Lower bounds for insidences

10/10/24 Yale

Main Result Let PIJ..., Pre [0, 1]² Tr is a 8-the through 9; for j=1...n

Heilbronn's triangle problem

$$Max (Smallest area triangle formed)$$

 $I(n) = Max (Smallest area triangle formed)$
 $IPI = n$
 $Pc [0,1]^2$
Rephrase
 Q Asymptotic upper bounds for $\Delta(n)^2$.

Prior work

Cor In any set of a points in the unit square, three form a triangle us area I SE a Ford

extra induce

$$\implies \Delta = n^{-1/2} - \frac{2}{3} + \frac{2}{5} - \frac{7}{6} + \frac{2}{5}$$

[Note that Heilbronn's problem is generally about incidence (aver bounds]

General set p PC[0,1]² a set of pt3 a set of S-tubes $\widehat{\parallel}$ I(P,T) = #{(p,T) = PxT: p=T? Goal ICP, T)>n

upper	bands	VS.	(uner	bounds
Upp =				

Key observation: Rescaling

$$X = \{(p_{ij}, k_{j})\}_{j=1}^{n}$$

 $X \cap R = \{(p_{ij}, k_{j})\}_{j=1}^{n}$
 $X \cap R = \{(p_{ij}, k_{j})\}: P_{i} \in R$ k_{j} gove through
 $Short ends of R$
 $uut = 1$
 $(x \cap R)$ pts
 $S/uut = 1$
 $N = exten incidence$
 $N = exten incidence$

Goal:
$$|X| \leq 5^{-\gamma}$$
 for any $\frac{3}{2}/2$
Inductive hype: Goal true for $\frac{5}{228}$
 $\Rightarrow R$ is axaw, $5 \leq 4w < \frac{1}{2}$
 $\Rightarrow |XnR| \leq (\frac{5}{4w})^{-\gamma} \leq 4^{\gamma}w^{\gamma}|X|$

for Thm If X satisfies

J>3/2, then

 $\sum(S; P[X], L[X]) \geq S^{HE}[P[X]]/L[X]$ E runker if placed unit. at molon

induction Thm => Main result on Q.

$$\overline{\Box}(w;P,L) = \# \{(p,e) \in P \times L : d(p,e) \le w \le d(p,e) \le d(p,e) \le w \le d(p,e) \le$$

The (High-low)

$$\left| \frac{I(\omega)}{\omega P|ILI} - \frac{I(\omega(2))}{(\omega_2)P|ILI} \right| \sim \frac{1}{\omega}$$
(Max |Pn@) Max [LOT]

Ex If P's α - Frostman Lis B-Frostman Err $\lesssim w^{\frac{\alpha+B-3}{2}} = m^{\frac{\alpha+B}{2}sin}$ thm

· Not too hard to find some rectangles that satisfy (1) and some that satisfy (2) · Hard to satisfy both at once

Branching structure Assume Pc[0,1]² is built like a tree

Ded P is uniform on a set of scales 5:f NES) C U Q QE QUE collection of una square P [Pral ~ const. Vacan

$$X = \{(p_{j}, x_{j})\}_{j=1}^{n}$$

$$Def X \text{ is autom if } \forall uxuwe`S,$$

$$X \subset \bigcup R$$

$$R \in Ruxuw$$

$$|X \cap R| = const.$$

$$IX \cap R| = const.$$

$$Ded \quad S^{-f(x,y)} = |R_{S^{x}S^{x+y}}|$$

$$Actually, \quad S \text{ is a fraction of } S \text{-uviables}$$

Can phouse 2 steps in terms of I. Robber new about Lip Firetions.

Ex Ren-Way Furstenberg set then can be phrouged as into about I

Blowp into Q.
Direction stable: # Slopes Coning at f Q ~ # Slopes total