a consequence of the fact that any such family can be
spread out over U]Fq, for some ¢’ = ¢". To prove that every representation extendable to
the representation over Fy is of geometric origin, we recall the structure of the proof of
the Langlands correspondence for the group GL,, over the field F' = Fy(S) of rational
functions on S ,. For simplicity of notation, we denote Fg by Fy in what follows.

The main construction of [Dri77], [Laf02] is an association of an irreducible rank n
representation of Gr to every cuspidal automorphic Hecke-eigenform f. The key point
for us is that this representation is, by construction, of geometric origin when restricted
to G, (5)- We have a smooth Deligne-Mumford stack 7 : Sht — (SxS)\A over SxS\A
parametrizing rank n shtukas with minimal modifications in opposite directions at two
legs, the map down to (S x S) \ A recording the legs.

The morphism 7 is not proper, so the pushforward R"m@Qy is a constructible sheaf on
(S%xS)\A that need not be a local system, but it is shown that it admits a direct summand
of the form L; X IL}/ for an irreducible Q-local system Ly on S that is characterized by
the following relation to the automorphic form f. For each closed point = € |S| the trace
Tr(Fr, : Ly,) of the Frobenius automorphism on the stalk of Ly at x equals the Hecke
eigenvalue of f with respect to the Hecke operator at the point x.

Choosing a point s € S(IFy) we can restrict Ly KLY to (S\s) x {s} C (S xS)\ A
to establish Ly @ (IL¥)s as a direct summand of the cohomology sheaf of a smooth DM
stack over S\ s.

Using alterations, and perhaps removing more points from S \ s one can then show
that Ly ® (L}/)s is a direct summand of the cohomology of a smooth proper family

X — U C S\ s. Now base changing to F,, the local system L; ® (L¥)s becomes
isomorphic to }Lj‘?". Therefore we have shown that L f‘si is of geometric origin.
q
One then shows that the resulting mapping f +— LL¢ is a bijection between cuspidal

automorphic eigenforms and irreducible Q,-local systems of rank n on S. In particular,
a posteriori every irreducible local system on S arises via this construction. 0

Theorem 4.1 is one piece of evidence for Conjecture 1. Given, say, a smooth curve S
over C we can find a relative curve S over a finitely generated subalgebra R C C such that
S xr C ~ S. An irreducible Q,-local system on S(C) which is arithmetic, by definition,
extends to Sp for some finite extension F' O Frac(R). Moreover, irreducibility forces
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(cf. [Pet23, Proposition 6.1]) it to further extend to a local system LonS itself, perhaps
after replacing R by an étale extension.

We can now reduce S to finite field-valued points & of Spec R to get curves over various
finite fields, and on each of them I’[:Lgﬁ is of geometric origin by Theorem 4.1. However,
families of algebraic varieties whose monodromy representations encompass these local
systems are completely unrelated across various finite fields.

In some special situations it is possible to choose families of varieties giving rise to
the local systems If[v,|5m to be of uniform geometric type which allows one to produce a
family of varieties in characteristic zero. A beautiful example of this strategy working
is [ST18, Theorem 1], which proves that rank 2 arithmetic local systems satisfying some
additional conditions come from families of elliptic curves. A role in this proof is played
by the fact that non-isotrivial families of elliptic curves are completely controlled by their
monodromy representation, as we saw in Proposition 1.5.

5. ARITHMETIC LOCAL SYSTEMS AND VARIATIONS OF HODGE STRUCTURES

Conjecture 1 is an instance of the point of view that all the structures on cohomology
of an algebraic variety should be recoverable from the Galois action. Theorem 3.2 allows
one to recover the Hodge filtration on de Rham cohomology over a p-adic field, though it
stops short of recovering the complex Hodge structure. In this final section, we will see
how the situation improves in the presence of a non-trivial monodromy action.

Let S be a smooth algebraic variety over a p-adic field K. We say that an étale Q,-
local system on Sy is ‘p-arithmetic’ if it extends to a local system on Sk for some finite
extension K/ D K. This is generally a weaker property than being arithmetic, because
K’ is not a finitely generated field. In Section 3 we discussed a way of recovering de Rham
cohomology with its Hodge filtration from the action of G i on étale cohomology. Works
of Faltings, Scholze [Sch13], Liu-Zhu [LZ17] and Diao-Lan-Liu-Zhu [DLLZ23], and many
other authors extended this theory to local systems on varieties over K. After the fact,
we can produce the following construction for local systems on S¢

Proposition 5.1. There is a faithful tensor functor

(5.1) D : {semi-simple p-arithmetic Qp-local systems on Sg} —
{vector bundles with a flat connection on Sp,y }

Here Spyy = S Xq, Bar 1s viewed as a smooth variety over the field Bar. Moreover, D
becomes fully faithful after extending scalars on the source category from Q, to Byr.

Proof. We have [Sch13] a relative version of the functor Dyqr from Theorem 3.2 which is
exact and monoidal on the category of de Rham Q,-local systems on S:
(5.2)
vector bundles E with a flat connection V on S
Dgg : {de Rham Q,-local systems on S} — and a decreasing filtration F' C E satisfying
V(FY) Cc Fiml e Q}
Moreover, for any de Rham local system L there is a cohomology comparison isomorphism
(53) H&(S?, ]L) ®QP BdR ~ HSLR(S, DdR(]L)) ®K BdR

Let us define a new category Cgs whose objects are de Rham local systems, but
we equip them with different spaces of morphisms given by Homeg(Lq,Ls) =
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Homg_(Li|s, La|s). In other words, Cs is the full subcategory of the category of
Qp-local systems on Sz consisting of local systems that admit an extension to a de Rham
local system on S.

By the above comparison isomorphism (5.3) applied to n = 0, = Ly ® LY, functor
Dgr factors through a functor

(5.4) D :Cg — {flat vector bundles on S} ® x Bqr C {flat vector bundles on Sg,, }

where — ® g Bqr denotes passing to the category with the same objects and Hom spaces
tensored up to Bgg from K.

Since the category of vector bundles with a flat connection on Sp,;, is abelian, functor
D extends uniquely to an exact functor from the idempotent completion of Cs. Explicitly,
this idempotent completion is the full subcategory of the category of local systems on Sz
consisting of local systems that are direct summands of local systems of the form L|s_
for some de Rham local system L on S.

By [Pet23, Theorem 8.1], every semi-simple arithmetic local system on Sz lies in the
idempotent completion of Cg, hence D gives the desired functor. O

If L is a local system on S of the form R" f.Q,, for a smooth proper morphism f : X — §
then D(L|s._) recovers the de Rham cohomology bundle Hjiy (X/S) ®x Bar of the same
family. Choosing an embedding K C C we may observe that the flat vector bundle
Hir(X/S)c on Sc satisfies a rather special property: it underlies a polarizable complex
variation of Hodge structures, in the sense of [Sim92, §4].

It would be very interesting to prove that for every arithmetic, or even p-arithmetic,
semi-simple local system L on S the flat vector bundle D(L) ® g, C underlies a po-
larizable C-VHS for some embedding Bgr — C. At the moment, we can only show the
following:

Proposition 5.2. For a smooth proper variety S over K and any embedding K — C
there exists a faithful tensor functor

(5.5) {semi-simple p-arithmetic local systems on Sz} — {polarizable C-VHS on Sc}
Proof. Analogously to Proposition 5.1 we have a functor
(5.6) H : {semi-simple p-arithmetic local systems on Sz} — {Higgs bundles on Sc,}

constructed out of the functor Dyr. In fact, it extends® to a functor from all local systems
on S, given by the p-adic Simpson correspondence in the sense of [Fal05] and [Heu25].
In particular, H lands in curve-semistable Higgs bundles by [HX24, Proposition 9.3.2].
For a de Rham local system IL on S the Higgs bundle H (L|5f) is given by the associated
graded bundle of the filtration on Dggr (L) with the Higgs field given by the Og-linear
map gr’ Dar (L) — gr'~! Dar (L) ® QF /i induced by the Griffiths transverse connection.
This implies that vector bundle H(L|s_) has vanishing rational Chern classes and there
exists an isomorphism
(H(Llsg),0) ~ (H(L|sg), A - 0)

of Higgs bundles for every non-zero scalar A € K*.

One can check that these properties continue to hold for the values of H on all p-
arithmetic local systems. In other words, for each semi-simple p-arithmetic local system
L on Sy the Higgs bundle (H(L),#) admits a structure of a system of Hodge bundles,

3The analogous fact for the functor D from (5.1) is not yet known.
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and one can associate to it a polarizable C-VHS on S¢ via [Sim92, Corollary 4.2]. Here
we chose an extension of the given embedding K — C to an embedding C, — C to form
the base change Sc. g

The caveat here is that it is completely unclear whether the C-local system output
by the functor (5.6) has any relation to the input Qp-local system, viewed as a local
system on the topological space S(C). The existence of such a relation was conjectured
in [DLLZ23, Conjecture 1.4], and it would provide further evidence for Conjecture 1.
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