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Cohomology groups Hn(X(C),Z) of a complex algebraic variety X admit a remark-
ably rich array of additional structures: (mixed) Hodge structure, Galois action coming
from étale cohomology, crystalline Frobenii, and the list goes on. The presence of these
structures leads to interesting constraints on the topology of algebraic varieties and maps
between them.

Another1 type of structure that has proven to be very useful in algebraic geometry is
monodromy. If a smooth proper variety X is established as a fiber X = Xs of a smooth
proper morphism π : X → S of complex algebraic varieties over a point s ∈ S(C), then
the groups Hn(X(C),Z) have a natural action of the fundamental group π1(S(C), s) of
the base of the family.

In this expository survey, we focus on the action of the Galois group on cohomology
coming from the theory of étale cohomology, and on its interaction with monodromy.
This interaction has a long history of fruitful applications. For example, Deligne’s proof
of Weil’s conjectures, which is a statement about the Galois action on the cohomology of
a variety, proceeds by establishing the variety at hand as the total space of a family with
non-trivial enough monodromy representation, and studying the variation of the Galois
action on the cohomology of the fibers of the family. One general point that we will try to
make is that many seemingly unrelated structures on cohomology can be recovered from
the Galois action.

In Section 1 we review the definition of étale fundamental group and the Galois action
on it, and give two applications of this structure to the topology of maps between complex
algebraic varieties. In Section 2 we state a conjectural arithmetic characterization of
monodromy representations coming from families of algebraic varieties. In Section 3
we briefly introduce some of the constructions of p-adic Hodge theory, and discuss an
application to the construction of a mixed Hodge structure on the cohomology of open
singular complex varieties. Finally, in Sections 4 and 5 we discuss evidence for Conjecture
1 coming from Langlands correspondence and p-adic Hodge theory, respectively.

None of the material presented here is original, and we have attempted to give proper
references, though our attributions are at best approximate, especially for the more foun-
dational results. We are only able to scratch the surface, and refer the reader to excellent
recent surveys such as [Esn23], [Lit24] for a more comprehensive discussion of some other
aspects of this story.
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1In fact, we will see that monodromy was already essentially mentioned in the list of structures in the
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1. Étale cohomology and étale fundamental group

A fundamental result of Grothendieck and his collaborators is that singular cohomology
groups Hn(X(C),Z) of a complex algebraic variety X can be reconstructed by a purely
algebraic procedure from X via the theory of étale site and étale cohomology, if one is
content with replacing the coefficient group Z with a finite group Z/n or the group Zℓ of
ℓ-adic integers for some prime number ℓ.

This theory has a much wider scope than algebraic varieties over complex numbers
and provides, for any scheme X, the Zℓ-modules

(1.1) Hn
et(X,Zℓ)

indexed by integers n ≥ 0, for every prime ℓ, satisfying the following properties:

(1) If X is a separated scheme of finite type over C, then there is a natural isomor-
phism Hn

et(X,Zℓ) ≃ Hn(X(C),Zℓ) with singular cohomology groups of the space
X(C) with its complex-analytic topology.

(2) If k ⊂ k′ is an extension of algebraically closed fields with ℓ ̸= char(k) then for
a finite type scheme X over k the natural map Hn

et(X,Zℓ) → Hn
et(Xk × k′,Zℓ) is

an isomorphism.

Note that this theory is absolute, that is groups Hn
et(X,Zℓ) naturally depend just on the

scheme X, without reference to the structure map to any base. In particular, if X0 is
a scheme over a field F then étale cohomology Hn

et(X0 ×F F ,Zℓ) of its base change to
an algebraic closure F of F has a natural action of the absolute Galois group GF :=
Aut(F/F ) of F .

Any finite type scheme X over C admits a descent X0 to a finitely generated subfield
F ⊂ C. Combining properties (1) and (2) above we have an isomorphism

(1.2) Hn(X(C),Zℓ) ≃ Hn
et(X,Zℓ) ≃ Hn

et(X0,F ,Zℓ)

with the last group having a natural action of the Galois group GF , that induces an action
on the singular cohomology, by transport of structure. The choice of a descent X0 is not
unique, but any two such descents X0, X

′
0 over subfields F, F ′ ⊂ C become isomorphic

over a common finite extension F ′′ ⊃ F, F ′, and in particular the resulting actions of GF

and GF ′ are identified on a common finite index subgroup.
It turns out to be fruitful to think of this Galois action as an additional structure

intrinsic to a complex algebraic variety – the mild dependence on the descent will be
erased by some of the constructions one makes.

Étale fundamental group. We will not review the definition of étale cohomology here,
and will limit ourselves to recalling the definition of étale fundamental group, which in
particular captures the value of étale cohomology in degree 1. Many foundational results
about étale cohomology are reduced to the case of the étale fundamental group that can
be accessed by geometric arguments.

Given a connected scheme X equipped with a geometric point x, that is with a map
from the spectrum of an algebraically closed field to X, consider the following category
of covers of X. Its objects are pairs (Y, y) where Y is a scheme equipped with a finite
étale map f : Y → X and y is a geometric point of Y such that f(y) is equivalent to x.

Recall that a finite étale map f : Y → X is a Galois covering if the group of auto-
morphisms Aut(Y/X) of Y relative to X has order equal to the degree of f . If a Galois

covering f : Y → X factors as Y → Y ′ f ′

−→ X where f ′ : Y ′ → X is another Galois



3

covering, every automorphism of Y over X is compatible with a unique automorphism
of Y ′, hence defining a group homomorphism Aut(Y/X) → Aut(Y ′/X). We now define
the étale fundamental group as the inverse limit of these automorphism groups over the
category of pointed Galois covers of (X,x):

(1.3) πet
1 (X,x) := lim

(Y,y)
Aut(Y/X)

Note that the chosen points y of schemes Y do not play a role in the definition of the
functor we are taking the limit of, but it is crucial to take the limit over the category of
pointed covers: the limit over the category of covers without a base point would give the
abelinization of the correct fundamental group.

This construction captures degree 1 étale cohomology of an arbitrary scheme, and
partially recovers the topological fundamental group:

(1) For a connected finite type scheme X over C with a geometric point above a
C-point x ∈ X(C) the group πet

1 (X,x) is naturally isomorphic to the profinite

completion ̂π1(X(C), x) of the topological fundamental group.
(2) For each prime ℓ, for any connected scheme X the 1st cohomology

group H1
et(X,Zℓ) is isomorphic to the group of continuous homomorphisms

Homcont(π
et
1 (X,x),Zℓ).

For a scheme X over a field F equipped with a geometric base point above an F -point
x ∈ X(F ) we get a natural action of the Galois group GF on the profinite fundamental
group πet

1 (XF , x), analogously to the Galois action on étale cohomology. Let us compute
this action in two examples:

Example 1.1. Let F be any field of characteristic zero, and consider the punctured affine
line X = Gm,F . Using Riemann-Hurwitz formula one can check that every connected

finite étale cover of XF = Gm,F is of the form Xn = Gm,F
t7→tn−−−→ Gm,F for some integer

n ≥ 1. Every such cover is Galois, with the Galois group naturally isomorphic to the
group of n-th roots of unity µn(F ) in F , with ζ ∈ µn(F ) acting via t 7→ ζ · t. Hence the
étale fundamental group of Gm,F with respect to any base point a ∈ Gm(F ) is

(1.4) πet
1 (Gm,F , a) = lim

n
µn(F ) ≃ Ẑ(1)

Each µn(F ) is of course isomorphic to Z/nZ as an abelian group, but the natural action
of the Galois group Gal(F/F ) on πet

1 (Gm,F , a) is via its action on the roots of unity on

F . In particular, this action is non-trivial unless µ∞(F ) is entirely contained in F .

Example 1.2. Let Y be a proper rational curve with a single (split) nodal singularity,
over a field F ⊂ C of characteristic 0. Explicitly, Y is isomorphic to the plane curve
cut out by equation zy2 = x2(x + z) in P2

[x:y:z] and can be presented as the categorical

quotient P1
F /(0 ∼ ∞). Note that Y (C) is homotopy equivalent to S1 ∨ S2, so by the

comparison isomorphism with the profinite completion of the topological fundamental

group, we expect πet
1 (YF ) to be isomorphic to Ẑ, just like in the case of Gm,F .

Indeed, YF has just one isomorphism class of connected etale covers of degree n, for
each n ≥ 1. For n > 1 the unique such cover is a circle of n projective lines:
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−→

The automorphism group of this cover is isomorphic to Z/n, with all automorphisms
given by rotations of the circle. In particular, all of these automorphisms are already
defined over the base field F , so the natural action of the Galois group Gal(F/F ) on

(1.5) πet
1 (YF ) = lim

n
Z/n = Ẑ

is trivial.

Corollary 1.3. For a smooth algebraic variety X over C any map f : Y → X from a
proper rational curve with a single node induces the zero map f∗ : Q ≃ H1(Y (C),Q) →
H1(X(C),Q) on rational homology in degree 1.

Proof. We can choose a map f0 : Y0 → X0 of varieties over a finitely generated subfield
F ⊂ C descending f , where Y0 is again a rational curve with a single split node, and X0

is necessarily smooth. It suffices to check that the induced map f∗
0 : H1

et(X0,F ,Qℓ) →
H1(Y0,F ,Qℓ) on 1st étale cohomology is zero. Crucially, this map commutes with the
action of GF , but this action on cohomology of Y0,F is trivial by Example 1.2 while
the action on the cohomology of X0,F in positive degrees has no non-zero invariants by
Theorem 1.4 below. □

The key property of the Galois action on étale cohomology used above is the final Weil
conjecture, proved by Deligne:

Theorem 1.4. For a smooth variety X over a finitely generated field F of char(F ) ̸= ℓ
there exists a finitely generated subalgebra R ⊂ F with F = FracR such that the action
of GF on Hn

et(XF ,Qℓ) factors through an action of πet
1 (SpecR). After replacing R by a

localization, the Frobenius element Frx ∈ πet
1 (SpecR) at every closed point x ∈ | SpecR|

acts in Hn
et(XF ,Qℓ) via an endomorphism with eigenvalues that are Weil numbers of

weight ≥ n.
If X is also proper, the eigenvalues (for a small enough choice of SpecR) are Weil

numbers of weight equal to n.

Quasi-unipotence of local monodromy. We will now start discussing how the Galois
action on cohomology interacts with the monodromy action, and, as an illustration, will
review Grothendieck’s proof of the local monodromy theorem. Recall that for a smooth
proper map f : X → S of complex algebraic varieties there is a natural action of the
fundamental group of the base π1(S(C), s) on the cohomology of the fiber Hk(Xs(C),Z)
at a given point s ∈ S(C).

While this action manifestly depends only on the homotopy class of the map X(C) →
S(C), it often contains non-trivial information about the algebraic structure of the family.
Here is a simple example of this phenomenon:

Proposition 1.5. Let f : E → S be a family of elliptic curves over a connected variety S
over C. If the monodromy representation ρE : π1(S(C), s) → GL(H1(Es,Q)) ≃ GL2(Q)
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has infinite image, then the family E is completely determined by the conjugacy class of
ρE .

Proof. This is a special case of [Del71, Proposition 4.4.12] whose assumptions are satisfied,
because ρE is absolutely irreducible under our condition. Indeed, ρE is always semi-simple
by [Del71, 4.2.6], and if ρE is not absolutely irreducible, ρE ⊗Q Q is a direct sum of
characters, but every character of geometric origin has finite order as we will see below
in Proposition 2.6. □

Suppose now that S is a non-empty open in a smooth proper curve S over C. We will
look at the monodromy action of a specific class of elements of π1(S(C), s). For one of
the finitely many points x ∈ (S \ S)(C) let γx ∈ π1(S(C), s) be an element obtained by
traveling from s to a point in a punctured neighborhood of x along any path, circling
around x once in the clockwise direction with respect to the orientation defined by the
complex structure, and then traveling back to s along the very same path. Element
γx in general depends on the choice of the path, but its conjugacy class is completely
well-defined.

The action of γx in monodromy representations on the cohomology of a family of
varieties turns out to be very special:

Theorem 1.6. Let S be a non-empty open in a smooth proper curve S over C. For any
smooth proper morphism f : X → S, and any boundary point x ∈ S \ S the action of γx
on Hk(Xs(C),Q) is quasi-unipotent, that is the eigenvalues of ρX(γx) are roots of unity.

Proof. Our first maneuver, already familiar from the proof of Corollary 1.3, is to introduce
arithmetic to the problem, by descending the family X → S to a smooth proper family
X0 → S0 over a finitely generated subfield F ⊂ C. We take F to be large enough to be
able to assume that x and s descend to F -points of S0.

The cohomology groupHk(Xs(C),Qℓ) of the fiber is now equipped with two structures:
the action of the topological fundamental group π1(S(C), s) and the action of the Galois
group GF via the isomorphism Hk(Xs(C),Qℓ) ≃ Hk

et(X0,s ×F F ,Qℓ).
These actions do not commute with each other, but rather interact as follows. There

is an action of the étale fundamental group πet
1 (S0, s) of the scheme S0 (as a scheme over

F , without base changing to F ) on Hk
et(X0,s×F F ,Qℓ) that encompasses both the action

of GF and π1(S(C), s). Étale fundamental group πet
1 (S0, s) with respect to a geometric

base point lying above a rational F -point is identified with the semi-direct product:

πet
1 (S0, s) ≃ GF ⋉ πet

1 (S0,F , s).

This is a reformulation of the ‘homotopy exact sequence’ [Gro63, Corollaire X.2.2] and
stems from the fact that every finite étale cover of S0×F F descends to a finite étale cover
of S0 ×F F ′ for some finite extension F ′ of F .

In turn, πet
1 (S0,F , s) is the pro-finite completion of the topological fundamental

group π1(S(C), s). The fact that the monodromy representation of π1(S(C), s) into
GL(Hk(Xs(C),Qℓ)) extends to its pro-finite completion is in fact automatic, because
this action preserves a Zℓ-lattice. But the crucial new piece of structure is that the
monodromy representation further extends to the above semi-direct product.

The action of GF on ̂π1(S(C), s) is in general very complicated, and getting a tangible
description of it would solve several central problems of arithmetic geometry. But elements
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of γx that we are interested in are special in that we can compute the action of the Galois
group on them, and crucially it is non-trivial:

Lemma 1.7 ([SGA7II, Exposé XIV, 1.1.10]). For every element of the Galois group

g ∈ GF we have that g(γx) ∈ ̂π1(S(C), s) is conjugate to γ
χcycl(g)
x . Here χcycl(g) ∈ Ẑ× is

the value of the cyclotomic character on g, and what we mean by γ
χcycl(g)
x is the image of

χcycl(g) ∈ Ẑ under the pro-finite completion of the map Z 17→γx−−−−→ π1(S(C), s).

Proof idea of Lemma 1.7. Computing the conjugacy class of g(γx) is a problem that can
be solved locally in a formal neighborhood of the point x, so one reduces to computing the
Galois action on the étale fundamental group of SpecF ((t)), which in turn is equivalent
to the computation from Example 1.1. □

We can now conclude that ρX(γx) is quasi-unipotent. As the field F is finitely generated
over Q, it contains only finitely many roots of unity, that is the image of the cyclotomic

character GF → Ẑ× is a finite index open subgroup in the target. In particular, we may

choose an element g ∈ GF such that the composition GF
χcycl−−−→ Ẑ× → Z×

ℓ sends g to an

element r ∈ Z×
ℓ for some integer Z ∋ r ̸= ±1.

Eigenvalues of ρX(γx) on Hk(Xs(C),Qℓ) are a priori invertible elements of Zℓ ⊂ Qℓ.

The fact that ρX extends to GF ⋉ ̂π1(S(C), s) implies that ρX(γx) is conjugate to
ρX(g(γx)) which by Lemma 1.7 is conjugate to ρX(γx)

χcycl(g). By our choice of the
element g, this implies that the set of eigenvalues of ρX(γx) is invariant under raising to
the rth power. This forces all of them to be roots of unity, as desired. □

It will be convenient for us to have another term for representations of étale funda-
mental group:

Definition 1.8. For a connected scheme X with a geometric base point x an étale local
system on X with coefficients in any of the topological rings R = Zℓ,Z/ℓd,Qℓ,Qℓ is a
conjugacy class of continuous representations πet

1 (X,x) → GLn(R).

This is not formally obvious from the way we set up the definition, but the category
of étale local systems on X is functorially independent of the choice of the base point. In
particular, a local system on X can be restricted to every field-valued point SpecL → X
to obtain a representation of the Galois group GL.

2. Classification of local systems of geometric origin

Note that the only property of the monodromy representation of π1(S(C), s) on
Hk(Xs(C),Q) that was used in the proof of Theorem 1.6 is that it extends to a rep-
resentation of πet

1 (S0, s) with coefficients in Qℓ. Let us give this property a name:

Definition 2.1 ([Lit18, Definition 1.1.1]). For a connected finite type scheme S over
C a representation ρ : π1(S(C), s) → GLn(Qℓ) is arithmetic if there exists a finitely
generated subfield F ⊂ C and a descent S0 of S to F such that ρ extends to a continuous
representation ρ̃ : πet

1 (S0, s) → GLn(Qℓ).

The fact that ρ extends to the profinite completion πet
1 (SC, s) ≃ ̂π1(S(C), s) of the

topological fundamental group is equivalent to ρ being conjugate to a representation
landing in GLn(OE), for a finite extension E of Qℓ. Extendability to the fundamental
group of S0 is the most serious part of the ‘arithmetic’ property.
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Remark 2.2. One might reasonably object that it is strange to treat arithmeticity as a
property, rather than keeping track of the chosen extension of ρ. For now, let us just point
out that this ambiguity is not very serious if ρ is irreducible: if ρ̃, ρ̃′ are two extensions,
for a given field F , then Schur’s lemma implies that ρ̃′ is conjugate to ρ̃ ⊗ χ for some

character χ : GF → Q×
ℓ of the Galois group. In particular, an irreducible arithmetic

representation has a unique extension to πet
1 (S0) as a projective representation.

This is of course an interesting property only if the Galois action on the fundamental
group of S0,F is sufficiently non-trivial. We already saw that this is the case for S0 = Gm,F

but let us point out a much stronger non-triviality property of this action:

Theorem 2.3 ([Bel79, Corollary on p. 256], [Gro]). For any choice of base point a ∈
P1(Q) \ {0, 1,∞} every non-trivial element g ∈ GQ acts on πet

1 (P1
Q \ {0, 1,∞}, a) via a

non-inner automorphism.

Let us now discuss more systematically the relation between arithmetic representations
and monodromy representation on cohomology of families of varieties.

Definition 2.4. For a normal connected algebraic variety S over C a representation
ρ : π1(S(C), s) → GLn(Qℓ) is of geometric origin if there exists a non-empty Zariski open
U ⊂ S such that the restriction π1(U(C)) ↠ π1(S(C)) → GLn(Qℓ) is a subquotient of
the monodromy representation on the k-th cohomology of the fiber of a smooth proper
family f : X → U , for some k.

Remark 2.5. (1) We restrict to the case of a normal S to ensure that passing to an
open U induces a surjection on fundamental groups [FL81, (0.7)B]. In particular,
the isomorphism class of ρ is completely determined by ρ|π1(U(C)).

(2) It is not currently known whether every representation of geometric origin is a
subquotient of the cohomology of a smooth proper family over all of S, but that
seems rather unlikely. One reason to allow the flexibility of restricting to an open
is that Drinfeld-L. Lafforgue’s Theorem 4.1 proves that a given local system is of
geometric origin in that sense.

(3) The definition relies on the choice of a prime ℓ – we work with Qℓ coefficients
for the convenience of relating this notion to arithmetic representations later on.
But the notion of geometric origin is independent of ℓ in the following sense: if ρ
is of geometric origin, then it is conjugate to a representation factoring through
GLn(Q) ⊂ GLn(Qℓ). Conversely, if a representation ρ : π1(S(C), s) → GLn(Q)
is of geometric origin when viewed as a Qℓ-valued representation for one ℓ, the
same is true for all values of ℓ.

(4) In this definition ‘subquotient’ can be replaced by ‘direct summand’, as the repre-
sentation of π1(U(C)) on Hk(Xs,Q) for a smooth proper family X → U is always
semi-simple. This can be proven either using that this representation underlies a
polarized variation of Hodge structures [Del87, 1.12], or using that it gives rise to
a pure local system on the reduction of U over some finite field [Del80, Corollaire
3.4.13].

As we discussed in the proof of Theorem 1.6, every representation of the form
Hk(Xs,Qℓ) is arithmetic, and the flexibility of choosing the field F implies that moreover
every representation of geometric origin is arithmetic [Lit21, Proposition 3.1.7]. It turns
out to be reasonable to conjecture the converse:
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Conjecture 1 ([Pet23, Conjecture 1bis]). For a normal finite type scheme S over C a
semi-simple representation of π1(S(C), s) is arithmetic if and only if it is of geometric
origin.

One of the goals of this survey is to discuss evidence for this conjecture which comes
from two disparate directions in arithmetic geometry. Let us begin by proving the con-
jecture for rank 1 representations:

Proposition 2.6 ([Del80, Théorème 1.3.1]). For a normal scheme S, a character ρ :

π1(S(C), s) → Q×
ℓ is arithmetic if and only if it has finite image.

Proof. Suppose that ρ extends to a character of GF ⋉ ̂π1(S(C), s)
ρ̃−→ O×

E ⊂ Q×
ℓ of the

arithmetic fundamental group, where E is some finite extension of Qℓ, and the action
of GF is defined by some descent of S over a finitely generated field F ⊂ C. Since O×

E

is abelian, the restriction of ρ̃ to ̂π1(S(C), s) factors through the group of coinvariants
̂π1(S(C), s)GF

, which is to say that it defines a Galois-invariant element of H1
et(S,O×

E).
As we already discussed, Theorem 1.4 implies that every Galois-invariant element in
positive-degree cohomology of a smooth variety is torsion. □

3. p-adic Hodge theory

All the additional structures on cohomology and properties of the monodromy discussed
in Section 1 are consequences of the action of a single Frobenius element, that is of the
Galois group of a finite field. It is very interesting to consider how these Frobenii elements
at different primes interact with each other, and this is far from being fully understood.

A much better understood piece of structure is the action of the Galois group of a local
field. Let us fix a prime p, and consider algebraic varieties over a p-adic field K with a
perfect residue field. Here by a p-adic field we mean the fraction field K = Frac(OK) of a
complete discrete valuation ring OK such that residue field k = OK/mK has characteristic
p, but K has characteristic zero. The main examples of such K are finite extensions of
Qp, but most constructions in p-adic Hodge theory apply to arbitrary K, with the notable
exception of the results that rely on finiteness of Galois cohomology and Tate duality.

The subject of p-adic Hodge theory is representations of the Galois group GK on Qp-
vector spaces, with some of the important examples being provided by étale cohomology
of algebraic varieties overK. To appreciate the fact that the action of GK onHi

et(XK ,Qℓ)
contains more information for ℓ = p than for other ℓ, consider the following example:

Example 3.1. Let Y := P1
K/(0 ∼ ∞) be a rational curve with one nodal singularity over

a finite extension K of Qp, as in Example 1.2, and consider the complement Xa = Y \{a}
to a K-point a ̸= 0,∞. We have a short exact sequence of representations of GK-modules:

(3.1) Zℓ → H1
et(Xa,K ,Zℓ) → Zℓ(−1)

with the first map induced by the embedding Xa ↪→ Y , and the second map induced
by the pullback along the map P1

K \ {a} → Xa. One can show, by considering the
relevant quotient of πet

1 (Xa,K) and extending the discussion of Example 1.2, that the

extension class of (3.1) in the continuous cohomology H1(GK ,Zℓ(1)) of the Galois group
is represented by the Kummer cocycle ca. Here ca sends an element g ∈ GK to the

element ca(g) ∈ Zℓ such that g(a1/ℓ
n

) = ζ
ca(g)
ℓn · a1/ℓn for a chosen compatible system of

ℓ-power roots of 1 and a in K.
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Varying a, we have the Kummer map

(3.2) a 7→ ca : K× → H1(GK ,Zℓ)

that can be identified with mapping the abelian groupK× to its ℓ-adic completion (K×)∧ℓ .
But for ℓ ̸= p a finite index subgroup of O×

K is ℓ-divisible, hence lies in the kernel of the
Kummer map. On the other hand, for ℓ = p the kernel of Kummer map is finite, which is
to say that the isomorphism class of the Galois representation H1

et(Xa,K ,Qp) remembers
the value of a, up to being multiplied by a root of unity.

In complex algebraic geometry, an important additional structure on cohomology is
the Hodge filtration. From our point of view that all additional structures on cohomology
should be recoverable from the arithmetic data of Galois action, it is natural to wonder
if the Hodge structure, or at least the Hodge numbers, are recoverable from the Galois
action. Over p-adic fields, this is partially achieved by Fontaine’s ‘mysterious functor’:

Theorem 3.2. There exists a functor

(3.3) DdR : {continuous Qp-representations of GK} → {Z-filtered K-vector spaces}

such that for any smooth proper variety X over K for the representation Hn
et(XK ,Qp)

there is a natural isomorphism DdR(H
n
et(XK ,Qp)) ≃ Hn

dR(X/K) where de Rham coho-

mology is equipped with the Hodge filtration F i := Hn(X,Ω≥i
X/K).

In the remainder of this section, we will give a construction of DdR and discuss one
application. Even when we are studying a single representation of the Galois group of a
p-adic field K, it is useful to be motivated by the Riemann-Hilbert correspondence for
local systems on complex manifolds.

Recall that for a connected complex manifold M there is an equivalence

(3.4) {conjugacy classes of representations π1(M) → GLn(C)} ≃
{rank n vector bundles with a flat connection on M}

sending a C-local system L to the vector bundle L ⊗C OM . For this construction to
make sense, it is crucial that the ring of functions on our space is linear over the ring of
coefficients for our local systems. For local systems with coefficients in C this construction
does not immediately apply in algebraic geometry, because a local system L on S(C) is
not locally constant in Zariski or étale topology on the algebraic variety S.

However, for local systems with coefficient in a finite field Fp a very similar-looking
equivalence exists for schemes of characteristic p:

Proposition 3.3 ([Kat73, Proposition 4.1.1]). For a scheme Y over Fp there is an equiv-
alence

(3.5) {étale local systems of finite-dimensional Fp-vector spaces } ≃
{vector bundles E on Y with an isomorphism F ∗

Y E ≃ E}

The equivalence (3.5) sends an Fp-local system M to the étale sheaf M⊗Fp
OY which

gives rise to a vector bundle, because vector bundles satisfy étale descent. Explicitly,
if Y = SpecA is an affine scheme and M is trivialized by a finite étale G-Galois cover
f : SpecB → SpecA then the resulting vector bundle corresponds to the A-module

(3.6) Γ(SpecB, f∗M)G
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of G-invariants.
Before describing the construction of DdR, let us discuss how far we can get by trying

to generalize (3.4) and (3.5) in the most direct way.

Example 3.4. Given a continuous representation ρ : GK → GL(V ) of the Galois group
of a p-adic field K on a finite-dimensional Qp-vector space V , we can analogously pass to

the ind-étale extension K of K that tautologically trivializes ρ and consider the space

(3.7) (V ⊗Qp
K)GK

of invariants with respect to the diagonal action. Using Hilbert’s theorem 90 one checks
that this space is naturally identified with V fin⊗Qp

K where V fin is the subspace of v ∈ V
such that the Galois orbit GK · v is finite. However, this space is typically too small, for
example for any smooth proper variety X over K that admits a smooth proper model
over OK the representation Hn

et(XK ,Qp) has no non-zero finite vectors for any n > 0.

Put differently, the faithfully flat extension K → K of course has descent for vector
bundles (vector spaces, in this case) but the diagonal action of GK on V ⊗K K does
not provide a descent datum, unless the action of GK on V factors through a finite
quotient. To remedy this, let us choose a GK-stable Zp-lattice V + ⊂ V , consider finite
GK-modules V +/pi for varying i and form invariants (V +/pi ⊗Z/pi OK/pi)GK . This

OK/pi-module is still not guaranteed to be locally free of rank dimV , because the exten-
sion OK/pi → OK/pi is no longer ind-étale, so a descent datum for it amounts to more
than an equivariance for GK .

Remarkably, this issue essentially disappears if we replace OK with a larger exten-
sion OK∞ , where K∞ := K(µp∞) is the p-cyclotomic extension of K. The following
‘almost purity’ theorem, proven in this case by Tate and vastly generalized by Faltings
and Scholze, is the driving force of most of the results in rational p-adic Hodge theory:

Theorem 3.5 ([Tat67, Proposition 9]). The extension OK∞/pi → OK/pi is almost
étale for each i, in particular the p-adic completion of the module of Kähler differentials
Ω1

OK/OK∞
is annihilated by every element a ∈ OK of positive valuation.

We denote by Cp := (lim
i

OK/pi)[ 1p ] the field obtained by p-adically completing the

algebraic closure K, and similarly let K̂∞ be the p-adic completion of the cyclotomic field
K∞. The action of GK on K extends uniquely to a continuous action on Cp.

Corollary 3.6 ([Sen81, Theorem 2]). For any continuous Qp-representation V of GK

the space

(V ⊗Qp
Cp)

Gal(K/K∞)

of invariants has dimension dimV over K̂∞ ≃ CGal(K/K∞)
p .

The assignment V 7→ (V ⊗Qp
Cp)

Gal(K/K∞) comes close to being an analog of (3.4) and
(3.5) except that we have not yet used all of the available structure: these invariants still
carry residual action of ΓK := Gal(K∞/K) which can be identified with a finite index
subgroup of Z×

p via the cyclotomic character map.
A slightly cruder version of the desired functor DdR is obtained by passing to the

subspaces on which ΓK acts through integral powers of the cyclotomic character:

(3.8) DHT(V ) :=
⊕
d∈Z

(V ⊗Qp
Cp(d))

GK ≃ HomΓK
(
⊕
d∈Z

χd
cycl, (V ⊗Qp

Cp)
Gal(K/K∞))
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It was conjectured by Tate, and proven by Faltings, that for any smooth proper variety
X over K the graded vector space DHT(H

n
et(XK ,Qp)) is isomorphic to the n-th Hodge

cohomology space
⊕
i

Hn−i(X,Ωi
X/K).

The functorDdR is a refinement ofDHT that recovers the de Rham cohomology groups,
rather than just the associated graded of the Hodge filtration. It is based on the following
refinement of the graded ring

⊕
d∈Z

Cp(d).

For a field L of characteristic zero every local Artinian ring A with residue field L has
a natural L-algebra structure. This is markedly false in characteristic p, as the example
L = Fp, A = Z/p2 shows. The field Cp is of characteristic 0, but it turns out to have
interesting non-split nilpotent extensions if one keeps track of the topology on Cp:

Theorem 3.7 ([Fon04, Proposition 3.2], [Col25]). There exists a unique topological
Qp-algebra B+

dR with a pro-nilpotent surjection θ : B+
dR → Cp with each B+

dR/(ker θ)
i

a Banach algebra, such that for any Banach Qp-algebra A any continuous Qp-linear
surjection A ↠ Cp with nilpotent kernel factors through a unique continuous map
B+

dR → A. By universality, B+
dR has a natural induced GK-action, and the i-th graded

piece (ker θ)i/(ker θ)i+1 of the complete filtration defined by the ideal ker θ is isomorphic
to Cp(i) as a GK-module.

We also denote by BdR the ring (which happens to be a field) BdR := B+
dR[1/t] where

t is any generator of the principal ideal ker θ. The functor DdR on any continuous Qp-
representation V of GK is now defined as

(3.9) DdR(V ) := (V ⊗Qp
BdR)

GK

where invariants are taken with respect to the diagonal action of GK , and the filtration
on DdR(V ) is given by F iDdR(V ) := (V ⊗Qp

ti ·B+
dR)

GK This functor, as well as DHT, is
not faithful essentially by design:

Example 3.8. For each integer n ∈ Z the value DdR(χ
n
cycl) on the n-th tensor power of

the cyclotomic character is a 1-dimensional vector space K, equipped with the filtration
given by F−nK = K,F−n+1 = 0.

For any a ∈ Zp that is sufficiently (depending on the number of roots of unity in K)
close to an integer we can also consider the a-th power χa

cycl of the cyclotomic character.

For example, when p > 2 or
√
−1 ∈ K, the cyclotomic character admits a square root

χ
1/2
cycl and the value DdR(χ

1/2
cycl) is zero.

Indeed, the ring structures on BdR and
⊕
d

Cp(d) induce lax monoidal structures on

functors DdR and DHT, that is there are natural injective maps DdR(V ) ⊗ DdR(W ) →
DdR(V ⊗W ) and similarly forDHT. IfDdR(χ

1/2
cycl) was non-zero, the 1-dimensional filtered

vector space DdR(χcycl) would admit a square root with respect to the tensor product,
which is false because the filtration has the only non-trivial jump at an odd degree.

We have an important subclass of representations on which the functor DdR is faithful:

Definition 3.9. A finite-dimensional Qp-representation V of GK is de Rham if
dimK DdR(V ) equals dimQp

V .

For each de Rham representation V there is a natural isomorphism V ⊗Qp
BdR ≃

DdR(V )⊗K BdR. In particular, DdR is an exact monoidal functor on the category of de
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Rham representations. For any variety X over Qp the representations Hn
et(XK ,Qp) are

de Rham for all n, as we will discuss in Theorem 3.11 below.

Deligne’s Hodge filtration. Let us finish this introduction to p-adic Hodge theory by
demonstrating that functor DdR is versatile enough to recover the Hodge filtration on
the cohomology of a non-smooth and non-proper variety from the Galois action on p-adic
étale cohomology.

Recall that a mixed Q-Hodge structure is the data of a Q-vector space V together
with an increasing weight filtration . . . ⊂ WmV ⊂ Wm+1V ⊂ . . . by Q-subspaces, and a
decreasing filtration F i by C-subspaces of V ⊗Q C. These filtrations satisfy an additional
compatibility [Del71, Definition 2.3.1]. This additional property has as a remarkable
consequence that the category of mixed Hodge structures is abelian and any map h :
(V,W,F ) → (V ′,W ′, F ′) of mixed Hodge structures is automatically strictly compatible
with the filtrations, that is W ′

iV
′ ∩ h(V ) = h(WiV ) and h(F jVC) = h(VC) ∩ F jV ′

C.
Deligne constructed a mixed Hodge structure on the cohomology of every complex

algebraic variety, generalizing the ‘bête’ filtration on the de Rham complex in the case of
a smooth proper variety:

Corollary 3.10. For every (possibly non-proper and singular) algebraic variety X over
C there is a natural filtration F • on Hn(X(C),C) such that

(1) For X smooth and proper F i coincides with the Hodge filtration Hn(X,Ω≥i
X ) ⊂

Hn
dR(X/C) ≃ Hn(X(C),C) under the comparison isomorphism with de Rham

cohomology.
(2) For every map f : X → Y of algebraic varieties the pullback map f∗ :

Hn(Y (C),C) → Hn(X(C),C) is strictly compatible with the Hodge filtration.

It turns out that this Hodge filtration can be also recovered formally from the Galois
action on étale cohomology:

Theorem 3.11 ([Kis02, Theorem 3.3]). For any (possibly non-proper and singular) va-
riety X over K there is a natural isomorphism DdR(H

n
et(XK ,Qp)) ≃ Hn

dR(X/K) with
Hartshorne’s de Rham cohomology such that the natural filtration on DdR corresponds to
Deligne’s Hodge filtration.

Remarkably, this formulation makes property (2) of Corollary 3.10 obvious2. A map
h : (V, F ) → (V ′, F ′) of finite-dimensional filtered vector spaces is strictly compatible
with the filtrations if and only if h has the same rank as the associated graded map
grh : grF V → grF

′
V ′. Any map f : X → Y of varieties over K induces a morphism

f∗
et : Hn

et(YK ,Qp) → Hn
et(XK ,Qp) of de Rham representations, and both functors DdR

and DHT are exact on the subcategory of de Rham representations. Kernels of the
map f∗

dR : Hn
dR(Y/K) → Hn

dR(X/K) and its associated graded gr f∗
dR are, respectively,

identified with DdR(ker f
∗
et) and DHT(ker f

∗
et) which have the same dimension as ker f∗

et.

2According to [Bha, 12:04], Tate’s conjectured Hodge-Tate decomposition was one of the motivations
for Deligne to expect to have a Hodge filtration on the cohomology fo any variety that is moreover strictly

respected by the pullback along any algebraic map. This led to the discovery of the abelian category of
mixed Hodge structures.
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4. Local systems of geometric origin over finite fields.

The analog of Conjecture 1 with C replaced by the algebraic closure Fp of a finite field
is settled over curves, as a consequence of the proof of the Langlands correspondence for
GLn over global function fields.

Theorem 4.1. Let S be a smooth geometrically connected curve over a finite field Fq of

characteristic p ̸= ℓ. A semi-simple continuous representation ρ : πet
1 (SFq

) → GLn(Qℓ)

is of geometric origin if and only if it extends to a representation of πet
1 (SFq′ ) for some

finite field extension Fq′ ⊃ Fq.

Proof. Here by ‘geometric origin’ we mean the condition exactly analogous to Definition
2.4, that is the restriction ρ|πet

1 (UFq )
for some non-empty U ⊂ S is a subquotient of the

monodromy representation on the cohomology of a smooth proper family f : X → UFq

in some degree.
The ‘only if’ statement is then a consequence of the fact that any such family can be

spread out over UFq′ for some q′ = qr. To prove that every representation extendable to
the representation over Fq′ is of geometric origin, we recall the structure of the proof of
the Langlands correspondence for the group GLn over the field F = Fq′(S) of rational
functions on SFq′ . For simplicity of notation, we denote Fq′ by Fq in what follows.

The main construction of [Dri77], [Laf02] is an association of an irreducible rank n
representation of GF to every cuspidal automorphic Hecke-eigenform f . The key point
for us is that this representation is, by construction, of geometric origin when restricted
to GFq(S). We have a smooth Deligne-Mumford stack π : Sht → (S×S)\∆ over S×S \∆
parametrizing rank n shtukas with minimal modifications in opposite directions at two
legs, the map down to (S × S) \∆ recording the legs.

The morphism π is not proper, so the pushforward Rnπ!Qℓ is a constructible sheaf on
(S×S)\∆ that need not be a local system, but it is shown that it admits a direct summand
of the form Lf ⊠ L∨

f for an irreducible Qℓ-local system Lf on S that is characterized by

the following relation to the automorphic form f . For each closed point x ∈ |S| the trace
Tr(Frx : Lf,x) of the Frobenius automorphism on the stalk of Lf at x equals the Hecke
eigenvalue of f with respect to the Hecke operator at the point x.

Choosing a point s ∈ S(Fq) we can restrict Lf ⊠ L∨
f to (S \ s) × {s} ⊂ (S × S) \ ∆

to establish Lf ⊗ (L∨
f )s as a direct summand of the cohomology sheaf of a smooth DM

stack over S \ s.
Using alterations, and perhaps removing more points from S \ s one can then show

that Lf ⊗ (L∨
f )s is a direct summand of the cohomology of a smooth proper family

X → U ⊂ S \ s. Now base changing to Fq, the local system Lf ⊗ (L∨
f )s becomes

isomorphic to L⊕n
f . Therefore we have shown that Lf |SFq

is of geometric origin.

One then shows that the resulting mapping f 7→ Lf is a bijection between cuspidal

automorphic eigenforms and irreducible Qℓ-local systems of rank n on S. In particular,
a posteriori every irreducible local system on S arises via this construction. □

Theorem 4.1 is one piece of evidence for Conjecture 1. Given, say, a smooth curve S
over C we can find a relative curve S over a finitely generated subalgebra R ⊂ C such that
S ×R C ≃ S. An irreducible Qℓ-local system on S(C) which is arithmetic, by definition,
extends to SF for some finite extension F ⊃ Frac(R). Moreover, irreducibility forces
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(cf. [Pet23, Proposition 6.1]) it to further extend to a local system L̃ on S itself, perhaps
after replacing R by an étale extension.

We can now reduce S to finite field-valued points κ of SpecR to get curves over various

finite fields, and on each of them L̃|Sκ
is of geometric origin by Theorem 4.1. However,

families of algebraic varieties whose monodromy representations encompass these local
systems are completely unrelated across various finite fields.

In some special situations it is possible to choose families of varieties giving rise to

the local systems L̃|Sκ
to be of uniform geometric type which allows one to produce a

family of varieties in characteristic zero. A beautiful example of this strategy working
is [ST18, Theorem 1], which proves that rank 2 arithmetic local systems satisfying some
additional conditions come from families of elliptic curves. A role in this proof is played
by the fact that non-isotrivial families of elliptic curves are completely controlled by their
monodromy representation, as we saw in Proposition 1.5.

5. Arithmetic local systems and variations of Hodge structures

Conjecture 1 is an instance of the point of view that all the structures on cohomology
of an algebraic variety should be recoverable from the Galois action. Theorem 3.2 allows
one to recover the Hodge filtration on de Rham cohomology over a p-adic field, though it
stops short of recovering the complex Hodge structure. In this final section, we will see
how the situation improves in the presence of a non-trivial monodromy action.

Let S be a smooth algebraic variety over a p-adic field K. We say that an étale Qp-
local system on SK is ‘p-arithmetic’ if it extends to a local system on SK′ for some finite
extension K ′ ⊃ K. This is generally a weaker property than being arithmetic, because
K ′ is not a finitely generated field. In Section 3 we discussed a way of recovering de Rham
cohomology with its Hodge filtration from the action of GK on étale cohomology. Works
of Faltings, Scholze [Sch13], Liu-Zhu [LZ17] and Diao-Lan-Liu-Zhu [DLLZ23], and many
other authors extended this theory to local systems on varieties over K. After the fact,
we can produce the following construction for local systems on SK :

Proposition 5.1. There is a faithful tensor functor

(5.1) D : {semi-simple p-arithmetic Qp-local systems on SK} →
{vector bundles with a flat connection on SBdR

}

Here SBdR
= S ×Qp BdR is viewed as a smooth variety over the field BdR. Moreover, D

becomes fully faithful after extending scalars on the source category from Qp to BdR.

Proof. We have [Sch13] a relative version of the functor DdR from Theorem 3.2 which is
exact and monoidal on the category of de Rham Qp-local systems on S:
(5.2)

DdR : {de Rham Qp-local systems on S} →

 vector bundles E with a flat connection ∇ on S
and a decreasing filtration F i ⊂ E satisfying

∇(F i) ⊂ F i−1 ⊗ Ω1
S


Moreover, for any de Rham local system L there is a cohomology comparison isomorphism

(5.3) Hn
et(SK ,L)⊗Qp

BdR ≃ Hn
dR(S,DdR(L))⊗K BdR

Let us define a new category CS whose objects are de Rham local systems, but
we equip them with different spaces of morphisms given by HomCS

(L1,L2) =
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HomSK
(L1|SK

,L2|SK
). In other words, CS is the full subcategory of the category of

Qp-local systems on SK consisting of local systems that admit an extension to a de Rham
local system on S.

By the above comparison isomorphism (5.3) applied to n = 0,L = L2 ⊗ L∨
1 , functor

DdR factors through a functor

(5.4) D : CS → {flat vector bundles on S} ⊗K BdR ⊂ {flat vector bundles on SBdR
}

where −⊗K BdR denotes passing to the category with the same objects and Hom spaces
tensored up to BdR from K.

Since the category of vector bundles with a flat connection on SBdR
is abelian, functor

D extends uniquely to an exact functor from the idempotent completion of CS . Explicitly,
this idempotent completion is the full subcategory of the category of local systems on SK

consisting of local systems that are direct summands of local systems of the form L|SK

for some de Rham local system L on S.
By [Pet23, Theorem 8.1], every semi-simple arithmetic local system on SK lies in the

idempotent completion of CS , hence D gives the desired functor. □

If L is a local system on S of the formRnf∗Qp for a smooth proper morphism f : X → S
then D(L|SK

) recovers the de Rham cohomology bundle Hn
dR(X/S)⊗K BdR of the same

family. Choosing an embedding K ⊂ C we may observe that the flat vector bundle
Hn

dR(X/S)C on SC satisfies a rather special property: it underlies a polarizable complex
variation of Hodge structures, in the sense of [Sim92, §4].

It would be very interesting to prove that for every arithmetic, or even p-arithmetic,
semi-simple local system L on SK the flat vector bundle D(L) ⊗BdR

C underlies a po-
larizable C-VHS for some embedding BdR → C. At the moment, we can only show the
following:

Proposition 5.2. For a smooth proper variety S over K and any embedding K → C
there exists a faithful tensor functor

(5.5) {semi-simple p-arithmetic local systems on SK} → {polarizable C-VHS on SC}

Proof. Analogously to Proposition 5.1 we have a functor

(5.6) H : {semi-simple p-arithmetic local systems on SK} → {Higgs bundles on SCp}
constructed out of the functor DHT. In fact, it extends3 to a functor from all local systems
on SK , given by the p-adic Simpson correspondence in the sense of [Fal05] and [Heu25].
In particular, H lands in curve-semistable Higgs bundles by [HX24, Proposition 9.3.2].
For a de Rham local system L on S the Higgs bundle H(L|SK

) is given by the associated
graded bundle of the filtration on DdR(L) with the Higgs field given by the OS-linear
map gri DdR(L) → gri−1 DdR(L)⊗ Ω1

S/K induced by the Griffiths transverse connection.

This implies that vector bundle H(L|SK
) has vanishing rational Chern classes and there

exists an isomorphism
(H(L|SK

), θ) ≃ (H(L|SK
), λ · θ)

of Higgs bundles for every non-zero scalar λ ∈ K×.
One can check that these properties continue to hold for the values of H on all p-

arithmetic local systems. In other words, for each semi-simple p-arithmetic local system
L on SK the Higgs bundle (H(L), θ) admits a structure of a system of Hodge bundles,

3The analogous fact for the functor D from (5.1) is not yet known.
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and one can associate to it a polarizable C-VHS on SC via [Sim92, Corollary 4.2]. Here
we chose an extension of the given embedding K → C to an embedding Cp → C to form
the base change SC. □

The caveat here is that it is completely unclear whether the C-local system output
by the functor (5.6) has any relation to the input Qp-local system, viewed as a local
system on the topological space S(C). The existence of such a relation was conjectured
in [DLLZ23, Conjecture 1.4], and it would provide further evidence for Conjecture 1.
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[Del71] P. Deligne. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math., (40):5–57, 1971. URL

http://www.numdam.org/item?id=PMIHES_1971__40__5_0.

[Del80] P. Deligne. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math., (52):137–252,
1980. URL http://www.numdam.org/item?id=PMIHES_1980__52__137_0.
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Géométrie Algébrique, 1960/61.
[Heu25] B. Heuer. A p-adic Simpson correspondence for smooth proper rigid varieties. Invent. Math.,

240(1):261–312, 2025. doi:10.1007/s00222-025-01321-4.

[HX24] B. Heuer and D. Xu. p-adic non-abelian Hodge theory for curves via moduli stacks, 2024,
2402.01365. URL https://arxiv.org/abs/2402.01365.

[Kat73] N. M. Katz. p-adic properties of modular schemes and modular forms. In Modular functions

of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), volume
Vol. 350 of Lecture Notes in Math., pages 69–190. Springer, Berlin-New York, 1973.

[Kis02] M. Kisin. Potential semi-stability of p-adic étale cohomology. Israel J. Math., 129:157–173,
2002. doi:10.1007/BF02773161.

[Laf02] L. Lafforgue. Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math., 147(1):1–

241, 2002. doi:10.1007/s002220100174.
[Lit18] D. Litt. Arithmetic representations of fundamental groups I. Invent. Math., 214(2):605–639,

2018. doi:10.1007/s00222-018-0810-4.
[Lit21] D. Litt. Arithmetic representations of fundamental groups, II: Finiteness. Duke Math. J.,

170(8):1851–1897, 2021. doi:10.1215/00127094-2020-0086.

https://www.youtube.com/watch?v=HY6SqwGDjNQ
http://arxiv.org/abs/2509.12425
https://arxiv.org/abs/2509.12425
https://arxiv.org/abs/2509.12425
http://www.numdam.org/item?id=PMIHES_1971__40__5_0
http://www.numdam.org/item?id=PMIHES_1980__52__137_0
http://dx.doi.org/10.1007/978-1-4899-6664-3_1
http://dx.doi.org/10.1090/jams/1002
http://dx.doi.org/10.1007/978-3-031-40840-3
http://dx.doi.org/10.1016/j.aim.2005.05.026
http://dx.doi.org/10.1007/s00222-025-01321-4
http://arxiv.org/abs/2402.01365
https://arxiv.org/abs/2402.01365
http://dx.doi.org/10.1007/BF02773161
http://dx.doi.org/10.1007/s002220100174
http://dx.doi.org/10.1007/s00222-018-0810-4
http://dx.doi.org/10.1215/00127094-2020-0086


17

[Lit24] D. Litt. Motives, mapping class groups, and monodromy, 2024, 2409.02234. URL https://

arxiv.org/abs/2409.02234.

[LZ17] R. Liu and X. Zhu. Rigidity and a Riemann-Hilbert correspondence for p-adic local systems.
Invent. Math., 207(1):291–343, 2017. doi:10.1007/s00222-016-0671-7.

[Pet23] A. Petrov. Geometrically irreducible p-adic local systems are de Rham up to a twist. Duke

Math. J., 172(5):963–994, 2023. doi:10.1215/00127094-2022-0027.
[Sch13] P. Scholze. p-adic Hodge theory for rigid-analytic varieties. Forum Math. Pi, 1:e1, 77, 2013.

doi:10.1017/fmp.2013.1.

[Sen81] S. Sen. Continuous cohomology and p-adic Galois representations. Invent. Math., 62(1):89–116,
1980/81. doi:10.1007/BF01391665.
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