Heilbronn's triangle problem and connections to projection theory
Alex Cohen, Cos min Polenta, Dmitri Zakkarov
In any set of n points, there is a triangle of area $\leq \Delta^{(n)}$ (and $\triangle(n)$ is the smallest number making this tree)

Example:

$$
\Delta(4)=\frac{1}{2}
$$

For any set of 4 pts, there is a trial with area $\leq \frac{1}{2}$

Problem: prove asymptotic upper bounds for

Lower Bounds: Finding sets with no small triangles

- Erdös: $\Delta(n) \gtrsim \frac{1}{n^{2}}$
- Explicit algebraic construction
- Komlós, Pint z, Szenceredi: $\Delta(n) \geq \frac{\log n}{n^{2}}$
-Seni-random method
- Indepaderce in hypergraph
- Sigiticiont combinatrial result

Now back to upper bounds

Observation 1: Trivial bound, $\Delta(n) \leq \frac{5}{n}$

Each strip has area $\frac{5}{n}$

By the pigeonhole principle some strip has ≥ 5 points

First problem: prove $\Delta=0\left(\frac{1}{n}\right)$

Observation 2: Scaling

Q rescaled $\Delta(P) \leq|Q|^{2} \cdot \Delta(P \cap Q$ rescaled $)$

If points are concentrated in a subsquare, find a small triangle there

To improve on the trivial bound, we can assume P is well spaced

Otherwise, induct into a subsquare

Observation 3: Incidence setup

$$
\text { Area }=\text { Base } \times \text { Height }
$$

$$
\Delta=u \times w
$$

Plan: - select pairs at distance u - form strips of width w - find a third point in some strip

Base first, then height

Prior work
$K P S=$ Komlós, Pint z, S zemerédi

- Trivial bound $\Delta \leq n^{-1}$
- Roth $1951 \Delta \approx n^{-1}(\log \log n)^{-\frac{1}{2}}$ proof is based on density increment
- Schmidt $1972 \Delta \lesssim n^{-1}(\log n)^{-\frac{1}{2}}$ proof considers pairs at many different scales
- Roth $1972-73 \Delta \leq n^{-1.1}$ Proof has two steps: initial estimate and inductive step
- KPS $1981 \Delta \lesssim n^{-8 / 7}$ Proof extends Roth's approach to its natural limit
- US $2023 \Delta<n^{-\frac{8}{7}-\frac{1}{2000}}$ we break the KPS barrier.

Roth's setup
$\operatorname{PC}[0,1]^{2} \quad L=\{$ Lines l connecting pairs $x, y \in P$ with $|x-y| \leq u\}$

$\pi=\{\omega$-tube around $l: l \in L\}$ a set of tubes
Incidences:

$$
\begin{aligned}
I(\omega ; P, L) & =\#\{(p, T) \in P \times \mathbb{I}: p \in T\} \\
& =\#\{(p, l) \in P \times L: d(p, l) \leq \omega / 2\}
\end{aligned}
$$

Goal: $I\left(\omega_{f} ; P, L\right)>2|L|$
Then a third point in some strip, and $\Delta \leq u \cdot w_{f}$ E.g: $u=n^{-1 / 3}, \omega_{f}=n^{-3 / 4}, \quad \Delta=n^{-13 / 12}$

Roth's two steps

$$
I(\omega ; P, L)=\#\{(p, l) \in P \times L: d(p, l) \leq \omega / 2\}
$$

Pick $\omega_{f}<\omega_{i}$

- Initial Estimate: I $\left(\omega_{i}\right) \gtrsim \omega_{i}|P| \cdot|L|$
- Inductive step: $\left|\frac{I\left(\omega_{i}\right)}{\omega_{i}|P| \cdot 14}-\frac{I\left(\omega_{f}\right)}{\omega_{f}|P| \cdot|4|}\right|<1$
normalized \# of incidences doesi't change much as the scale varies Eng $u=n^{-\frac{1}{3}} \quad \omega_{i}=n^{-0.1} \quad \omega_{f}=n^{-3 / 4} \quad \Delta=n^{-13 / 12}$

Main Theorem
comes from a 2017 paper of Goth, Solomon, ad Wang Topic in incidence geometry, projection theory, ad Fourier

1. Recast Roth's inductive step in terms of the high-low method

- Basically the same as Roth/KPS. But a cool connection.

2. New approach to initial estimate using direction set estimates from projection theory

- Very different from Roth/KPS
- Marstrand 1954 direction set estimate recovers $\Delta \lesssim n^{-8 / 7}$
- Main ingredient: Use Orponer, Shmerkin, and wang 2023 direction set estimate in place of Marstrand

This is the culmination of a line of work based on Bargain's discretized sum-prodect theorem.

- Roth's 3 papers and KPS use the same initial estimate and refine inductive step
- We improve initial estimate

Inductive step and the high low method
Idea: If P and L are not too concentrated, then $\frac{I(w)}{w \cdot|P \cdot| \cdot|L|} \sim$ const. as w varies

$M_{P}(\omega \times \omega)=\max |P \cap Q|, Q$ a $\omega \times \omega$ square
$M_{L}(\omega x \mid)=\max \mid L N T, T$ a w-tube
$w_{f}<w_{i}$ scales
Thm: $\left|\frac{I\left(w_{i} \mid\right.}{w_{i} P| | C \mid}-\frac{I\left(w_{f}\right)}{\omega_{f}|P||L|}\right| \lesssim \sqrt{\frac{M_{p}\left(w_{i} \times w_{i}\right)}{|P|} \frac{M_{L}\left(w_{i} \times 1\right)}{|L|} \omega^{-3}}$

GSW: Upper bounds Roth: Lower bounds

High - Low proof
The proof uses orthogonality.

$$
\begin{aligned}
& g=\sum_{p \in P} \omega_{f}^{-2} 1_{B\left(p, \omega_{f}\right)}, \quad \Phi=\sum_{l \in L}\left(\frac{1}{\omega_{i}} 1_{\pi_{\omega_{i}}(l)}-\frac{1}{\omega_{f}} 1_{\omega_{\omega_{f}}(l)}\right) \\
& \left|\frac{I\left(\omega_{i}\right)}{\omega_{i}|P||L|}-\frac{I\left(\omega_{f}\right)}{\omega_{f}|P| L \mid}\right|=\frac{1}{|P| C \mid}|\langle g, \Phi\rangle| \leq \frac{1}{|P||C|}\|g\|_{2}\|\Phi\|_{2}<\sqrt{\frac{M_{p}\left(w_{i} \times \omega_{i}\right)}{|P|} \frac{M_{l}\left(\omega_{i} \times 1\right)}{|L|} \omega^{3}}
\end{aligned}
$$

Estimate $\|\Phi\|_{2}$ using orthogonality between strips
Called high-low method because of Fourier analysis interpretation: Split into high \& low frequencies

Taking stock of inductive step
High-Low: If P ad L are not too concentrated, then $\frac{I(w)}{\omega \cdot|P \cdot| L \mid L} \sim$ cost as ω varies

- If P is concentrated in a subsquare, induct and find a small triangle there
- If P is not concentrated, use high-low to find small triangles

Initial estimate intuition

- $L_{Q}=\{$ lines l completing pairs $x, y \in P Q Q\}, L=U_{Q} L_{Q}$
- Direction set $_{Q}=\left\{\frac{x-y}{|x-y|}: \quad x, y \in P \cap Q\right\}$
- $\operatorname{Bad}_{Q}=\left\{\theta: \omega_{i}\right.$-tube in direction θ has $<\lambda \omega_{i}|P|$ points $\}$

1. For most $Q,\left|B_{a d}\right| \leqslant \lambda$ (small)

- What is probability a random pair (Q, θ) is bad? pick Θ then $Q: \leq \lambda$

2. Show direction set Q is spread out - Projection theory
3. Combine these: - \# $\left\{l \in L_{Q}: \theta(1) \in B_{a+Q}\right\} \leqslant \frac{1}{2}\left|L_{Q}\right|$

- $\left|\pi_{\omega i}(l) \sim P\right| \approx \omega_{i} P \mid$ tor most $l \in L_{Q}$
- $I\left(\omega_{i} ; P L\right)=\sum_{\text {lu }}\left|T_{\omega}(l) P\right| \geq \omega_{1} \mathbb{P}|L|$

Initial Estimate: $I\left(\omega_{i}\right) \approx \omega_{i}|P| \cdot|L|$

lines are concentrated Direction set is sprat at, in Bade so lines are not concentrated in Bade

Direction set estimates from projection theory
Thy (Marstrand 1954): Let $X \subset[0,1]^{2}$ have Hausdorff dimension $s>1$.
Then $[$ dimension of direction set $]=1$.
direction set $=\left\{\frac{x-y}{|x-y|}: x, y \in X\right\}$

Use discretized version to show line set is spread out
Deft: $P \subset[0,1]^{2}$ is s-regular above scale δ if
Frostman regular

Examples of regular sets

- P is 2 -regular
- Marstrand: direction set is 1-dim

- P is 1 -regular
- Marsitiond gives in infraction on direction id

Taking stock of initial estimate

- First hard case (homogenous):
P is 2 -dim down to sale $\delta=n^{-1 / 2}$, then $1_{p} t$

$$
\Delta \lesssim n^{-7 / 6}
$$

- Worst case scenario for Roth/KPS: P is 2 -dim down to sale $n^{-3 / 7}$ 1-dim from scale $n^{-3 / 7} \rightarrow n^{-4 / 7}$

$$
\Delta \cong n^{-8 / 7} \text { worse band then howe ow! }
$$

Getting a better bound
Worst case scenario: P is 2-dim down to scale $n^{-3 / 7}$ $1-\operatorname{dim}$ from scale $n^{-3 / 7} \rightarrow n^{-4 / 7}$

Tho (Orponen-Shmerkin-Wang): If

- $X \subset[0,1]^{2}$ is $0<s \leqslant 1$ dimensional, and
- X is not contained in a line

Then $[$ dimension of direction set $] \geqslant S$

- Gives initial estimate in worst case scenario
-Pf: discretizal sum-product $+\underset{\substack{\text { Pri.t.thery } \\ \text { I dort understand }}}{ }+$ bootstrapping

- $P n Q$ is 1-regular
- Marstrad gives no information on diration set -OSW: direction set is 1 -dim

