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Background on Projection Theory



Marstrand’s Projection Theorem

We define my : R” — R™ to be the orthogonal projection onto the
subspace V € G(n, m).

Given Y C R" Borel, what is the (Hausdorff) dimensional
relationship between Y and my(Y)?

Clearly, dim7y/(Y) < min{m,dim Y'}. In fact,

Theorem (Marstrand's Projection Theorem)
For almost every V € G(n, m),

dim7y(Y) = min{m,dim Y}.

How often is the size of the projection smaller?



Exceptional Set Estimates

Let 0 < s < min{m,dim Y}, and define
Es(Y):={V e G(n,m) :dimmy(Y) < s}.

Then, we have

» (Falconer and Peres—Schlag):
dim Es(Y) < max{m(n— m) +s —dimY,0}
» (Kaufman):

dimEs(Y) <m(n—m—1)+s.

Can we get similar looking estimates for radial projections?



Radial Projection Estimates

We define 7, : R™\ {x} — S~ to be the radial projection onto
the sphere centered at x:
_y—x

ly = x|’

mx(y) :

By B.-Gan (2022), we have
» (Conjectured by Lund-Pham-Thu): For 0 < s < |dim Y],

dim({x € R"\Y : dim7,(Y) < s}) < min{|[dim Y |+s—dim Y, 0}
» (Conjectured by Bochen Liu):

dim({x e R"\ Y :dimm(Y) <dimY}) < [dim Y].



Orponen—-Shmerkin—Wang (2022)

Shortly after B.—Gan's work, Orponen, Shmerkin, and Wang (2022)
proved stronger versions of these results (and much more) in

“Kaufman and Falconer estimates for radial projections
and a continuum version of Beck's theorem”.



Main Results

Their main results (in the plane) are as follows.

Theorem

Let X C R? be a (non-empty) Borel set which is not contained on
any line. Then, for every Borel set Y C RR?,

sup dim (Y \ {x}) > min{dim X,dim Y, 1}.
xeX

Theorem
Let X,Y C R? be Borel sets with X # () and diim Y > 1. Then,

supdimmy (Y \ {x}) > min{dim X +dimY —1,1}.
xeX



Notes

. OSW'’s main theorems are stronger versions of Kaufman's and

Falconer’s dimension estimates.

. The first result was generalized to higher dimensions in OSW,

and there is ongoing work of B.—Fu—Ren generalizing the
second result.
These results have a number of applications to
> exceptional set estimates (OSW),
» a continuum version of Beck’s Theorem (OSW),
> (sticky) Kakeya sets (Wang—Zahl),
» the ABC sum-product conjecture (Orponen—Shmerkin),
» and more!



Proof of the Falconer-type
radial projection theorem



Warm up dimension lower bound

Proposition
If A supports a probability measure v with v(B,) < rt, then
dimA > t.

Proof.
Sort >3 v(Bi) > v(A) >0, so H'(A) > 0.



What condition guarantees lower bounds for radial
projections?

If HE(mro(Y \ {x})) > 0, then dim (Y \ {x}) > t. We can use
the idea of a Frostman measure.
If v is a measure supported in Y \ {x} and mxv is t-Frostman,

then H(me(Y \ {x})) > 0.




Tubes and fans

mxv(Bs(e)) = v(T(e)) if dist(x,suppv) ~ 1




If G C X x Y, we have x-sections G|, = {y : (x,y) € G}.

Definition ((t, K, ¢)-thin tubes)

We say probability measures (i1, v) has (t, K, c)-thin tubes if for
some G C X x Y with (u x v)(G) > ¢, and each x € X,

(TNG|) <K-rt, r>0

for each r-tube T containing x.



Definition ((t, K, ¢)-thin tubes)
We say probability measures (1, v) has (t, K, c)-thin tubes if for
some G C X x Y with (u x v)(G) > ¢, and each x € X,

WTNGL)<K-rt,  r>0

for each r-tube T containing x.




Proposition
If t >0, and (u,v) has t-thin tubes, then

supdimm (Y \ {x}) > t.
xeX

Proof.
t > 0 implies dx such that m.v satisfies a t-Frostman
condition.



Warm up with thin tubes

Proposition
If v(B,) < Kr'*®, and y is arbitrary, then (u,v) has (6, K, 1)-thin
tubes.

Proof.
Any r-tube T can be covered by r~! many r-balls.

W(T)<rt Ko =K./

We can take G = supp p x suppv with (u x v)(G) = 1. O



Falconer-type projection theorem

Theorem (Falconer-type estimate)
IfX,Y CR?, anddimY > 1, then

supdimm, (Y \ {x}) > min{dim X 4+ dimY — 1,1}
xeX

The strategy is to prove that “X, Y" has o-thin tubes for any
o < min{dimX +dimY —1,1}.



From sets to thin tubes

Lemma (Frostman measure)

S

Ifdim A > s, then A supports a measure p with u(B,) < r°.



From sets to thin tubes

Sets X, Y dmX >s dimY >t

| I

Measures p1, v u(By) <7r° v(B,) <1



Base case and inductive step

If t > 1, then (p,v) has (t — 1)-thin tubes.

Lemma (Key Lemma)

If o <min{s+t—1,1} and p,v has (o, K,1 — €)-thin tubes, then
there exists n > 0 (uniform) and K' = K'(o, s, t, K) such that u,v
has (o + n, K',1 — 4¢€)-thin tubes.



|dea of proof of Key Lemma

If 1, v have o-thin tubes, but not o + n-thin tubes, we discretize
measures p and v to r-separated sets of points Px, Py for some
very small scale r.

Because Px, Py do not have o + n-thin tubes, for each x € Py,
we can find a (r, 0)-set of tubes T with the property

|Py N T’ > I’0+n|Py‘.



Theorem (Fu—Ren incidence theorem)
For all t € (1,2], 0 < 1, and ¢ > 0, there exists n > 0 such that

for all s € |0,2], if Px is a (r,s)-set, Py is a (r,t)-set, and for
each x € Px, Tx is a (r,0)-set of tubes such that

[Py N T| > r7™ Py, T €T,
theno >s+t—1-—C.

Because o < s+t—1,wecanfitina(>0soo<s+t—1—-¢.

Fu—Ren's theorem implies ¢ > s+t — 1 — (, so we reached a
contradiction.



Theorem (Falconer-type estimate)
If X, Y C R? and dimY > 1, then

supdim (Y \ {x}) > min{dim X +dimY —1,1}.
xeX

Theorem (Bootstrapping theorem)

Lets€0,2],t>1, 0 <min{s+t—1,1}, and e > 0. There
exists K > 0 so that if u(B,) < r® and v(B,) < r*, then (u,v) has
(0, K, 1 — €)-thin tubes.



Proof of bootstrapping theorem

As we noted, pu, v start out with (t — 1, Kp, 1)-thin tubes.




Proof of bootstrapping theorem

One application of the Key Lemma improves the thin-tubes
information at the cost of a worse “K"

N




Proof of bootstrapping theorem

We keep going until we pass o

The conclusion is (u,v) has (o, Ky, 1 — €)-thin tubes, where
e = 4Ne.



Proof of the Kaufman-type
radial projection theorem



Kaufman-type projection theorem

Theorem (Kaufman-type estimate)

Let X C R? be a (non-empty) Borel set which is not contained on
any line. Then, for every Borel set Y C R2?,

supdim (Y \ {x}) > min{dim X,dim Y, 1}.
xeX

Two main ingredients go into the proof:
1. A weak version of the above (Shmerkin 2021)

2. The e-improved (s, t)-Furstenberg set dimension bound
(Orponen—-Shmerkin 2021)



Proof scheme

The proof of Theorem 1.1 is by bootstrapping.

0. The “weak version” due to Shmerkin tells us that, if u, v are
s-Frostman, then (u, ) has S-thin tubes.

1. If p,v are s-Frostman and (u, ) has o-thin tubes (o > ),
find an (s, s)-Furstenberg subset of spt v (at some scale r)
and conclude from the e-improvement that (u, ) has
(0 + n)-thin tubes.

2. Bootstrap to conclude that (u, ) has o-thin tubes for all
o <s.

3. Applying the result to s-Frostman measures 11 on X and v on
Y, conclude from the thin tubes that the radial projection of
Y about some point of X has large dimension.



Step 0. The base case

Proposition (Weak version of Theorem 1.1)
For all C,0,¢,s > 0, there exist

ge(0,s), 7>0, and K >0

such that the following holds. If i, v € P(B?) are s-Frostman with
constant C, if dist(spt p,sptv) > C~1, and if u(T) < 7 for all
d-tubes T, then (u,v) has (5, K,1 — €)-thin tubes.

Loosely, if dim X,dim Y > s aren't concentrated on each other and
if X isn't too concentrated on lines, then sup,cx (Y \ {x}) > 6.



Step 1. The bootstrapping scheme

Theorem (Bootstrapping scheme)

Let 0 <s<1ande€(0,) let u,v € P(B?) be s-Frostman
with constant C and dist(spt u,sptv) > C~1, and suppose that
both (p,v) and (v, ) have (o, K,1 — €)-thin tubes for some

f < o <s. Then there exists n > 0 such that (u,v) and (v, j1)
have (o + 1, K’, 1 — 5¢)-thin tubes.

Roughly, if dim X,dim Y > s and if sup,cx dimm, (Y \ {x}) > o,
then in fact sup,cx dimm (Y \ {x}) > o +n.



Step 2. A basic criterion for thin tubes

Corollary (Thin tube criterion 1)

Let0 <o <s<1andlet C,e,§ >0. Then there exist T, K > 0
such that the following hold. If u,v € P(B?) are s-Frostman with
constant C, if dist(spt u,sptv) > C %, and if

max{u(T),v(T)} <7 V d-tubes T,

then (p,v) and (v, ) have (o, K, 1 — €)-thin tubes.

Proof. If B < o, then Step 0 gives n > 0 such that (i, v) and

(v, 1) have (B + 1, K, 1 — 5¢)-thin tubes. After N ~s, n~! steps,
one gets (0, Ky, 1 — 5Ve)-thin tubes for some o < o/ < s.
Conclude the desired result by replacing ¢ with ¢/5V. U



Step 2'. A more basicer criterion for thin tubes

Corollary (Thin tube criterion 2)

If 1, v € P(B?) are s-Frostman and if u(¢)v(¢) < 1 for all lines
¢ C R?, then (u,v) and (v, i) have o-thin tubes for all 0 < o < s.

Proof. Treat in case v(¢) > 0 for some ¢ separately using
Marstrand's projection theorem (Kaufman's version). For the case
w(€),v(€) =0 for all ¢, restrict and renormalize 1 and v to
positively-separated sets and apply the previous corollary. O



Step 3. From thin tubes to radial projections

Theorem (Kaufman-type estimate)

Let X C R? be a (non-empty) Borel set which is not contained on
any line. Then, for every Borel set Y C R2?,

supdim (Y \ {x}) > min{dim X,dim Y, 1}.
xeX

Proof. If Y is concentrated on a line ¢, then radially project Y
onto any point x € X a positive distance from ¢. We get that
dim 7y (Y) > dim 7 (Y N ) is as large as possible in this case.

If instead Y is not concentrated on any line, then we can find
s-Frostman measures p on X and v on Y such that p(¢)v(¢) < 1
for all lines £. Apply the more basicer criterion for thin tubes to
obtain o-thin tubes for all 0 < s. By the relation between thin
tubes and radial projections, it follows that, for all o < s, there
exists x € X such that dim 7 (Y \ {x}) > 0. O



Step 1. Back to my boots(traps)

Theorem (Bootstrapping scheme)

Let0<s<1lande€(0,5), let u,v € P(B?) be s-Frostman
with constant C and dist(spt u,sptv) > C~1, and suppose that
both (u,v) and (v, u) have (o, K,1 — €)-thin tubes for some

B < o <s. Then there exists n > 0 such that (u,v) and (v, j1)
have (o +n, K',1 — 5¢)-thin tubes.

The general idea is to show by contradiction that, if (u, ) does
not have (o + n)-thin tubes, then we can find a (o, o)-Furstenberg
subset of Y := sptv (at some scale 7), whose dimension is
necessarily at least 20 + €. The geometry and dimension of this set
can be used to contradict our hypothesis against the existence of
thin tubes.



e-Improvement to the (s, t)-Furstenberg set estimate

Theorem (e-improved Furstenberg set estimate)

Given s € (0,1) and t € (s,2], there exist dg, € > 0 such that the
following holds ¥ § € (0, &o]: if X C B2 is a (d,t,0¢)-set and if for
each x € X there is a (d,s,0”¢)-set Ty of §-tubes through x, then

U 7

xeX

> 672575‘

)



Applications + Continuum Results



Points and Lines: Euclid’'s First Postulate Revisited

Figure: What is the most axiomatic property of Euclidean space?



Points and Lines: Euclid’'s First Postulate Revisited

Figure: That any two non-equal points must determine a unique line.



Points and Lines: Beck's Theorem

In general, sets of N > 3 points in Euclidean space have two
behaviours.

1. Either =~ N many points lie on some line; or,
2. The points determine > N2-many (unique) lines.

This result is known as Beck’s Theorem.

P.S. This is a consequence of a more nuanced result, the
Erdos-Beck Theorem.

Theorem

Suppose that S is a set of N points in the plane, with at most

N — k many points collinear (for some 0 < k < N —2). Then, the
set S determines 2 k - N unique lines.



Points and Lines: Large Collinear Subsets

Figure: A point-set of cardinality N = 12 with a large subset (k = 11) of
collinear points.



Points and Lines: Large Collinear Subsets

Figure: In this situation, the non-collinear point produces N —1 =11
unique lines; the remaining pairs-of-points produces only one single line,
for a total of 12 lines.



Points and Lines: Large Line Sets

Figure: A point-set of cardinality N = 12 whose largest collinear subset
has size k = 4.



Points and Lines: Large Line Sets
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Figure: A bit of a mess; however, in this case, the number of lines is
proportional to the number of pairs of unique points (around 55 lines).



A Continuum Version of Beck's Theorem

As a consequence of OSW's Main Theorem, one has the following
estimate for line sets.
Corollary

Let X C R? be a Borel set such that dim(X/£) = dim X for all
lines £ C R2. Then, the line set L(X) spanned by (distinct) pairs
of points in X satisfies,

dim £(X) > min{2dim X, 2}.

OSW refer to this Corollary as a “continuum version of Beck's
Theorem”. Let's draw a picture to see why.



“Wiggly Fractals” & Their Line Sets

/ N\

Figure: The black lines are the graph of some algebraic curve C. The
coloured blobs B, G, R C C represent three fractal subsets of C. What is
a lower bound for dim £L(BU G U R)?



A Short Remark on Incidence Theorems

Critical to the proof of Beck's Theorem is an e-improvement over
the Cauchy-Schwarz incidence estimate.

Proposition (Cauchy—Schwarz, e-improvement)
If S is a set of points and L is a set of lines in the plane, let

IS, L)={(p,) eSxL:pel}.
Then |I(S, L) < |L|*=¢ + |£]/2<|S| .

Of course... this is goofy, because we know that a much stronger
incidence estimate exists (the Szemerédi-Trotter theorem).

However, in the continuum, more delicate incidence estimates have
to suffice.



Furstenberg sets and a continuous Szemerédi-Trotter
estimate

To wrap-up our comparison of Theorem 1.1 with Beck's Theorem,
we briefly sketch the necessary e-improvement argument.

Theorem (T. Orponen, P. Shmerkin, 2021)

Given s € (0,1) and t € (s, 2), there exists (s, t) > 0 such that
the following holds for all 0 < § < do(s, t). Suppose that X C B?
satisfies,

XN B(x,r)|s <5 °rt|X|s,

and for each x € X, there exists a family of (0,s,0~¢) tubes T.
Then,

> 5—25—6
é




Sum-Product Problems

Dimensional estimates for radial projections have some remarkable
consequences for arithmetically-structured sets.

Corollary
Let A, B C R be Borel sets. Then

dim (ﬁ) > min{dim A 4 dim B, 1}.

Proof.

Included in the study guide! However, this gives a hint as to how
one may utilize radial projection theorems to "“lift" arithmetic
problems in R to product sets in R2. []



ABC Sum-Product Theorem

A much more complex—and enticing—application of the OSW
radial projection estimates is the following.
Theorem (T. Orponen, P. Shmerkin, 2023)

Let 0 < < a <1andk>0. Then there exists an 1) (depending
continuously upon «, 3, k) such that whenever A, B, C C R are
Borel and satisfy dim A = « and dim B = (3, there exists some

c € C satisfying,

dim(A+ cB) > dim A+,
so longasdimC > a — 8+ k.

The situation dim A = dim B and dim C > 0 follows from the
earlier (2010) work of J. Bourgain.



Exceptional Set Estimates: Kaufman's Bound Revisited

Recall Kaufman's exceptional set estimate for R2.
Theorem (R. Kaufman, 1968)
Let Y C R? be a Borel set. Then, one has,
dim{# € S* : dimmy(Y) < s} < s,
for 0 <'s < min{dimY,1}.
Again, as a consequence of the radial projection result of OSW,

one has the following improvement.

Theorem (T. Orponen, P. Shmerkin, 2023)

Suppose that Y C R? has equal packing and Hausdorff dimension.
Then, one has:

dim{0 € S' : dim7y(Y) < s} < max{2s — dim Y, 0}.



Sticky Kakeya Sets

Lastly, we mention one final recent advancement which
incorporates the bootstrapping thin-tubes argument of OSW.

Definition

A compact K C R3 is called a sticky Kakeya set if there exists a
family of lines £ of packing dimension 2 such that /N K contains a
unit line segment for each ¢ € L.

Theorem (H. Wang, J. Zahl, 2023)
The Hausdorff dimension of any sticky Kakeya set K C R3 is 3.
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