Lower boards for insidences

10/10/24 Yake

Main Result Let $P_{13...}P_{n}\in[0,1]^{2}$ Tris a 8-the though is for j= 1...n

Heilbrann's triangle problem
\n
$$
max
$$
 (Smallest area triangle from
\n $PP1 = n$ by 3 pts in P
\nRe [0,1]² Represent
\nRephase
\nQ Asymptot? upper bands for $\Delta(n)^2$.

Prior crook

Sor In any set of it points in the unit
square, three form a triangle us over \int to $e^{-\frac{1}{6} + c}$

$$
ext{u}
$$
 to10400
\n \Rightarrow $\triangle = \overline{n}^{1/2} \times \overline{n}^{2/3} = \overline{n}$

[Note that Heilbronn's problem is generally about incidence

General setion
PC[0,1] a set of pt3 a set of 1-tubes $\sqrt{1}$ $T(P,T) = \#\{(p,T) \in P_{\lambda}T: p \in T\}$ G_{out} ICP, T) > n

Key observation: Rescaling
\n
$$
X = \{ (\varphi_i, \varphi_i) \}_{i=1}^n
$$

\n $X \cap R = \{ (\varphi_i, \varphi_i) : \varphi_i \in R \text{ short unless } \varphi_i \}$
\n $lim_{\Delta x \to 0} \frac{1}{\Delta x}$
\n $lim_{\Delta x \to 0} \frac{1}{\Delta x}$

$$
G_{\text{local}}: |X| \leq \delta^{-\gamma} \quad \text{for any } \delta > 3/2
$$
\n
$$
\underline{\text{Indexdiv } \text{Lip : } G_{\text{cell}} + \text{Lip : } S' \geq 2\delta}
$$
\n
$$
\underline{\text{Indexdiv } \text{Lip : } G_{\text{cell}} + \text{Lip : } S' \geq 2\delta}
$$
\n
$$
\Rightarrow R \text{ is } \alpha \times \alpha \omega, \quad S \leq \alpha \omega < 2
$$
\n
$$
\Rightarrow R \text{ is } \alpha \times \alpha \omega, \quad S \leq \alpha \omega < 2
$$
\n
$$
\Rightarrow R \text{ is } \alpha \times \alpha \omega, \quad S' \geq 2\delta
$$

$$
In particular, Fractiona
$$

\n $|PnQ| \leq W^{T} |P|$ for every u xu -sym

(B)
$$
Is
$$
 a Forstrum required
condition over rectangles.

 $TMM \subseteq f \times S$ atisfies $\left(\bigoplus_{n=1}^{\infty} \phi_n\right)$

 $\gamma > 3/2$, then

 $\leq (s : P[X], L[X]) \geqslant s^{H^2[P[X]]|L[X]|}$ γ E number if placed unit. at random

induction T hm \implies Main result on ∞ .

 191

$$
\mathcal{I}(\omega^{2},P, L) = \#\{(P, P) \in P \times L : d(P, P) \leq \omega\}
$$

$$
\frac{\frac{1}{\sqrt{2\omega}}\left(H_{i}\frac{1}{\sqrt{2\omega}}-\frac{1}{\sqrt{2\omega}}\frac{1}{\sqrt{2\omega}}\right)}{\frac{\sqrt{2\omega}}{\omega P(11)}}\approx\frac{\frac{1}{\sqrt{2\omega}}\left(H_{i}\frac{1}{\sqrt{2\omega}}\right)}{\frac{\sqrt{2\omega}}{\omega P(11)}}\approx\frac{\frac{1}{\sqrt{2\omega}}\left(H_{i}\frac{1}{\sqrt{2\omega}}\right)}{\frac{\sqrt{2\omega}}{\omega P(11)}}\approx\frac{1}{\sqrt{2\omega}}\approx\frac{1}{\
$$

 $|L|$

I

$$
Ex \tTf \tP is x-Fnstman\t is y-Fnstman\t
$$
L is y-Fnstman
$$
\t
$$
C = \frac{x+3-3}{2} \text{ and } x+3>3 \text{ in } x
$$
$$

· Not too hand to find some retangles that satisfy D and some that satisfy ② · Had to satisfy both at once

Branching structure Assume P c (0)¹ is built like a tree

P is uniform on a red of scales Sif Det ueS C U Q
QE Que collection af vien squire P $|P \wedge Q| \sim$ const. \forall QG α

$$
X = \{c_{P_{i},x_{i}}\}_{i=1}^{n}
$$
\n
$$
D-f X is arbitrary in the image S,\n
$$
X \subset U R
$$
\n
$$
R \in R_{uruw}
$$
\n
$$
|X \cap R| = cont.
$$
$$

Problem vou about Lip Firetions.

Q. What functions
$$
f(x,y,z)
$$

axis was the branching from?

$$
Del \tI = Limits of branchingfines as $8 \rightarrow 0$.
$$

Simple facts about rectangles
$$
\rightarrow
$$
 Simple facts about

· Monotonic

· Lipschitz

· submodular

Use these to prove tur

Ex Ren-Way Furstenberg set the can E_{\times} Ren-Way Furturber set

General Q of 2D incidence geometry : What does I look like?

There are
$$
-\nu_{\perp}^2 - m a \nu_{\perp}
$$

there are $-\nu_{\perp}^2 - m a \nu_{\perp}$
there are $+\nu_{\perp}^2$ lines

There are
$$
-y^2 - max
$$
 times, each of which
have the same $\#$ of lines
sopose $y^{-s} \ll y^{-1}$ many tubes go through α .
No initial estimate

· Blowup into Q. • Blowerp into Q.
• Direction stable: # Slopes coming at f Q - + slopes total

blem: Can't run inductive step after blowing up (goal is hand)