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Overview

A tensor is a multilinear form T : Fn
q × · · · × Fn

q → Fq.
The analytic rank (AR) measures randomness
The partition rank (PR) measures structure
Main result:

PR(T) ≤ Ck AR(T)

if |F| is large enough.
Main proof idea: work over the algebraic closure Fq, use tangent
spaces / derivatives to construct small PR decomposition
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The bias of polynomials

For f(x1, . . . , xn) : Fn
p → Fp

bias(f) = Ex∈Fn
qχ(f(x)), if q = p is prime, χ(x) = e2πix/p

For f a polynomial, 0 ≤ bias(f) ≤ 1
Bias is a measure of randomness / correlation
Goal: when f is a polynomial function, explain large bias by the
presence of structure
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Analytic rank

We focus on multilinear forms T(x(1), . . . , x(k)) ∈ Fq

A 1-tensor is a linear form T(x) = a1x1 + · · ·+ anxn

A 2-tensor is a bilinear form

T(x, y) = xtAy =
∑

ij
xiyjAij, A a matrix

A 3-tensor is a trilinear form

T(x, y, z) =
∑
ijk

Tijkxiyjzk

k-tensors are a useful class of degree k polynomials

Definition (Analytic rank)
AR(T) = − log|F| bias(T) = − log|F| Ex(1),...,x(k)∈Fn

q
χ(T(x(1), . . . , x(k)))

0 ≤ AR(T) ≤ n, AR(T+L) ≤ AR(T)+AR(L), generically AR(T) ∼ n
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Examples
Example (2-tensors)
Let T(x, y) = xtAy.

bias(T) = EyExχ(xtAy)

= Ey1Ay=0 = Pr
y
[Ay = 0] = |F|dim ker A

|F|n
= |F|− rankA

AR(T) = rankA

Example (Singleton tensor)
T(x, y, z) = x1y1z1

bias(T) = Ex,yEzχ(x1y1z1)

= Pr
x,y
[x1y1 = 0]

=
2|F| − 1
|F|2

AR(T) ≈ 1

Example (Diagonal tensor)
T(x, y, z) = x1y1z1 + · · ·+ xnynzn

bias(T) = Ex,yEzχ(x1y1z1 + · · ·+ xnynzn)

= Pr
x,y
[x1y1 = x2y2 = · · · = xnyn = 0]

=

(
2|F| − 1
|F|2

)n

AR(T) = − log|F|

(
2|F| − 1
|F|2

)n
≈ n
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Kernel definition of AR

Definition (Kernel of a tensor)
Let T be a 3-tensor.

kerT = {(x, y) ∈ Fn × Fn : T(x, y, z) = 0 for all z}
= {(x, y) ∈ Fn × Fn : xtT1y = · · · = xtTny = 0}

For T a k-tensor,

kerT = {(x(1), . . . , x(k−1)) ∈ Fn × · · · × Fn : T(x(1), . . . , x(k−1), ·) = 0}

We have AR(T) = (k − 1)n − log|F| | kerT|.

Eχ(T(x, y, z)) = Ex,yEzχ(T(x, y, z)) = Pr[T(x, y, ·) = 0] = | kerT|
|F|2n .

The kernel is large if the analytic rank is small
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Partition rank

A matrix has rank one if it is an outer
product of two vectors

Example

1 2 0
3 6 0
0 0 0

 =

1
3
0

(
1 2 0

)

Definition
The rank of a matrix A is the
minimal r so that A is a sum of r
rank one matrices.

A tensor has partition rank one if it is
an outer product of two smaller ten-
sors
Example

1

1

2
1

1
0

0
0

0

⊗ 1 2 0 =

1

1

2
1

1
0

0
0

0

2

2

4
2

2
0

0
0

0

0

0

0
0

0
0

0
0

0

Definition
The partition rank of a tensor,
PR(T), is the minimal r so that T is
the sum of r partition rank one
tensors.
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Partition rank, multilinear form perspective

T(x(1), . . . , x(k)) has partition rank one if it is a product of two tensors in
disjoint subsets of the variables

1
1
2

1
1

0
0

0
0

⊗ 1 2 0 =

1
1
2

1
1

0
0

0
0

2
2
4

2
2

0
0

0
0

0
0
0

0
0

0
0

0
0

x
z

y

(x1 + 2x2)(2y1z1 + y1z2 + y1z3 + y2z1 + y3z1)T (x, y, z) =

1
1

2 1 1
0 0

0 0

1
2
0

⊗

1

1

2 1 1

0 0

0 0

(y1 + 2y2)(2x1z1 + x1z2 + x1z3 + x2z1 + x3z1)

T (x, y, z) =

1

2

4 2 2

0 0

0 0

0

0

0 0 0

0 0

0 0

2 1 0

1

0

0 0

0 0

2 2 2

1

2

0 0

0 0

2 1 1

1

1

0 0

0 0

⊗
1

2

0

=

2 1 1

1

1

0 0

0 0

(z1 + 2z2)(2x1y1 + x1y2 + x1y3 + x2y1 + x3y1)

T (x, y, z) =

Definition
The partition rank of a tensor is the minimal r so that we can write

T(x(1), . . . , x(k)) =
r∑

j=1
fj(xIj)gj(xIcj ), Ij ⊊ [k]
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More on partition rank

Example
The tensor T(x, y, z,w) = (x1y1 + · · ·+ xnyn)(z1w1 + · · ·+ znwn) has
PR = 1 but has no linear form factor.

0 ≤ PR(T) ≤ n
AR(T) ≤ PR(T).

T(x, y, z) = f(x)g(y, z) ⇒ {(x, y) : f(x) = 0} ⊂ kerT
T(x, y, z) = f1(x)g1(y, z) + f2(y)g2(x, z) + f3(x, y)g3(z) ⇒

{(x, y) : f1(x) = f2(y) = f3(x, y) = 0} ⊂ kerT

When k = 3, partition rank is the slice rank of Tao, which was used
in the cap-set problem breakthrough
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Prior work

A bound PR(T) ≤ f(AR(T)) is an inverse theorem: given that T is
biased, can we conclude that T is structured?
This is the simplest case of inverse conjectures for the Gowers norm,
the functions in consideration are themselves polynomials

Green & Tao (2009), Kaufman & Lovett (2008), Lovett &
Bhowmick (2015): PR(T) ≤ fk(AR(T))
PR the partition rank, fk an Ackermann type function
Haramaty & Shpilka (2010): for 3-tensors, PR(T) ≤ CAR(T)4

Milićević (2019), Janzer (2020): PR(T) ≤ AR(T)c, c = c(k)
It has been conjectured by several authors that PR(T) ≤ Ck AR(T)
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Main theorem

Theorem
For every k ≥ 2 and r ≥ 0 there is a F = F(r, k) such that for every finite
field F with |F| ≥ F, every k-tensor T over F with AR(T) ≤ r,

PR(T) ≤ (2k−1 − 1) AR(T) + 1

3-tensors came first, works over all fields but F2, and was
independently discovered by Adiprasito, Kazhdan, and Ziegler
We go through a smooth analogue of AR—the geometric rank (GR)
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Geometric rank
View T over F.

(k = 2) T(x, y) = xtAy, kerT = {x ∈ Fn
q : xtT = 0} = kerAt

(k = 3) kerT = {(x, y) ∈ Fn
q × Fn

q : T(x, y, ·) = 0}
{(x, y) ∈ Fn

q × · · · × Fn
q : xtT1y = · · · = xtTny = 0}

(k > 3) kerT = {(x(1), . . . , x(k−1)) : T(x(1), . . . , x(k−1), ·) = 0}

Definition
GR(T) = codim kerF T

Doesn’t depend on how we “slice” T
Only makes sense over algebraically closed fields
0 ≤ GR(T) ≤ PR(T) ≤ n
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Geometric rank example

Let T be the determinant tensor, given by

T(x, y, z) = det

x1 y1 z1
x2 y2 z2
x3 y3 z3


(x, y) 7→ x × y

0

0 0

−1

1

0 0

0 0 0

1

00

0 0

0 0

00

−1 1

0

0

0

−10

0

kerT = {(x, y) ∈ F6 such that x × y = 0}
= {(x, y) scalar multiples of each other}

This is a four dimensional space, so GR(T) = 6 − dim kerT = 2.
On the other hand, PR(T) = 3.
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GR ≤ CAR

AR(T) = n(k − 1)− log|F| | kerF T|
GR(T) = n(k − 1)− dim kerF T

If kerT is linear, | kerF T| = |F|dim ker T

We expect AR ∼ GR if F is large
(Lang-Weil)

Proposition
For a tensor T over a finite field F,

GR(T) ≤
(

1 − log(k − 1)
log |F|

)−1
AR(T)

Lemma (Generalized Schwartz-Zippel)

For V ⊂ Fn a variety cut out by degree ≤ d equations,

|VF| ≤ dcodim V|F|dimV
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PR vs GR

Theorem

PRF(T) ≤ (2k−1 − 1) GR(T)

Proof works locally (pick a point on the kernel, take tangent spaces
/ derivatives)
Same result appeared in work of Schmidt
Originally, PR decomposition over F
A key part of our work is adapting this strategy to work over the
base field F (important to avoid dependence on n). Need large fields.

Theorem
If X ⊂ kerT is defined over F and has a nonsingular F-point,

PRF(T) ≤ (2k−1 − 1) codimX
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Two parts to the argument

f : Fn → Fm, f(x) = (f1(x), . . . , fm(x))
Df : Fn → Fm (linear), Dkf|x : Fn × · · · × Fn → Fm (multilinear)

Df : Fn → Fn ⊗ Fm

D2f : Fn → Fn ⊗ Fn ⊗ Fm

Dkf : Fn → Fn⊗· · ·⊗Fn⊗Fm

Df|x = (∂xk fj|x)
j=m,k=n
j=1,k=1

D2f|x = (∂xk∂xl fj|x)
j=m,k=n,l=n
j=1,k=1,l=1

Theorem A (PR decomposition)
Suppose f : Fn → Fm and X ⊂ Fn is an irreducible variety with f|X = 0.
Then PR(Dkf|x) ≤ (2k − 1) codimX for all nonsingular x ∈ X.
If everything is defined over Fq, so is the PR decomposition.

Theorem B (Obtaining a nonsingular point, heuristic statement)

Let X ⊂ Fn
q be a variety defined over Fq with bounded complexity.

There exists an irreducible variety Z ⊂ X which has controlled
complexity, has a nonsingular Fq-rational point, and contains all the
Fq-rational points of X.
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