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In R3, define
Cone® = {(£,7) e R2 xR : 7 = [¢],1 < |¢] < 2}.
Given a smooth surface measure do for Cone?, define
Ef = (fdo)".

The function u(x, t) = Ef(x, t) solves the wave equation

{(af — Au(x,t) =0
4, 0) = £(¢).



For a set X c R3, let U(X) be the smallest number such that

|EF? < UX) 17240
X (do)
The number U(X) should reflect the shape of X.

This is in contrast with

J |Ef|P dx ~ aP|{x € Bg : |Ef(x)| ~ a}|,
Bgr

which is the left-hand side of a classic restriction or decoupling
estimate.



Mizohata—Takeuchi

Let
P={(¢m)eRxR:7=2¢ [ <1}

and Ef be the Fourier extension of P.
Given X < R?, we let

T(X) =sup{|X nT|: Tisalx R rectangle}

Conjecture (Mizohata—Takeuchi)

If X < [0, R)? is a union of lattice unit squares, then for each
€ > 0, there is C. > 0 so that

L |EF? < CR T(X)|f | 72(py-



Definition
A lightplank is a rectangular parallelepiped of dimensions
C x AC x A?C whose long and short edges are in null directions.

For a set X, we let

P(X)=sup{|XnP|:Pisalx RY? x R-lightplank}.

Theorem (O., 2023)

Suppose X < [0, R]? is a union of lattice unit cubes obeying the
Frostman condition

X "B <r, r>1.

Then for each € > 0, there is C. > 0 such that

fx |Ef* < CRP(X)Y| 12 g0)-



Theorem (O., 2023)

Suppose X < [0, R)? is a union of lattice unit cubes obeying the
Frostman condition

X B <r, r>1.

Then for each € > 0, there is C. > 0 such that

fx |Ef* < CRP(X)Y| T g0)-

This theorem is equivalent to a Fourier average estimate.



Fourier averages

Given a measure v in R3, 7(¢) need not decay as |¢] — oo.

Averages of U tend to do better.

Question
Given a measure v with suppv  [0,1]3 and (', do), how does

J |P|?do decay as R — o07?
RT



Main theorem, Fourier average version

Theorem (0., 2023)

Suppose v is a measure that agrees with Lebesgue measure on

X < [0, R]3, a union of lattice unit cubes obeying the Frostman
condition

X B <r, r>1.

Then for each € > 0, there is C. > 0 such that

f P12 do < C.R*P(X)Y2|X|.
Cone?



History

For the circle in the plane, the following decay rates hold.

Theorem
In each case, assume I, (v) = 1 with suppv < [0,1]?. The
following sharp decay rates hold and are sharp:

o R=, «ae(0,3] (Mattila, 1987)
f D(Re®)?d0 S 4 RY2, ae(},1] (Mattila, )
0 R0, ae(1,2) (Wolff, 1999)




History

In 2004, Erdogan proved the following decay estimate for the cone
segment in R3.

Theorem (Erdogan)
Suppose a € [1,2], and suppv < [0,1]® with I,(v) = 1. For every
€ > 0, there is C. > 0 so that for each R > 1,

f (RS> do(¢) < CRER™2.
Cone?

The decay rate matches that of the circle, and is also sharp.

A feature of Wolff's and Erdogan's work is that both authors used
the connection with §, |Ef|? problems in the opposite direction.



In terms of the assumptions of our main theorem, we have the
following slightly weaker corollary of Erdogan's result, stated for
a=1.

Corollary (Erdogan)

Suppose v is a measure that agrees with Lebesgue measure on
X < [0, R]3, a union of lattice unit cubes obeying the Frostman
condition

X B <r, r>1.

Then for each € > 0, there is C. > 0 such that

f D|? do < C.R° R%2.
Cone?

The main theorem strengthens this corollary by replacing the
right-hand side with C.R< P(X)%2|X]|.



Examples

Here, P(v1) ~ R, while P(1,) ~ 1.



Proof of main theorem, Fourier average version

By Fourier transform properties,

Lonez P dor = \ f f 5(x — y) du(x) du(y)
< [[ 56— avx aviv),

so it will suffice to estimate this double integral.

Lemma
For each ¢, N > 0, there exists C(e, N) so that

Here, g is the lightcone with vertex 0.



Let A(x,y) := d(x —y,l). By pigeonholing, for some 1 < p < R,

”\ax— )| dv(x) dv(y)

pf%(u xV){(x,y) e X x X :|x—y| ~ p,A(x,y) < R})
+ O(R™5%),

We let £,(X) = {(x,y) e X x X : [x —y| ~ p,A(x,y) < R}
Lemma (Key Lemma)

If X is a finite set of points in [0, R]?> x [R,2R]* such that
X " B1 <r, 1 <r<R, then

1£,(X)| < Rp? P(X)2|X|.



Lemma (Key Lemma)
Fix 1 < p < R. If X is a finite set of points in [0, R]?> x [R,2R]
such that | X n Br|1 <r, 1 <r <R, then

1£,(X)| < Rp? P(X)2|X|.

To prove the Key Lemma, we will transform the statement into
one about thin annuli and their intersections by point-circle duality.



Point-circle duality

Given a point x = (a,r) € R? x (0,0), we can regard x as the
circle
Cor={yeR*:|y—al=r}.

Likewise, B(x,8) = R? x (0,00) can be identified with the J-thin
annulus

Cror={yeR?:r—d<|y—al <r+6}



Point-circle duality
If 6 < p<1and (x,y)e L,(X), then x,y both belong to a
lightplank Q* of dimensions 6 x 1/dp x p. (Here
X < [0,1]% x [1,2].)

Equivalently, G5 x n Cs,, intersect in two 9, \/g—“rectangles.”




Point-circle duality

Cover (J,cx Csx by a maximal family R of pairwise incomparable

d, \/g—rectangles.



For each Q e R, we let

v(Q) = [{xe X:Qc G}l

Q*



Estimate of |£,(X)|

Therefore,
LX) e (@ x Q%) n (X x X),
QeR
and by the union bound

1L,(X)| < ), v(Q)?
QeR

<PX)12 ) v(Q)¥2
QeR



Wolff's circular maximal estimate

Let X be a set of < R(= 1) circles in [0,1]? x [1,2] with
0-separated radii.

Let gs(y) be the multiplicity function
8(y) = D Gix(y).
xeX

Then
&5l 1322y < RE(61X])%*



Proof of Key Lemma (scales < 1)

Let R be a maximal collection of pairwise incomparable

J, T-rectangles (with 7 = \/g).
Then,

&(y) = Y, v(Qxaly).
QeR

By Wolff's maximal function estimate (a = 1!),
3/2
X% | &

>ﬁ2mmmmw2

QeR

> ) v(@)?*PQl.
QeR



Proof of Key Lemma (scales < 1)

Recall

’Ep(X)| < Z V(Q)2 < P(X)1/2 2 V(Q)3/2.
QeR QeR

By Wolff's maximal estimate, we have further

1£,(X)] £ P(X)Y2 - (31X]) - |2

Using Q2| =6 - \/% gives

1£,(X)] < ﬁ X)X



Proof of Key Lemma

Lemma (Key Lemma)

If X is a finite set of points in [0, R]?> x [R,2R] such that
X " B/l1 <r,1<r<R,then foreachl < p <R,

1£,(X)] < Rp2 P(X)2|X].
By the bound for scales < 1,

op
1Ls,(0X)] £ \/; P(X)Y2|X| = pY2P(X)V2|X]|
By scale invariance,

1£,(X)| £ pPP(X)V2IX].



Recap

We proved
| 1o do < RePOOM2x],
Cone?

and it is sharp. Apart from R¢, this is equivalent to

j EFI2 < REPOOY2 s g1,
X

The proof doesn't use any cancellation of & within lightplanks.
Let

L(X) =sup{|X " T|: Tisalx1lx R tubein a null direction}

It seems natural to conjecture (at least for 1-dimensional X),

| 1Er? < ReLx AR



Thank you!



