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1. Introduction

1.1. Weighted Fourier extension estimates. In R3, the Fourier extension op-
erator with respect to a smooth measure σ for the cone segment Cone2 = {(ξ, τ) :
1 < |ξ| < 2, τ = |ξ|} is the linear operator taking functions f defined on {ξ ∈ R2 :
1 < |ξ| < 2} to the function Ef on R3 defined by

Ef(x, t) =

∫
{ξ∈R2:1<|ξ|<2}

f(ξ)e2πi(x·ξ+t|ξ|)σ(ξ) dξ, (x, t) ∈ R2 × R.
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By naturally lifting both f and the measure σ to the cone segment Cone2, we can
equivalently regard Ef as the Fourier transform of the complex measure (on Cone2)
fσ:

Ef(x) = |fσ(x) =

∫
Cone2

f(ω)e2πix·ω dσ(ω), x ∈ R3.

For a measure ν in R3, an important problem in Fourier analysis is proving L2(ν)
estimates for Ef that reflect the geometry of ν in some way.

An important open problem of this kind is the Mizohata–Takeuchi conjecture
for the parabola in the plane. By lattice unit squares, we mean squares of the form
v + [0, 1]2 ⊂ R2 with v ∈ Z2.

Conjecture 1 (Mizohata–Takeuchi for the parabola). Let

Ef(x, t) =

∫
[0,1]

f(ξ)e2πi(xξ+tξ2) dξ, (x, t) ∈ R× R,

be the Fourier extension of the unit parabola in the plane. Suppose ν is a positive
measure supported in BR := [0, R]2 that agrees with the Lebesgue measure on a
union of lattice unit squares, and let

T(ν) = sup{ν(T ) : T ⊂ R2 is a 1×R rectangle (with any orientation)}.
Then for each ϵ > 0, there is a constant Cϵ so the a priori estimate∫

[0,R]2
|Ef |2 dν ≤ CϵR

ϵ T(ν) ∥f∥2L2([0,1])

holds for all R > 1.

Besides its intrinsic interest as a problem in Fourier analysis, propositions anal-
ogous to Conjecture 1 have been proved and have applications to convergence to
initial data for dispersive partial differential equations. See for example the im-
portant work of Du–Zhang on the Schrödinger equation [3] which established that
Ef(x, t) → f(x) almost everywhere for f in a critical L2-based Sobolev space as a
corollary of a fractal restriction theorem for the paraboloid.

There are a few important examples of measures ν where Mizohata–Takeuchi
(MT) for the parabola is known to hold—see for example the article of Carbery,
Iliopoulou, and Wang [2]—but the full conjecture lies out of reach at time of writing.
An important obstacle to proving MT reflects one of the objectives of studying MT
to begin with: namely we would like to improve our understanding of the shape of
the level sets {x : |Ef(x)| ≈ λ}. For some background on this theme in Fourier
analysis, Larry Guth’s article [5] based on his 2022 ICM talk is a good resource.

The goal of this paper is to prove a sharp L2(ν) estimate of the Fourier extension
of the cone segment for 1-dimensional ν that is analogous to MT for the parabola.
Our theorem for the cone only applies to 1-dimensional measures, whereas Conjec-
ture 1 considers all measures. We provide some discussion of other problems and
variations in Section 7. To state our main theorem, we need a geometric definition.

Definition 1. A lightplank in R3 is a rectangular parallelepiped P of dimensions
C0 × AC0 × A2C0 such that for some unit vector v ∈ R2, the longest edge of P is
in the direction (v, 1), and whose shortest edge is in the direction (v,−1).

By lattice unit cubes, we mean cubes of the form v + [0, 1]3 with v ∈ Z3. Our
main result is the following L2(ν) cone restriction theorem for 1-dimensional ν:
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Theorem 1. For each ϵ > 0, there is a constant Cϵ so the following holds for each
R > 1. Suppose ν is a measure supported in BR := [0, R]2 × [R, 2R] that agrees
with the Lebesgue measure on a union of lattice unit cubes X ⊂ BR and satisfies
the 1-dimensional Frostman condition

ν(B3(x0, r)) ≲ r, x0 ∈ R3, r > 1.

Let P(ν) be the quantity

P(ν) = max{ν(P ) : P is a lightplank of dimensions 1×R1/2 ×R}.

Then the estimate∫
[0,R]2×[R,2R]

|Ef |2 dν ≤ CϵR
ϵ P(ν)1/2∥f∥2L2(dσ)

holds.

The estimate of Theorem 1 is sharp in the sense that for each R > 1, and each
γ ∈ [1, R], there is a measure ν of the stated form with P(ν) ∼ γ, and a function f
with ∥f∥L2(dσ) = 1 such that

∫
|Ef |2 dν ∼ γ1/2.

Our approach is based on a duality argument that connects weighted extension
estimates with another well studied problem in Fourier analysis, namely the decay
of Fourier means, where we make a new contribution that we describe presently.

1.2. Decay of Fourier means. If Γ is a compact submanifold of Rd and σ is
a smooth surface measure on Γ, one can ask the following question about the
Fourier transform of σ: If ν is a measure in Rd, how fast does the Fourier average∫
Γ
|pν(Rξ)|2dσ(ξ) with respect to σ decay as R → ∞? A particular line of inves-

tigation that has received much attention is to study α-dimensional measures ν.
One way to make a precise question is to introduce the α-dimensional energy of a
measure. For α ∈ (0, d), the α-dimensional energy of ν is the quantity

Iα(ν) =

∫∫
Rd×Rd

|x− y|−α dν(x)dν(y).

The energy is a quadratic function of ν, and a precise question is for fixed α ∈ (0, d),
what is the supremum βd(α) of numbers β > 0 for which we have the estimate∫

Γ

|pν(Rξ)|2 dσ(ξ) ≤ CβR
−βIα(ν)

for all R > 1 and all ν with supp ν ⊂ B(0, 1)? In [10], using ideas of wave packets
from restriction theory, Wolff established a lower bound on β2(α) for all α ∈ (0, 2)
for the unit circle. In the range α ∈ [1, 2), Wolff’s lower bound was new at the
time, and it matches examples presented in the same paper, closing the question
(as far as β2(α)) on the unit circle in R2:

Theorem 2 (Wolff, 1999 [10]). Fix α ∈ (0, 2). For any ϵ > 0, there is a constant
Cϵ such that the following is true. Let ν be a positive measure in R2 supported in
the unit disc and with α-dimensional energy Iα(ν) = 1. Then for any R > 1,∫ 2π

0

|pν(Reiθ)|2 dθ ≤ CϵR
ϵR−α/2

holds. This bound is sharp in the sense that β2(α) = α/2 for α ∈ [1, 2].
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As for the cone in R3, before Erdoğan’s work in [4], the sharp exponent β3(α)
for Cone2 was known in the ranges α ∈ (0, 1]∪ [2, 3). Combining ideas from Wolff’s
investigation of Fourier decay on dilations of the circle with techniques from bilinear
restriction theory (in particular, a Whitney decomposition of the cone), Erdoğan
established the values of β3(α) for α ∈ (1, 2) for Cone2:

Theorem 3 (Erdoğan, 2004 [4]). Fix α ∈ [1, 2]. If ν is a compactly supported
measure in R3 with Iα(ν) = 1, and σ is a smooth surface measure on Cone2, then
for each ϵ > 0 there is a constant Cϵ so the estimate∫

Cone2
|pν(Rξ)|2 dσ(ξ) ≤ CϵR

ϵR−α/2

holds for all R > 1. Moreover, this bound is sharp in the sense that β3(α) = α/2
for α ∈ [1, 2].

Note in particular how the rate of decay in Theorem 3 matches that of the circle
in Theorem 2 for α ∈ [1, 2).

The present paper makes a contribution to this line of investigation by proving a
geometric sharpening of Erdoğan’s estimate at α = 1. Our main theorem regarding
the decay of Fourier means is the following:

Theorem 4. For each ϵ > 0, there is a constant Cϵ so the following holds for each
R > 1. Suppose ν is a measure supported in BR := [0, R]2 × [R, 2R] that agrees
with the Lebesgue measure on a union of lattice unit cubes X ⊂ BR and satisfies
the 1-dimensional Frostman condition

ν(B3(x0, r)) ≲ r, x0 ∈ R3, r > 1.

Let P(ν) be the quantity

P(ν) = max{ν(P ) : P is a lightplank of dimensions 1×R1/2 ×R}.

Then the estimate ∫
|pν|2 dσ ≤ CϵR

ϵ P(ν)1/2∥ν∥

holds, where ∥ν∥ = ν(R3) = |X| is the total mass of ν.

Our hypotheses are slightly different from Erdoğan’s; we start from a measure ν
that agrees with the Lebesgue measure on a 1-dimensional configuration of lattice
unit cubes in [0, R]2 × [R, 2R], rather than a measure supported in the unit ball
with I1(ν) = 1. To illustrate the connection between Theorem 3 and our Theorem
4, we show how Theorem 3 implies a weaker estimate than Theorem 4:

Corollary 1. For each ϵ > 0, there is a constant Cϵ so the following holds for each
R > 1. Suppose ν is a measure supported in BR := [0, R]2 × [R, 2R] that agrees
with the Lebesgue measure on a union of lattice unit cubes X ⊂ BR and satisfies
the 1-dimensional Frostman condition

ν(B3(x0, r)) ≲ r, x0 ∈ R3, r > 1.

Then the estimate ∫
|pν|2 dσ ≤ CϵR

ϵR3/2

holds.
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Proof using Theorem 3. To make use of Theorem 3, we have to push the measure
ν forward to B1 := [0, 1]2 × [1, 2] under the map

Tx = R−1x,

as well as normalize the 1-energy of our measure. Let µ = Tν be the pushforward
of ν under T . By the definition of µ and our assumption on ν,

I1(µ) =

∫∫
dν(x)dν(y)

|R−1x−R−1y|
≲ R

∫ O(logR)∑
j=1

ν(B(x, 2j))

2j
dν(x) ≲ (logR)R2.

Hence µ0 = R−1µ satisfies I1(µ0) ≈ 1, so by Theorem 3,∫
|xµ0(Rξ)|2 dσ(ξ) ⪅ R−1/2.

On the other hand, xµ0(Rξ) = R−1
pν(ξ), so substituting and rearranging, we obtain∫
|pν|2 dσ ⪅ R3/2.

□

If ν is a measure satisfying the assumptions of Theorem 4, then P(ν) ≤ R
and ∥ν∥ ≤ R, so Theorem 4 also immediately implies Corollary 1. However, for
measures ν with P(ν) ≪ R, Theorem 4 gives a better estimate than Corollary 1.

As we will show in Section A.1 of the appendix, following a closely related ar-
gument due to Barceló–Bennett–Carbery–Rogers [1], the estimate of Theorem 4 is
essentially equivalent to Theorem 1 apart from Rϵ factors. Theorem 4 is therefore
sharp in the sense that for each R and each γ ∈ [1, R], there is a measure ν on BR

satisfying the Frostman condition of exponent 1 with P(ν) ∼ γ such that∫
|pν|2 dσ ⪆ γ1/2∥ν∥.

We describe examples illustrating both the sharpness of Theorem 1 and Theorem
4 following the proof of Theorem 4.

The keys to the proof of Theorem 4 are a useful pointwise estimate for the Fourier
transform |qσ(x)| of a smooth surface measure σ on Cone2, and a maximal function
estimate due to Wolff which was generalized in 2022 by Pramanik–Yang–Zahl in
their work on restricted families of projections [7].

1.3. Maximal estimates and point-circle duality. As we mentioned, one of the
keys to the proof of Theorem 4 is a useful decay estimate for the Fourier transform
of σ, a smooth surface measure on Cone2. We do not believe this estimate is new,
but we could not find this precise statement in the literature, so we provide a proof
in the appendix to keep this paper self-contained.

Proposition 1. Let σ be a smooth compactly supported surface measure in Cone2.
For any ϵ > 0 and any N > 1, there is a constant C(ϵ,N) so that

|qσ(x)| ≤ C(ϵ,N)
1

(1 + |x|) 1
2−ϵ

1

(1 + d(x,Γ0))N

holds for all x ∈ R3.
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To a first approximation, this proposition says that up to a rapidly decaying tail,
a majorant for the Fourier transform of σ is the “step function”

(1) S(x) =
1

(1 + |x|)1/2
1N1(Γ0)(x)

where Γ0 = {(x′, x3) : ||x′| − |x3|| = 0} is the lightcone with vertex 0 in R3 and
N1(Γ0) denotes the 1-neighborhood of Γ0. By Fourier transform properties and
this heuristic,∫

|pν|2 dσ =

∫∫
qσ(x− y) dν(x)dν(y) ⪅

∫∫
S(x− y) dν(x)dν(y) +R−500.

By the equation (1) for S(x−y), we see to estimate
∫∫

S(x−y) dν(x)dν(y), the main
contribution will come from pairs (x, y) ∈ supp ν× supp ν for which x−y is close to
the lightcone Γ0. Equivalently, we can regard points x ∈ supp ν ⊂ [0, R]2 × [R, 2R]
as circles Cx in the plane with centers in [0, R]2 and radii in [R, 2R] via

C(x′,x3) = {a ∈ R2 : ||a− x′| − x3| = 0}.
In terms of this point-circle duality, if x − y is nearly lightlike, the circles Cx, Cy

must be nearly internally tangent. The maximal estimates of Wolff or Pramanik–
Yang–Zahl provide the necessary geometric input that allows us to count such pairs
of nearly internally tangent circles.

Acknowledgments. I would like to acknowledge my advisor Larry Guth for his
support and invaluable discussions. In particular, I would like to thank him for
introducing me to Wolff’s maximal function estimate.

2. List of notation

• R(=δ−1) will denote the large spatial scale.
• C will denote absolute constants that may vary within the same line.
• B(x, r) denotes the Euclidean ball with center x and radius r.
• Γ0 = {(a, r) ∈ R3 : ||a| − |r|| = 0} is the lightcone with vertex 0.
• Γy = Γ0 + y is the lightcone with vertex y.
• |X| may denote the Lebesgue measure, or the cardinality of X as appro-
priate.

For ϵ > 0 fixed:

• A ≪ B: there is a constant C > 0 so that A ≤ δCϵB.
• A ⪅ B: there is a constant C > 0 so that A ≲ δ−CϵB.
• A ≈ B: A ⪅ B and B ⪅ A (with possibly different implied constants).

3. Wolff’s maximal estimate

Fix δ > 0 and, for a ∈ R2 and r ∈ [ 12 , 2], let Cδ,a,r = {x ∈ R2 : r − δ < |x− a| <
r + δ}. If f : R2 → R, then we define Mδf : [

1
2 , 2] → R via

Mδf(r) = sup
a∈R2

1

|Cδ,a,r|

∫
Cδ,a,r

|f(x)| dx.

In [8], Wolff proved the following estimate for the maximal function Mδf .

Theorem 5. If ϵ > 0 then there is a constant Aϵ such that for all δ > 0 and f ,

(2) ∥Mδf∥L3([ 12 ,2],dr)
≤ Aϵδ

−ϵ∥f∥L3(R2,dx).
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The estimate (2) has a dual form. Suppose that a(r) is a choice of center for a
circle in the plane of radius r, and w(r) is a nonnegative weight function. Define a
multiplicity function

g(x) =

∫ 2

1/2

w(r)
Cδ,a(r),r

|Cδ,a(r),r|
(x) dr.

Proposition 2 (Dual formulation). If ϵ > 0 then there is a constant Aϵ such that
for all δ > 0, a(r) and w(r),

(3) ∥g∥L3/2(R2,dx) ≤ Aϵδ
−ϵ∥w∥L3/2([ 12 ,2],dr)

.

Proposition 3. Wolff’s maximal estimate is equivalent to its dual formulation.

Proof. Suppose that (2) holds. By duality, for an appropriate f ∈ L3(R2, dx) with
∥f∥3 = 1,

∥g∥L3/2(R2,dx) =

∫
R2

g(x)f(x) dx

=

∫
R2

(∫ 2

1

w(r)
Cδ,a(r),r

|Cδ,a(r),r|
(x) dr

)
f(x) dx

=

∫ 2

1

w(r)

(
1

|Cδ,a(r),r|

∫
Cδ,a(r),r

f(x) dx

)
dr

≤
∫ 2

1

w(r)Mδf(r) dr

≤ ∥w∥L3/2([ 12 ,2],dr)
∥Mδf∥L3([ 12 ,2],dr)

≤ Aϵδ
−ϵ∥w∥L3/2([ 12 ,2],dr)

.

Likewise, if (3) holds, then by linearizing the maximal function, given f ∈ L3(R2, dx),
for an appropriate a(r) we have

Mδf(r) =
1

|Cδ,a(r),r|

∫
Cδ,a(r),r

|f(x)| dx.

By duality, for an appropriate w ∈ L3/2([ 12 , 2], dr) with ∥w∥3/2 = 1,

∥Mδf∥L3([1,2],dr) =

∫ 2

1

Mδf(r)w(r) dr

=

∫ 2

1

(
1

|Cδ,a(r),r|

∫
Cδ,a(r),r

|f(x)| dx
)
w(r) dr

=

∫
R2

|f(x)|
(∫ 2

1

w(r)
Cδ,a(r),r

|Cδ,a(r),r|
(x) dr

)
dx

≤ ∥f∥L3(R2,dx)∥g∥L3/2(R2,dx)

≤ Aϵδ
−ϵ∥f∥L3(R2,dx).

□

We will refer to either the original maximal function estimate or its dual for-
mulation as “Wolff’s maximal estimate.” In the forthcoming arguments, we will
assume that for some small, but universal α0 > 0 (α0 = 1

100 works), the centers
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and radii of the circles belong to Q = [0, 2α0]
2 × [1 − α0, 1 + α0] ⊂ R3. This only

affects the constants in Wolff’s maximal estimate.

Example 1 (Wolff). Suppose X = {xi = (ai, ri)}|X|
i=1 is a set of |X| ≤ R circles in

Q with at most one radius in each interval of length ∼ δ in [1−α0, 1+α0], and set

gδ(y) =
∑
x∈X

Cδ,x(y).

Let {Ii}|X|
i=1 be the intervals of length ∼ δ that intersect the set of radii from X;

then we can also express g(y) as a weighted integral of the form in Wolff’s maximal
estimate:

gδ(y) ∼
|X|∑
i=1

∫
Ii

Cδ,ai,r(y)

δ
dr ∼

∫
⋃|X|

i=1 Ii

Cδ,ai,r(y)

|Cδ,ai,r|
dr.

Thus by Wolff’s maximal estimate with the weight w(r) = 1⋃|X|
i=1 Ii

(r),

∥gδ∥L3/2(R2,dy) ≲ϵ δ
−ϵ(δ|X|)2/3.

In Example 1, the family of circles is very regular in the r-parameter. In 2022,
Pramanik, Yang, and Zahl generalized Wolff’s maximal estimate in their work on
restricted families of projections [7]. In particular, as a consequence of the general
maximal function estimate they proved, we have the following generalization of
the last example. Now we allow for configurations of circles satisfying a Frostman
condition of exponent at most 1 jointly in the centers and radii (a, r). The following
theorem is essentially Remark 2 following Theorem 1.7 of [7].

Theorem 6 (Pramanik–Yang–Zahl [7], 2022). Suppose X ⊂ Q = [0, 2α0] × [1 −
α0, 1 + α0] is a set of circles satisfying the 1-dimensional Frostman condition

|X ∩B(x0, r)| ≲ϵ δ
−ϵ(r/δ), x0 ∈ Q, r ≥ δ.

and let
gδ(y) =

∑
x∈X

Cδ,x(y).

Then the estimate
∥gδ∥L3/2(R2,dy) ≤ δ−Cϵ(δ|X|)2/3

holds.

In Section 5, we will show how to use the maximal estimate of Example 1 or
Theorem 6 to bound the number of pairs of nearly internally tangent circles. It will
be clear from the argument how any available maximal estimate of the form

∥gδ∥Lp(R2,dy) ≲ δ−ϵ(δ|X|)1/p

for a configuration of circles X leads to an analogous theorem to Theorem 4.

4. Point-circle duality and geometric considerations

To estimate the integral

∥pν∥2L2(dσ) =

∫∫
BR×BR

qσ(x− y) dν(x) dν(y),

we take into account the distance d(x, y) = |x − y|, as well as the distance from
y = (y′, y3) to the lightcone Γx with vertex x = (x′, x3):

∆(x, y) := ||x′ − y′| − |x3 − y3|| ∼ d(x− y,Γ0).
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By the approximation |qσ(x)| ≤ S(x)+R−500, to estimate the integral appearing
above, heuristically, we could pigeonhole a value ρ ∈ [1, R] such that most pairs
of points in X ×X contributing to the integral have d(x, y) ∼ ρ and ∆(x, y) ≤ 1.
Each such pair lies in a 1 × ρ1/2 × ρ-lightplank, as we will show (see Proposition
22 for a precise statement). In order to apply the maximal estimate of Example 1
or Theorem 6 to the estimate of this integral in the proof of Theorem 4, we have
to convert information about pairs of points in BR into information about pairs
of circles in the plane with centers in [0, R]2 and radii in [R, 2R]. Once we are
considering circles and their thin neighborhoods in the plane, we are in a situation
where we can directly apply a maximal estimate.

The goal of this section is to prove a number of geometric propositions regarding
the overlap patterns of thin annuli, as well as lightplanks. By point-circle duality, we
can convert between incidences of thin annuli and incidences of lightplanks. Besides
being natural, an attractive feature of working with lightplanks is that lightplanks
are flat shapes, and certain propositions are simpler to prove when phrased in terms
of lightplanks. Our main result in this direction is Proposition 15. We believe the
results of this section may have an independent interest.

4.1. Rectangles and lightplanks. Given a point (x′, x3) ∈ R2 × (0,∞), we can
associate a circle C(x′,x3) in the plane defined by

C(x′,x3) = {a ∈ R2 : ||a− x′| − x3| = 0},

and conversely a circle in the plane naturally determines a point in the upper half-
space with coordinates its center-radius pair. In this first subsection, we will extend
this fundamental duality between points and circles to shapes in R2 × (0,∞) and
subregions of thin annuli in the plane.

From now until the end of Section 5, let ϵ > 0 be fixed. We will assume that
δ < δ0(ϵ) is small enough so that δϵ0 < 10−3 to ensure that approximations such as
cos θ ∼ 1− θ2/2 hold up to constant factors if |θ| ≤ δϵ. All the circles we consider
will be assumed to lie in Q = [0, 2α0]

2× [1−α0, 1+α0] unless mentioned otherwise.

Definition 2 (δ, τ -rectangle). For δ1/2 ≤ τ ≪ 1, a δ, τ -rectangle is the δ-neighborhood
of an arc of length τ on some circle of radius r ∈ [1−α0, 1+α0]. We will sometimes
refer to the implicit circle in this definition as the core circle of Ω, and we may
write Ω = Ω(v) if v is the core circle of Ω. The midpoint of the core arc of Ω will
be referred to as the center of Ω.

Definition 3 (Comparable). For 1 < A < δ−Cϵ, we say two δ, τ -rectangles Ω1,Ω2

are A-comparable if there is an A2δ, Aτ -rectangle Ω′ such that Ω1 ∪ Ω2 ⊂ Ω′.
If Ω1,Ω2 are not A-comparable, we say they are A-incomparable. A collection
R of δ, τ -rectangles is pairwise A-incomparable if no two members of R are A-
comparable.

With these definitions in hand, we can state the main goal of Section 4 is to prove
Proposition 10 and Proposition 16. The first says that being A-comparable is almost
a transitive relation on δ, τ -rectangles. The second proposition says that we cannot
fit too many A-incomparable δ, τ -rectangles in a slightly larger rectangle. We need
both of these propositions for the application of the maximal function estimate.

Remark 1. The definitions of δ, τ -rectangle and A-comparable make sense for any
numbers δ, τ, A, but in our application we only need to work with δ1/2 ≤ τ ≤ δCϵ
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and 1 ≤ A ≤ δ−Cϵ. The choice of A2 in the definition of A-comparable makes the
numerology in the forthcoming rectangle-lightplank duality nicer, but it is not an
important point since we always work with A ≈ 1.

If τ ≲ δ1/2, then a δ, τ -rectangle is a rectangle in the usual sense, while if τ
is much larger than δ1/2, a δ, τ -rectangle will be a “curved” subset of a δ-thick
annulus.

Definition 4 (Tangency). We say a δ, τ -rectangle Ω is λ-tangent to the circle x if
Ω ⊂ Cλδ,x. We let Cλδ(Ω) = {x ∈ Q : Ω ⊂ Cλδ,x} be the collection of λ-tangent
circles to Ω in Q.

If Ω = Ω(v) is a δ, τ -rectangle, then the core circle v is 1-tangent to Ω. Besides v,
there are many other nearby circles w ∈ Q which may well serve as an approximate
core circle of Ω. The set of all such w has the simple and important shape of a
≈ δ × δτ−1 × δτ−2-lightplank centered on v when regarded as a subset of R3. We
will describe this correspondence more and it will be an important ingredient in
some of the proofs.

Proposition 4. If Ω is a δ, δ1/2-rectangle, then Cδ(Ω) is the union of two lightplanks
of dimensions ∼ δ × δ1/2 × 1 contained in R2 × [1− α0, 1 + α0].

Proof. By translating and rotating our coordinate system, we may assume that
Ω = [−δ, δ] × [−δ1/2, δ1/2]. The circles (a1, a2, r) that have Ω ⊂ Cδ,(a1,a2,r) satisfy
by definition

(O(δ)− a1)
2 + (O(δ1/2)− a2)

2 = (r +O(δ))2.

Simplifying and neglecting terms of O(δ2), we find

O(δ)a1 +O(δ1/2)a2 + ||a|2 − r2| = O(δ).

In order for this equation to be satisfied, we must have a1 = ±1 + O(1), a2 =
O(δ1/2), and r = |a|+O(δ), which are the equations for the union of two lightplanks
of dimensions ∼ δ × δ1/2 × 1 contained in R2 × [1− α0, 1 + α0]. □

As a minor variation on the last proposition, we can also describe the shape of
CAδ(Ω) if Ω is a δ, δ1/2-rectangle. We will need this result later when we prove
Proposition 9. The proof is just a reiteration of the proof of Proposition 4.

Proposition 5. If Ω is a δ, δ1/2-rectangle, then CAδ(Ω) is the the union of two
lightplanks with dimensions ∼ Aδ ×Aδ1/2 × 1 contained in R2 × [1− α0, 1 + α0].

To describe the shape of Cδ(Ω) when Ω is a δ, τ -rectangle and τ ≫ δ1/2, we make
a definition.

Definition 5. A lightlike basis for R3 is an orthonormal basis E of R3, such that
for some e ∈ R2, |e| = 1, E = { 1√

2
(e, 1), 1√

2
(e,−1), (e⊥, 0)}. A lightlike coordinate

system (x1, x2, x3), o is the usual rectangular coordinate system with respect to a
lightlike basis with the point o ∈ R3 as the designated origin.

Proposition 6. If δ1/2 ≪ τ ≪ 1 and Ω(o) is a δ, τ -rectangle with core circle o, then
Cδ(Ω) contains and is contained in O(1)-dilations of a δ × δτ−1 × δτ−2 lightplank
contained in R2 × [1− α0, 1 + α0] with center o.

Proof. We will use complex notation, so a point in the plane can be represented as
reiθ for some r, θ. By rotating, translating, and scaling by a factor ∼ 1, we may
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assume that in our chosen coordinate system, the core circle o of Ω is (0, 0, 1) and
Ω is the region

Ω = {a ∈ R2 : ||a| − 1| < δ, |a− 1| ≤ τ}.

Let N ∼ τδ−1/2 be a dyadic integer, so we may write Ω as a union of N -many
δ, δ1/2-rectangles

Ωk = {a ∈ R2 : ||a| − 1| < δ, |a− eik
√
δ| <

√
δ}, |k| ≲ N.

By definition, Cδ(Ω) =
⋂

|k|≲N Cδ(Ωk), so we analyze the shape of this latter inter-

section. By Proposition 4, each Cδ(Ωk) is a union of two lightplanks P1(k), P2(k),
only one of which contains o—say it is P1(k) for each k. Thus, Cδ(Ω) is the intersec-
tion of the “bush” of lightplanks

⋂
|k|≲N P1(k). Our claim is that the intersection of

this bush is essentially a smaller lightplank of the prescribed dimensions and same
orientation as P1(0).

Let

em =

0
1
0

 , el =
1√
2

−1
0
1

 , es =
1√
2

−1
0
−1


be the direction vectors for the intermediate, long, and short edges of the light-
plank P1(0), respectively, and consider the associated lightlike coordinate system
(xm, xl, xs), o with o = (0, 0, 1) as the designated origin. In this coordinate system,
we claim that Cδ(Ω) is contained in and contains O(1)-dilations of the set

P := {(xm, xl, xs) : |xm| ≲ δτ−1, |xl| ≲ δτ−2, |xs| ≤ δ}.

Indeed, for each 1 ≤ |k| ≲ N , consider the intersection Rk := P1(k)∩P1(−k)∩P1(0).
In the lightlike coordinate system (xm, xl, xs), o, this region is contained in and
contains O(1)-dilations of the set

{(xm, xl, xs) : |xm| ≲ k−1δ1/2, |xl| ≲ k−2, |xs| ≤ δ}

as can be seen by considering the intersection of the core planes of P1(k), P1(−k)
with the lightplank P1(0). Taking the intersection of Rk over |k| ≲ N and using
the definition of N gives that Cδ(Ω) contains and is contained in O(1)-dilations of
the set

{(xm, xl, xs) : |xm| ≲ δτ−1, |xl| ≲ δτ−2, |xs| ≤ δ},

which is a lightplank of dimensions of δ × δτ−1 × δτ−2, as claimed. □

Like the sets Cδ(Ω) for Ω ⊂ R2, there is an appropriate “dual” for subsets E ⊂ R3.

Definition 6. If E ⊂ R3, and δ > 0, let

Vδ(E) = {a ∈ R2 : E ⊂ Γδ,a}

where Γδ,a is the δ-neighborhood of Γa.

The fundamental relationship we need between C and V is the one between
δ × δτ−1 × δτ−2-lightplanks and δ, τ -rectangles.

Proposition 7. If P is a δ × δτ−1 × δτ−2 lightplank contained in Q, then Vδ(P )
is a δ, τ -rectangle in the plane.
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Proof. Let o = (o′, o3) be the center of P , and let ℓo be the lightray parallel to the
long edge of P passing through o. Let a0 be the point of intersection of ℓo and
R2×{0}, and let Ω be the δ, τ rectangle with core circle o centered on a0. We claim
that Vδ(P ) = Ω. By rotating, translating, and scaling by a factor ∼ 1, we may
assume that in our chosen coordinates, o = (0, 0, 1) and a0 = (1, 0, 0). If a ∈ Vδ(P ),
then in particular, o ∈ Γδ,a, so ||a| − 1| < δ. We claim that |a − a0| ≲ τ , which
together with ||a| − 1| < δ implies that a is contained in a constant dilation of Ω,
as desired.

Borrowing notation from Proposition 6, for any k, let

Ωk = {a ∈ R2 : ||a| − 1| < δ, |a− eik
√
δ| <

√
δ},

and let P1(k) be the component of Cδ(Ωk) containing o. Let k0 ≥ 1 be the largest
k such that P ⊂

⋂
k≤k0

P1(k). In the lightlike coordinate system (xm, xl, xs), o

associated to the lightplank P1(0), we see that

P ⊂
⋂

k≤k0

P1(k) ⊂ {(xm, xl, xs) : |xm| ≲ k−1
0 δ1/2, |xl| ≲ k−2

0 , |xs| ≤ δ}.

As P is a δ × δτ−1 × δτ−2 lightplank, it must be the case that k−1
0 δ1/2 ≳ δτ−1, or

in other words that k0 ≲ δ−1/2τ . Hence, if P ⊂ Γa,δ, |a− a0| ≲ δ1/2 · (δ−1/2τ) = τ .
This finishes the proof. □

Taken together, Proposition 6 and Proposition 7 give us the following result
concerning the duality between rectangles and lightplanks.

Corollary 2 (Rectangle-lightplank duality). δ, τ -rectangles in R2 × {0} and δ ×
δτ−1× δτ−2-lightplanks contained in R2× [1−α0, 1+α0] are duals of one another.

4.2. Geometry of comparability. In addition to the duality laid out in Corol-
lary 2, we would like to transform statements about comparable rectangles into
statements about comparable lightplanks, and vice versa.

To begin, we need a lemma which describes the measure of the intersection of
thin annuli, and which appears in various forms throughout the literature. The
form we use here is part (a) of Lemma 3.1 in Wolff’s survey on then-recent work
on the Kakeya problem [9]. To introduce it, we set up some more notation. Given
a pair of circles xi = (ai, ri) ∈ Q, i = 1, 2, we define the numbers

d(x1, x2) = |a1 − a2|+ |r1 − r2|,
∆(x1, x2) = ||a1 − a2| − |r1 − r2||.

The number d is the usual distance between circles thought of as points in R3, and
the number ∆ is a measure of how nearly the circles x1, x2 are to being internally
tangent. For instance, ∆(x1, x2) = 0 if and only if the circles x1, x2 are internally
tangent, or equivalently if and only if the vector x1 − x2 is lightlike. The number
∆(x1, x2) is also (up to a multiplicative constant) the distance from x2 to the
lightcone Γx1

with vertex x1, and vice-versa.

Lemma 1 (Lemma 3.1 (a), [9]). Assume that v, w are two circles in Q. Let
d = d(v, w), and ∆ = ∆(v, w). Then

|Cδ,v ∩ Cδ,w| ≲ δ · δ√
(d+ δ)(∆ + δ)

.
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Corollary 3. If Ω ⊂ Cδ,v ∩ Cδ,w is a δ, τ -rectangle, then

τ ≲
δ√

(d(v, w) + δ)(∆(v, w) + δ)

Proof. Let d = d(v, w), ∆ = ∆(v, w). By Lemma 1,

δτ ∼ |Ω| ≤ |Cδ,v ∩ Cδ,w| ≲ δ · δ√
(d+ δ)(∆ + δ)

.

Canceling δ from both sides of the inequality gives the desired result. □

Proposition 8. Suppose C1, C2 are two circles in Q which intersect at a point
a ∈ R2. Let u1, u2 be the unit tangent vectors to C1, C2, respectively at the point
a. Then ∠u1, u2 ∼

√
d(C1, C2)∆(C1, C2)

Proof. Without loss of generality, suppose C1 = (0, 0, r) and C2 = (b, 0, s) with
1−α0 ≤ s ≤ r ≤ 1+α0 and b > 0. With these choices, we have d(C1, C2) = b+(r−s)
and ∆(C1, C2) = |b− (r − s)|. Consider the triangle T in the plane whose vertices
are a, (0, 0) and (b, 0). By elementary geometry, the angle ϕ at the vertex a of T is
the same as ∠u1, u2. By the law of cosines,

b2 = r2 + s2 − 2rs cosϕ.

Adding and subtracting 2rs and completing the square yields

b2 = (r − s)2 + 2rs(1− cosϕ).

Note that by definition, d(C1, C2)∆(C1, C2) = |b2 − (r − s)2|. Suppose b > r − s
(with a similar conclusion in case b ≤ r − s), so rearranging, we have

d(C1, C2)∆(C1, C2)

rs
= 2(1− cosϕ).

Using the approximations r, s ∼ 1 and cosϕ ∼ 1− ϕ2

2 , we obtain

d(C1, C2)∆(C1, C2) ∼ ϕ2.

Taking square roots yields the claim. □

The following proposition, and its proof, is very similar to Lemma 1.2 of [8]. In
that context, the assumption that Ω is contained in the intersection of thin annuli is
replaced with the assumption that the intersection is nonempty, and the conclusion
gives an estimate of the size of τ such that Cδ,v ∩CAδ,w contains a δ, τ -rectangle in
terms of d(v, w) and ∆(v, w).

Proposition 9 (Engulfing). Let 1 < A,B < δ−Cϵ and Ω(v) be a δ, τ -rectangle con-

tained in Cδ,v ∩CAδ,w for v, w ∈ Q. Suppose Ω
(w)

is an Aδ,Bτ -rectangle contained
in CAδ,w which contains Ω. Then there exists a universal constant A1 > 1 such

that Ω ⊂ CA1AB2δ,v ∩ CAδ,w.

Proof. Let d = d(v, w), ∆ = ∆(v, w), and let γ, γ denote the core arcs of Ω,Ω. We
make the simplifying technical assumption that there exists a point x ∈ γ ∩ γ ⊂ Ω.
To remove this assumption, we note by replacing v with a concentric circle of
a slightly smaller or larger radius, we can arrange for γ ∩ γ ̸= ∅, while keeping

Ω(v) ⊂ Ω
(w)

.
By translating, scaling by a factor ∼ 1, and rotating our coordinate system if

necessary, assume that w = (0, 0, 1), v = (a1, a2, s) =: (a, s), and that x = 1 is
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on the positive real axis (see Figure 1). With this choice of coordinate system, it
suffices to show (using complex notation) that for |r − 1| < Aδ and |θ| ≲ Bτ , we
have

|reiθ − a| = s+O(AB2)δ,

since in our chosen coordinate system, Ω ⊂ {reiθ : |r − 1| < Aδ, |θ| ≲ Bτ}.
So assume |r − 1| < Aδ and |θ| ≲ Bτ . It follows by the triangle inequality we

can replace reiθ with eiθ at the cost of Aδ. Next, because we assume 1 ∈ γ ∩ γ, we
have s = |1− a|, so we can substitute |1− a| for s, and we are left with estimating

||eiθ − a| − |1− a||.

Because our circles lie in Q = [0, α0]
2 × [1 − α0, 1 + α0], we have the estimate

|eiθ − a| + |1 − a| ∼ 1. Therefore multiplying by this expression, we only have to
show

|eiθ − a|2 − |1− a|2 = O(AB2)δ.

The upshot is we can use the trigonometric identity

|eiθ − a|2 − |1− a|2 = 2Re(a)(1− cos θ)− 2 Im(a) sin θ

= O(Re(a))θ2 +O(Im(a))|θ|
≲ O(Re(a))B2τ2 +O(Im(a))Bτ,

and it suffices to estimate the components a1 = Re(a) and a2 = Im(a). We can
use rectangle-lightplank duality to estimate both components simultaneously. We
note Ω ⊂ CAδ,w, so we have w ∈ CAδ(Ω), which is contained in an O(A)δ ×
O(A)δτ−1 × δτ−2-lightplank, by a straightforward variation on Proposition 6 anal-
ogous to Proposition 5. By projecting this lightplank down to the plane R2 × {0},
this shows that |Re(a)| ≤ d ≲ δτ−2, and |Im(a)| ≲ Aδτ−1.

Collecting the estimates we have made so far, we have shown for arbitrary |r −
1| < Aδ and |θ| ≲ Bτ ,

||reiθ − a| − s| ≲ Aδ + δτ−2 ·B2τ2 +Aδτ−1 ·Bτ = O(AB2)δ.

This finishes the proof. □

Figure 1. Illustration of the conclusion of Proposition 9.
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Corollary 4. Let Ω(v) be a δ, τ -rectangle contained in Ω
(w)

, an A2δ, Aτ -rectangle.
Then v ∈ CA1A5δ(Ω).

Proof. By Proposition 9, and since Ω is an A2δ, Aτ -rectangle, by definition, v ∈
CA1A5δ(Ω). □

Now we are ready to give the proof that being comparable is almost a transitive
relation. For the purpose of stating it succinctly, if Ω,Ω′ are A-comparable, we
write Ω ≍A Ω′.

Proposition 10 (Almost-transitivity). There is an absolute constant C > 1 such
that if Ω1 ≍A Ω2 and Ω2 ≍A Ω3, then Ω1 ≍AC Ω3.

Proof. Suppose the core circles of Ωi are vi ∈ Q, i = 1, 2, 3. Consider the radial
projection π : R2 \ {v′2} → Cv2 onto Cv2 . By assumption, π(Ω1 ∪ Ω3) is contained
in an arc of length ∼ Aτ containing the core arc of Ω2. Therefore, it suffices to
show that Ω1 and Ω3 are contained in CAO(1)δ,v2 , as this will imply that Ω1 ∪Ω3 is

contained in an AO(1)δ,O(A)τ -rectangle, which is the desired relation.
Let Ω12 ⊃ Ω1 ∪ Ω2 and Ω23 ⊃ Ω2 ∪ Ω3 be the rectangles coming from the

assumption Ω1 ≍A Ω2, Ω2 ≍A Ω3. By Proposition 9, Ω12 ∪Ω23 ⊂ CAO(1)δ,v2 , which
finishes the proof. □

To turn statements about comparable rectangles into statements about nearly
overlapping lightplanks, we need a lemma that relates different lightlike coordinate
systems.

Proposition 11. Let E = es, em, el and E = ēs, ēm, ēl be two lightlike bases of R3.
If θ = ∠em, ēm, then the following relationship holds between E and E :

ēs = − sin θ√
2
em + cos θ−1

2 el + cos θ+1
2 es,

ēm = cos θ em + sin θ√
2
el + sin θ√

2
es,

ēl = − sin θ√
2
em + cos θ+1

2 el + cos θ−1
2 es.

Proof. By rotating our coordinate system if necessary, we may assume that in our
chosen coordinates, we have

em =

0
1
0

 , el =
1√
2

−1
0
1

 , es =
1√
2

−1
0
−1

 .

By our assumption that ∠em, ēm = θ, we can write

ēm =

− sin θ
cos θ
0

 , ēl =
1√
2

− cos θ
− sin θ

1

 , ēs =
1√
2

− cos θ
− sin θ
−1

 .

As the bases E , E are orthonormal, the conclusion follows by computing the 9 inner
products ⟨ēs, em⟩, ⟨ēs, el⟩, etc. □

In the next proposition, we do not make a serious attempt to optimize the
exponent of A, since the only point is to establish a bound of the form ACτ for an
absolute C.
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Proposition 12. Suppose Ω(v) ⊂ Ω
(w)

, where Ω(v) is a δ, τ -rectangle, and Ω
(w)

is

an A2δ, Aτ -rectangle. Let a, ā be the center points of Ω(v) and Ω
(w)

, respectively,
and let em, ēm be the positively oriented tangent vectors to v, w at the points a, ā,
respectively. Then ∠em, ēm ≲ A4τ .

Proof. Let d = d(v, w), ∆ = ∆(v, w), and let γ, γ denote the core arcs of Ω,Ω.
We make the same simplifying technical assumption as in Proposition 9, that there
exists a point x ∈ γ∩γ to make use of Proposition 8. To remove this assumption, we
note by replacing v with a concentric circle of a slightly smaller or larger radius, we

can arrange for γ ∩ γ ̸= ∅, while keeping ∠em, ēm and Ω(v) ⊂ Ω
(w)

. By Proposition
8, the angle between v and w at x is ∼

√
d∆.

By assumption Ω(v) ⊂ Ω
(w)

,

|CA2δ,v ∩ CA2δ,w| ≥ |Ω| ∼ δτ.

On the other hand, by Lemma 1,

|CA2δ,v ∩ CA2δ,w| ≲
(A2δ)2√

(d+A2δ)(∆ +A2δ)
.

Rearranging the inequality and using our a priori assumption δ1/2 ≤ τ gives
√
d∆ ≲ A4δτ−1 ≤ A4τ.

Finally, because dist(a, x) + dist(x, ā) ≲ Aτ , by comparing angles at a and ā, we
conclude ∠em, ēm = O(A4)τ +O(A)τ = O(A4)τ . □

Proposition 13. Suppose Ω(v) ⊂ Ω
(w)

, where Ω(v) is a δ, τ -rectangle, and Ω
(w)

is an A2δ, Aτ -rectangle. Let P = Cδ(Ω) and P = CA2δ(Ω). Then for an absolute
constant C > 1, P ⊂ ACP .

Proof. Let E = es, em, el and E = ēs, ēm, ēl be the lightlike bases associated with
the lightplanks P and P , respectively. Let θ = ∠em, ēm. Because Ω ⊂ CA2δ,w,
w ∈ CA2δ(Ω), which is contained in an A2-dilation of P by Proposition 6.

Hence, by Proposition 11, in E , we have

|⟨v − w, ēs⟩| ≤ |⟨v − w, es⟩| + O(θ)|⟨v − w, em⟩| + O(θ2)|⟨v − w, el⟩|
≤ A2δ + O(θ)A2δτ−1 + O(θ2)A2δτ−2.

By Proposition 12, |θ| ≲ A4τ , so |⟨v − w, ēs⟩| ≲ A10δ. Analogous considerations
using Proposition 11 and |θ| ≲ A4τ show |⟨v−w, ēm⟩| ≲ A6δτ−1 and |⟨v−w, ēl⟩| ≲
A2δτ−2. Since P is a A2δ × Aδτ−1 × δτ−2-lightplank, we find v ∈ CA8P . Now it
suffices to prove that for any x ∈ P = P (v), the inequalities

|⟨x− v, ēs⟩| ≲ ACδ

|⟨x− v, ēm⟩| ≲ ACδτ−1

|⟨x− v, ēl⟩| ≲ ACδτ−2

all hold. We provide the details to estimate |⟨x−v, ēs⟩| as the proofs of the remaining
inequalities are entirely analogous. By Proposition 11 again, we have

(4) |⟨x− v, ēs⟩| ≲ O(1)|⟨x− v, es⟩|+O(θ)|⟨x− v, em⟩|+O(θ2)|⟨x− v, el⟩|.
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Since x ∈ P , in the lightlike coordinate system E , we have

|⟨x− v, es⟩| ≲ δ

|⟨x− v, em⟩| ≲ δτ−1

|⟨x− v, el⟩| ≲ δτ−2.

Substituting these estimates into (4) with |θ| ≲ A4τ , we obtain

|⟨x− v, ēs⟩| ≲ A8δ.

Using the remaining two relations from Proposition 11 provides the required esti-
mates for |⟨x− v, ēm⟩| and |⟨x− v, ēl⟩|, and this finishes the proof. □

In the other direction, assuming P ⊂ P ⊂ R2×[1−α0, 1+α0] for two lightplanks,
we can say something about the corresponding dual rectangles.

Proposition 14. Suppose P (v) ⊂ P
(w) ⊂ R2 × [1 − α0, 1 + α0], where P (v) is

a δ × δτ−1 × δτ−2-rectangle centered on v, and P
(w)

is an A2δ × Aδτ−1 × δτ−2-

lightplank centered on w. Let Ω(v) = Vδ(P ) and Ω
(w)

= Vδ(P ). Then there is an
A6δ, A2τ -rectangle containing Ω ∪ Ω.

Proof. By Corollary 2, Ω(v) ⊂ Ω
(w)

, where Ω is a δ, τ -rectangle, and Ω is an A2δ, Aτ -
rectangle. By Corollary 4, Ω ⊂ CA5δ,v, so it suffices to prove that the angle θ :=

∠em, ēm between the intermediate edges of the lightplanks P, P , respectively is at
most O(A2)τ . If this is done, it shows that Ω ∪ Ω is contained in an A5δ, A2τ -
rectangle. Consider the plane Π containing the lower Aδτ−1 × A2δ face of the
lightplank P (see Figure 2). Considering the edges of P, P in the plane Π, we have

θ ∼ sin θ ≤ A2δ

δτ−1
= A2τ,

and this finishes the proof. □

δτ−1

A2δ

Π

Figure 2. Bottom faces of the lightplanks P, P in the plane Π.

The next proposition combines the last few propositions to characterize compa-
rability of δ, τ -rectangles in terms of an analogous statement concerning their dual
lightplanks. In the statement of the proposition, the absolute constant C can vary
within the same line, but the only important point is that in each instance the
constant is absolute.

Proposition 15 (Comparability dictionary). Suppose Ω1,Ω2 are δ, τ -rectangles in
the plane with corresponding lightplanks P1, P2 ⊂ R2×[1−α0, 1+α0]. If Ω1,Ω2 are
A-comparable, then there is a ACδ × ACδτ−1 × ACδτ−2-lightplank P containing
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P1 ∪ P2. Conversely, if P1 ∪ P2 ⊂ P for some ACδ ×ACδτ−1 ×ACδτ−2-lightplank
P , then Ω1,Ω2 are AC-comparable.

Proof. Suppose that Ω1,Ω2 are A-comparable, and let Ω be an A2δ, Aτ -rectangle
containing Ω1∪Ω2, and P = CA2δ(Ω) its dual lightplank. By Proposition 13, P1∪P2

is contained in an AC-dilation of P .
Conversely, if P1 ∪ P2 ⊂ P for an ACδ × ACδτ−1 × ACδτ−2-lightplank P , then

by Proposition 14, Ω1 ∪ Ω2 is contained in a single ACδ, ACτ -rectangle, so Ω1,Ω2

are AC-comparable. □

4.3. Packing rectangles. The next proposition is a minor refinement of Lemma
1.2 in [11]. The refinement comes in the form of being more explicit about the
shape of the constant, and the only important point is it is at most (A0A)C for
an absolute constant C > 1 (rather than an intolerable exponential growth, e.g.
eA0A). We remark that much of the work we have done in this section was for the
sake of having a concise proof of this proposition.

Proposition 16 (Packing). For anyA0 ≥ 1, the number of pairwiseA-incomparable
δ, τ -rectangles contained in an A0A

2δ, A0Aτ -rectangle is ≲ (A0A)C .

Proof. Let Ω be an A0A
2δ, A0Aτ -rectangle. By covering Ω with O(A0) finitely

overlapping A0A
2δ, Aτ -rectangles, it suffices to check that the number of pairwise

A-incomparable δ, τ -rectangles contained in an A0A
2δ, Aτ -rectangle, that we also

denote by Ω, is at most C(A0A)C .
Let {Ω(vi)}Mi=1 be a maximal pairwise A-incomparable collection of δ, τ -rectangles

contained in Ω
(o)

.
Let E = ēs, ēm, ēl be the lightlike basis associated to the lightplank P with center

o. By Proposition 13, for each i, vi ∈ (A0A)CP , so each of the following inequalities
holds for every i, j ∈ {1, . . . ,M}:

• |⟨vi − vj , ēs⟩| ≲ (A0A)Cδ
• |⟨vi − vj , ēm⟩| ≲ (A0A)Cδτ−1

• |⟨vi − vj , ēl⟩| ≲ (A0A)Cδτ−2.

As the circles v1, . . . , vM contained in (A0A)CP are A-incomparable, for each i ̸= j,
at least one of the following inequalities must hold by Proposition 15:

• |⟨vi − vj , ēs⟩| ≫ ACδ
• |⟨vi − vj , ēm⟩| ≫ ACδτ−1

• |⟨vi − vj , ēl⟩| ≫ ACδτ−2.

Therefore, M ≲ (A0A)C , and the claim is proved. □

5. Application of the maximal function estimate

In this section, we show how to combine the geometric considerations from Sec-
tion 4 with the maximal function estimate to count pairs of nearly internally tangent
circles. Throughout, assume X ⊂ Q is a set of at most R = δ−1 circles, let ϵ > 0
be fixed, and δ < δ0(ϵ). We define a family of multiplicity functions by

gλδ(y) =
∑
x∈X

Cλδ,x(y), y ∈ R2, λ ≥ 1.

Throughout, we work with λ ⪅ 1.
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Proposition 17. There is an absolute constant C ≥ 1 such that the following holds.
Let R be an A-incomparable collection of δ, τ -rectangles contained in

⋃
x∈X Cδ,x.

For each x ∈ X, and each λ ≥ A,∑
Ω∈R

x∈Cλδ(Ω)

Ω(y) ≲ λCCλδ,x(y).

Proof. For each fixed y ∈ R2, the Ω ∈ R which contain y and which are con-
tained in Cλδ,x are contained in a λδ, Cτ -rectangle. As the Ω ∈ R are pairwise
A-incomparable, by Proposition 16, the number of such Ω is at most λC for some
absolute constant C. □

Given λ ≥ 1, and a δ, τ -rectangle Ω, we let

νλδ(Ω) = |X ∩ Cλδ(Ω)|.

For λ ≈ 1, the number νλδ(Ω) counts the number of circles in X which contain
an arc of length ≈ τ that is ≈ δ-close to the true core arc of Ω. As we saw
throughout Section 4, in addition to δ, τ -rectangles, we have to consider slightly
larger rectangles. For this reason we have to define and work with the numbers
νλδ(Ω) for λ ≈ 1.

Proposition 18. If R is a pairwise A-incomparable collection of δ, τ -rectangles
contained in

⋃
x∈X Cδ,x and λ ≥ A, then∑

Ω∈R
νλδ(Ω)Ω(y) ≲ λCgλδ(y).

Proof. For each Ω ∈ R and each λ ≥ 1,

νλδ(Ω)Ω(y) =
∑

x∈Cλδ(Ω)

Ω(y)Cλδ,x(y),

by the definition of Cλδ(Ω). Summing over Ω ∈ R and changing the order of
summation, ∑

Ω∈R
νλδ(Ω)Ω(y) =

∑
Ω∈R

∑
x∈Cλδ(Ω)

Ω(y)Cλδ,x(y)

=
∑
x∈X

Cλδ,x(y)
∑
Ω∈R

x∈Cλδ(Ω)

Ω(y).

By Proposition 17, for each λ ≥ A, the inner sum is bounded by λCCλδ,x(y).
Combining this with the definition of gλδ(y) finishes the proof. □

For δ1/2 < τ < δϵ, let

γτ = max{|X ∩ Cδ(Ω)| : Ω ⊂ R2 is a δ, τ -rectangle},

or equivalently by Corollary 2,

γτ = max{|X ∩ P | : P ⊂ Q is a lightplank of dimensions δ × δτ−1 × δτ−2}.

Proposition 19. If Ω is a δ, τ -rectangle, then for each λ ≈ 1,

νλδ(Ω) ⪅ γτ .
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Proof. Notation aside, the proposition says that the number of points in X con-
tained in a given lightplank with dimensions slightly larger than δ × δτ−1 × δτ−2,
as quantified by λ, is not much more than the maximal number of points of X
contained in a δ × δτ−1 × δτ−2-lightplank. The proof is a routine covering and
pigeonholing argument, so we omit the details. □

For a dyadic number M ∈ [1, γτ ] a number λ ≈ 1, and a collection R of δ, τ -
rectangles, let

RM,λ = {Ω ∈ R : νλδ(Ω) ∼ M}.
The next proposition is the culmination of this subsection which will ultimately
allow us to estimate pairs of nearly internally tangent circles. Recall the notation
Q = [0, 2α0]

2 × [1− α0, 1 + α0] ⊂ R3.

Proposition 20. Suppose that X ⊂ Q is a set of at most R circles in Q either
having one radius per interval of length ∼ δ, or else satisfying the 1-dimensional
Frostman condition

|X ∩B(x0, r)| ≲ϵ δ
−ϵ(r/δ), x0 ∈ Q, r ≥ δ.

IfR is any pairwiseA-incomparable collection of δ, τ -rectangles contained in
⋃

x∈X Cδ,x,
then for each M ∈ [1, γτ ] and A ≤ λ ⪅ 1,

M3/2|RM,λ| ≲ δ−Cϵτ−1|X|.

Proof. By Proposition 18, if λ ≥ A, we have

λCgλδ(y) ≳
∑
Ω∈R

νλδ(Ω)Ω(y).

We organize the sum on the right-hand side by the dyadic level sets of νλδ(Ω),
noting that νλδ(Ω) ⪅ γτ :

λCgλδ(y) ≳
∑

1<M<γτ
M dyadic

M
∑

Ω∈RM,λ

Ω(y).

By Example 1, or the estimate of Theorem 6, and the embedding ℓ1 ↪→ ℓ3/2,

δ−Cϵ · δ|X| ≳ λC

∫
g
3/2
λδ ≳ M3/2|RM,λ| · |Ω|.

Dividing by |Ω| ∼ δτ finishes the proof. □

In the next subsection we will specialize the value of τ for our application.

5.1. Nearly lightlike pairs. Fix a set X ⊂ Q of circles satisfying the Frostman
condition

|X ∩B3(x0, r)| ≲ϵ δ
−ϵ(r/δ) for all x0 ∈ Q, r ≥ δ.

In particular, |X| ⪅ R, though |X| can be much smaller. For dyadic numbers
δ < ∆ ≤ D < 1, define a collection

LD,∆ = {(x, y) ∈ X ×X : d(x, y) ∼ D,∆(x, y) ∼ ∆}.
We will be interested in the cardinality of the collection LD,∆ when D > δ1−Cϵ

and ∆ < δ1−ϵ as this is the only range of the parameters where we require a
nontrivial estimate of |LD,∆|. We will refer to a pair (x, y) ∈ LD,∆ as nearly
lightlike when ∆ < δ1−ϵ. In order to estimate the number of nearly lightlike pairs,
we will ultimately use Proposition 20. Let τD = δ1/2D−1/2.
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Definition 7. We say two circles Cv, Cw are ⪆ δ, τ -tangent if there are ≈ 1-
comparable δ, τ -rectangles Ω(v) ⊂ Cδ,v, Ω

(w) ⊂ Cδ,w.

Proposition 21. If (v, w) ∈ LD,∆ for D ≫ δ and ∆ ⪅ δ, then Cv, Cw are ⪆ δ, τD-
tangent.

Proof. Suppose D ≫ δ, ∆ ⪅ δ, and (v, w) ∈ LD,∆. We will find a lightplank

P ⊂ R2×[1−α0, 1+α0] of dimensions ≈ δ×δτ−1
D ×δτ−2

D such that both v, w ∈ P . By

duality, for an appropriate A ≈ 1, Ω(v) := VAδ(P )∩Cδ,v and Ω(w) := VAδ(P )∩Cδ,w

are ≈ 1-comparable δ, τD-rectangles contained in Cδ,v and Cδ,w, respectively, so
this will finish the proof.

Let w0 ∈ Γv be the nearest point to w in the lightcone with vertex v. By
definition, v − w0 is a lightlike vector, and since δ ≪ D, we have |v − w0| ∼
|v − w| ∼ D and |w0 − w| = ∆(v, w) ⪅ δ. Let em be a unit tangent vector to the
x3-slice of Γv containing w0; let el be the unit vector in the direction v − w0, and
let es be such that E = el, em, es is an orthonormal basis. To show that v, w both
belong to a common lightplank of the required dimensions, it suffices to show that

(i) |⟨v − w, el⟩| ⪅ δτ−2
D ,

(ii) |⟨v − w, em⟩| ⪅ δτ−1
D , and

(iii) |⟨v − w, es⟩| ⪅ δ.

Since δτ−2
D = D ∼ |⟨v − w, el⟩|, and ∆(v, w) = |w − w0| ∼ |⟨v − w, es⟩| ⪅ δ, only

point (ii) needs elaboration. But by elementary geometry considerations, this is a
simple consequence of the assumption d(v, w) ∼ D and ∆(v, w) ⪅ δ. □

Proposition 22. There is an absolute constant C > 1 so that the following holds.
If (v, w) ∈ LD,∆ and R is a maximal pairwise A-incomparable collection of δ, τD-
rectangles contained in

⋃
x∈X Cδ,x, then there exists Ω ∈ R so that v, w ∈ CACδ(Ω).

Proof. By Proposition 21, there are ≈ 1-comparable δ, τD rectangles Ω(v),Ω(w) in
Cδ,v, Cδ,w respectively. By maximality of R with respect to A-incomparability,

there is some Ω ∈ R such that Ω(v) (say) is A-comparable to Ω. This shows that
v ∈ Cλδ(Ω) for some λ = O(AC).

As Ω(v) and Ω(w) are A-comparable, by almost-transitivity (Proposition 10), Ω
and Ω(w) are λC = AO(1)-comparable. Hence w ∈ CλCδ(Ω) for a large enough
absolute constant C, and the claim is proved as v ∈ Cλδ(Ω) ⊂ CλCδ(Ω). □

Proposition 23. If ∆ ≲ δ1−ϵ, and D > δ1−Cϵ then |LD,∆| ⪅ γ
1/2
τD (RD)1/2|X|.

Proof. Let A ≈ 1 be a parameter (take A = δ−ϵ for definiteness), and fix an arbi-
trary maximal pairwise A-incomparable collection R of δ, τD-rectangles contained
in

⋃
x∈X Cδ,x.

By Proposition 22, for a given (v, w) ∈ LD,∆, we can find a rectangle Ω ∈ R
such that v, w ∈ Cλδ(Ω) for some λ = AO(1), and we can write

LD,∆ ⊂
⋃
Ω∈R

{(v, w) ∈ X ×X : v, w ∈ Cλδ(Ω)}.

By the union bound,

(5) |LD,∆| ≤
∑
Ω∈R

|X ∩ Cλδ(Ω)|2 =:
∑
Ω∈R

νλδ(Ω)
2.
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Recall that by Proposition 19, νλδ(Ω) ⪅ γτD . We organize the last sum on the
right-hand side of (5) by the dyadic value of νλδ(Ω), up to γτD , the same as we did
in Proposition 20. Letting RM,λ = {Ω ∈ R : νλδ(Ω) ∼ M}, we estimate (5) by∑

1<M<γτD
M dyadic

M2|RM,λ|.

By Proposition 20, for each M , M3/2|RM,λ| ⪅ τ−1
D |X| = (RD)

1
2 |X|. As γτD ≤ δ−1

a priori, there are ≈ 1-many values of M in the sum, so we have shown |LD,∆| ⪅
γ
1/2
τD (RD)1/2|X|. This finishes the proof. □

6. Proof of Theorem 4 and sharpness

Besides the geometric considerations of Sections 4 and 5, the main ingredient
we need for the proof of Theorem 4 is a stationary phase estimate for the Fourier
transform of σ, a smooth surface measure on the cone segment. Recall Γ0 =
{(x′, x3) : ||x′| − |x3|| = 0} is the lightcone in R3 with vertex 0. We state the
version of the estimate we will use in the proof of Theorem 4 here. The proof of
this lemma is contained in the appendix.

Lemma 2. Let σ be a smooth compactly supported surface measure in Cone2. For
any ϵ > 0, there is a constant Cϵ so that

|qσ(x)| ≤ Cϵ
1

(1 + |x|) 1
2−ϵ

1

(1 + d(x,Γ0))100ϵ
−1 .

Now we are ready to give the proof of Theorem 4, whose statement we recollect
here.

Theorem 7. For each ϵ > 0, there is a constant Cϵ so the following holds for each
R > 1. Suppose ν is a measure that agrees with the Lebesgue measure on a union
of lattice unit cubes X ⊂ [0, R]2 × [R, 2R] =: BR and satisfies the 1-dimensional
Frostman condition

ν(B(x0, r)) ≲ r, x0 ∈ R3, r > 1.

Let P(ν) be the quantity

P(ν) = max{ν(P ) : P is a lightplank of dimensions 1×R1/2 ×R}.
Then the estimate ∫

|pν|2 dσ ≤ CϵR
ϵ P(ν)1/2∥ν∥

holds, where ∥ν∥ := ν(BR) = |X| is the total mass of ν.

Proof. By duality and Fourier transform properties,

∥pν∥2L2(dσ) =

∫
pνpν dσ =

∫∫
BR×BR

qσ(x− y) dν(x)dν(y).

We will estimate this integral by dividing the domain of integration into regions
where we have good control on the integrand. For instance,∫∫

qσ(x− y) dν(x)dν(y) =

∫∫
|x−y|≤R10ϵ

qσ(x− y) dν(x)dν(y) +

∫∫
|x−y|>R10ϵ

qσ(x− y) dν(x)dν(y)

=: I + II.
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Because |qσ| ≲ 1 everywhere, we can estimate |I| ≲ R10ϵ|X|. To estimate |II|, by
slight abuse of notation, let X = {(ai, ri) : i = 1, . . . , |X|} be the collection of
centers of the cubes in the support of ν. For any x ∈ BR, we have a corresponding
point x̃ ∈ B1 defined by x̃ = R−1x. For each pair x, y ∈ X, we consider the
numbers

d(x̃, ỹ) = R−1|x− y| and ∆(x̃, ỹ) = R−1||x′ − y′| − |x3 − y3||.
These are simply the scaled down values of d(x, y) and ∆(x, y). We write things
this way to use the results of Section 5 which are phrased at scales ≤ 1. For any
dyadic number δ1−10ϵ < D < 1, we let

LD,⪅δ = {(x, y) ∈ X ×X : d(x̃, ỹ) ∼ D,∆(x̃, ỹ) ≤ δ1−ϵ}

LD,≫δ = {(x, y) ∈ X ×X : d(x̃, ỹ) ∼ D,∆(x̃, ỹ) > δ1−ϵ}.

We let L1
D,⪅δ

,L1
D,≫δ denote the 1-neighborhoods of LD,⪅δ,LD,≫δ in R3 × R3,

respectively. We organize the integral II by writing

II ≤
∑

δ1−10ϵ<D<1

∫∫
L1

D,⪅δ

qσ(x− y) dν(x)dν(y)

+
∑

δ1−10ϵ<D<1

∫∫
L1

D,≫δ

qσ(x− y) dν(x)dν(y).

We claim that the second sum in this decomposition of II is O(R−95), so it is
negligible. Postponing the proof of this for a moment, we only have to show that
the first sum is bounded by the quantity in the statement of Theorem 4.

For D > δ1−10ϵ,∆ ≤ δ1−ϵ, and (x, y) ∈ L1
D,∆ we use the Fourier transform

estimate of Lemma 2,

|qσ(x− y)| ⪅ 1

(RD)1/2
,

together with the estimate of Proposition 23 for |LD,∆|, ∆ ⪅ δ:

|LD,⪅δ| ⪅ P(ν)1/2(RD)1/2|X|.
Putting these estimates together gives∑
δ1−10ϵ<D<1

∫∫
L1

D,⪅δ

|qσ(x− y)| dν(x)dν(y) ≲
∑

δ1−10ϵ<D<1

|LD,⪅δ| ·
1

(RD)1/2

⪅ P(ν)1/2|X|
∑

δ1−10ϵ<D<1

1 ≈ P(ν)1/2|X|.

Now we estimate the contribution from the second sum in the decomposition of
II. We write the contribution as∑

δ1−10ϵ<D<1

∑
δ1−ϵ<∆<D

∫∫
d(x̃,ỹ)∼D
∆(x̃,ỹ)∼∆

|qσ(x− y)| dν(x)dν(y).

By the estimate of Lemma 2, for (x, y) ∈ L1
D,∆ with ∆ > δ1−ϵ, we have

|qσ(x− y)| ≲ϵ
1

(RD)1/2
· 1

(R∆)100ϵ−1 ≤ 1

R100
.

Since |LD,∆| ≤ R2 a priori (for anyD,∆), and since there are a logarithmic number
of summands, we have a total contribution of no more than (say) CϵR

−100+2+ϵ. This
finishes the estimate of |II|, and the proof. □
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Lastly, we describe examples that establish the sharpness of Theorem 4.

Proposition 24. For each R > 1, and each γ ∈ [1, R], there is a measure ν with
P(ν) ∼ γ, that agrees with the Lebesgue measure on a union X of lattice unit
cubes in BR satisfying the 1-dimensional Frostman condition

|X ∩B(x0, r)| ≲ r, x0 ∈ R3, r > 1,

such that ∫
|pν|2 dσ ⪆ γ1/2∥ν∥.

Proof. By Corollary 5, and the results in the appendix, given R > 1, and γ ∈ [1, R],
to illustrate the sharpness of the theorem, it suffices to produce a measure ν of the
required form satisfying the Frostman condition of exponent 1, and an f ∈ L2(dσ)
such that ∫

|Ef |2 dν ≳ γ1/2∥f∥2L2(dσ).

(1) Let f0(ξ) = 1θ(ξ), where θ = [1, 2] × [0, γ−1/2] ⊂ {1 < |ξ| < 2}, be the
Knapp example of the given dimensions. Let f be an appropriate modula-
tion of f0 so that |Ef | ≳ |θ|1P = γ−1/21P , where P is a lightplank in BR

of dimensions 1× γ1/2 × γ.
Let X be any 1 × 1 × γ tube contained in the lightplank P , and let

the measure ν agree with the Lebesgue measure on X. By construction, ν
obeys the Frostman condition and is of the desired form, with P(ν) ∼ γ.
Then, ∥f∥2L2(dσ) = |θ| = γ−1/2, and∫

|Ef |2 dν ≳ γ−1ν(P ) ∼ 1 ∼ γ1/2∥f∥2L2 ,

as desired.
(2) As a small variation on the last example, we can also normalize ∥ν∥ = R,

with P(ν) ∼ γ. Let f , and P be the same as in the first example, and
let XP be any 1× 1× γ tube contained in the lightplank P , and XV be a
1 × 1 × (R − γ)-tube whose long direction is parallel to e3 = (0, 0, 1). Let
X = XP ∪XV , and let the measure ν agree with the Lebesgue measure on
X. By construction, ∥ν∥ = R, ν obeys the Frostman condition of exponent
1, and P(ν) ∼ γ.

By the same computation of the first example,
∫
|Ef |2 dν ≳ γ1/2∥f∥2L2(dσ).

□

7. Discussion and related questions

Theorem 1 is a sharp Mizohata–Takeuchi type estimate for the cone segment in
R3 for the 1-dimensional measures ν. However, it would be interesting to go beyond
Theorem 1 and prove even more refined estimates which capture the wave patterns
within lightplanks of dimensions 1× R1/2 × R. As the proof of Theorem 4 shows,
we do not take advantage of potential cancellations of qσ(x− y) within lightplanks.

We describe three related further problems below.
Given a measure ν that agrees with the Lebesgue measure on a union X of lattice

unit cubes in BR, let U(ν) be the smallest constant such that∫
BR

|Ef |2 dν ≤ U(ν)∥f∥2L2(dσ)
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holds for all f . By Theorem 1, U(ν) ⪅ P(ν)1/2 holds for the 1-dimensional mea-
sures.

(i) Give examples of 1-dimensional measures ν as in Theorem 4, such that∫
|pν|2 dσ is much smaller than P(ν)1/2∥ν∥. Equivalently, describe a 1-

dimensional measure ν such that U(ν) ≪ P(ν)1/2.
(ii) Assume Conjecture 1 for the parabola is true; let E be the Fourier extension

for Cone2. Recognizing that within an angular strip of dimensions 1× .01,
the cone segment is nearly a parallel stack of parabolas in the lightlike
basis associated with the strip, can we prove a further refined estimate for∫
|Ef |2 dν along the lines of

(6)

∫
BR

|Ef |2 dν ≤ CϵR
ϵ max

T
ν(T )1/2∥f∥2L2(dσ),

where the maximum is taken over 1 × 1 × R-tubes T pointing in lightlike
directions? As a small step in this direction, we note that any 1× R1/2 ×
R lightplank P may be covered by R1/2-many 1 × 1 × R lightlike tubes
contained in P , so by Theorem 1 and the pigeonhole principle, if ν is a
1-dimensional measure,∫

BR

|Ef |2 dν ⪅ R1/4 max
T

ν(T )1/2∥f∥2L2(dσ),

which is (6) for the 1-dimensional measures with an R1/4-loss.
(iii) The estimate of Theorem 4 applies to the 1-dimensional family of measures

ν because of the available maximal function estimates. What can we say
about measures satisfying a Frostman condition of exponent s ̸= 1? It
seems natural to conjecture that bounds of the shape∫

|pν|2 dσ ⪅ Ra(s)P(ν)b(s)∥ν∥c(s)

for some a, b, c continue to hold for other values of s.

Appendix A.

A.1. Duality arguments and the proof of Theorem 1. In this section we
prove a general theorem relating L1(ν) and L2(ν) estimates of Ef that will be one
of the last elements in the proof of Theorem 1. The theorem here is essentially
contained in the proof of Lemma C.1 in Appendix C of [1].

Theorem 8 (Barceló–Bennett–Carbery–Rogers, [1]). Suppose (Γ, dσ) is a compact
submanifold of Rd with a smooth surface measure σ, and let

Ef(x) = |fσ(x).

For a measure ν, and a family of P of measurable sets, let

γ(ν) = γP(ν) = sup{ν(P ) : P ∈ P}.

Then for each ϵ > 0, the following are equivalent (possibly with different implied
absolute constants):

(L1) For all f , and all measures ν supported in BR,

∥Ef∥L1(ν) ≤ CϵR
ϵγ(ν)1/4∥ν∥1/2∥f∥L2(dσ),
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(L2) For all f , and all measures ν supported in BR,

∥Ef∥L2(ν) ≤ CϵR
ϵγ(ν)1/4∥f∥L2(dσ).

Proof. For all f , Hölder’s inequality immediately gives ∥Ef∥L1(ν) ≤ ∥Ef∥L2(ν)∥ν∥1/2,
so if (L2) holds, so does (L1).

Conversely, suppose (L1) holds, and let ν be a measure supported in BR. For a
measurable set U , let dµ = 1U dν. Then by (L1) applied to the measure µ,

(7)

∫
U

|Ef | dν =

∫
|Ef | dµ ≤ CϵR

ϵγ(µ)1/4∥µ∥1/2∥f∥L2(dσ).

Note that by the definition of µ and γ,

γ(µ) = sup{ν(P ∩ U) : P ∈ P} ≤ min(γ(ν), ν(U)).

For each λ > 0, plug U = {|Ef | > λ} into (7), together with the upper bound
γ(µ) ≤ γ(ν) to find

(8) λ ν({|Ef | > λ})1/2 ≤ CϵR
ϵγ(ν)1/4∥f∥L2(dσ).

By dyadic pigeonholing, we can produce a particular λ > 0 such that

(

∫
|Ef |2 dν)1/2 ≈ λ ν({|Ef | > λ})1/2.

Together with the estimate (8), this proves (L2) holds. □

The next proposition is essentially Proposition 15.11 from Mattila’s book [6]. It
shows how estimates of ∥pν∥2L2(dσ) are essentially equivalent to L1(ν) estimates for

Ef .

Proposition 25. Suppose c0(ν) is a monotone quantity in the sense that if µ ≪ ν

(µ is absolutely continuous with respect to ν) are positive measures and 0 ≤ dµ
dν ≤ 1,

then c0(µ) ≤ c0(ν). If ∥pν∥2L2(dσ) ≲ c0(ν) holds for all positive measures ν, then for

all measures ν, and all f ∈ L2(dσ),∫
|Ef | dν ≲ c0(ν)

1/2∥f∥L2(dσ)

also holds. Conversely, if
∫
|Ef | dν ≲ c0(ν)

1/2∥f∥L2(dσ) for all f ∈ L2(dσ), then

∥pν∥2L2(dσ) ≲ c0(ν).

Proof. Suppose ∥pν∥2L2(dσ) ≲ c0(ν) holds for all positive measures ν, and let ∥f∥L2(dσ) =

1. By definition, ∫
|Ef | dν = sup

∥h∥L∞(dν)=1

∫
Ef hdν.

Writing h = h1 − h2 + i(h3 − h4) as a linear combination of 4 positive functions in
the canonical way, for each j = 1, . . . , 4, we have

|
∫

Ef hj dν| = |(Ef, hjν)|

≤ sup
∥f∥L2(dσ)=1

|(Ef, hjν)|

= sup
∥f∥L2(dσ)=1

|(f, yhjν)|

= ∥yhjν∥L2(dσ),
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where (f, g) denotes the distributional pairing of f and g. Since hjν is a posi-

tive measure, we have ∥yhjν∥L2(dσ) ≲ c0(hjν)
1/2 ≤ c0(ν)

1/2 by assumption, and
monotonicity of c0, respectively. Therefore,∫

|Ef | dν ≲ c0(ν)
1/2,

as desired. The converse follows immediately by a similar duality argument. □

Corollary 5. Theorem 1 holds.

Proof. By Theorem 4, we have

∥pν∥2L2(dσ) ⪅ P(ν)1/2∥ν∥.

Since c0(ν) := P(ν)1/2∥ν∥ is monotone in the sense of Proposition 25, we have the
L1(ν) estimate ∫

|Ef | dν ⪅ P(ν)1/4∥ν∥1/2∥f∥L2(dσ).

By Theorem 8, we therefore also have the L2(ν) estimate

(

∫
|Ef |2 dν)1/2 ⪅ P(ν)1/4∥f∥L2(dσ),

which was to be shown. □

A.2. Proof of Fourier transform estimate |qσ(x)|. In this subsection we recol-
lect and prove the Fourier transform estimate of Proposition 1 that was the second
key to the proof of Theorem 4.

Proposition 26. Let σ be a smooth compactly supported surface measure in
Cone2. For any ϵ > 0 and any N > 1, there is a constant C(ϵ,N) so that

|qσ(x)| ≤ C(ϵ,N)
1

(1 + |x|) 1
2−ϵ

1

(1 + d(x,Γ0))N

holds for all x ∈ R3.

Proof. We will prove this by combining two estimates for |qσ(x)|:
(i) |qσ(x)| ≲ (1 + |x|)− 1

2+ϵ

(ii) For every N , |qσ(x)| ≲N (1 + d(x,Γ0))
−N .

The conclusion follows by taking an appropriate geometric average of these two
estimates. We may assume that |x| ≥ C for an appropriately large constant since
|qσ(x)| ≲ 1 for |x| ≲ 1.

We will start with (i). Suppose |x| ∼ r ≫ 1; our aim is to show |qσ(x)| ≲ r−
1
2+ϵ.

We divide Cone2 into ∼ r
1
2−ϵ-many strips θ of angular width r−

1
2+ϵ and let {ηθ}

be a smooth partition of unity subordinate to {θ}. Then with σθ = σηθ,

qσ(x) =
∑
θ

qσθ(x).

For each θ, we let θ∗ be the lightplank containing the origin of dimensions 1×r
1
2−ϵ×

r1−2ϵ dual to the r−1+2ϵ-neighborhood of θ. By the Schwartz decay of qσθ(x), we
have

|qσθ(x)| ≲N |θ|
∞∑
j=0

2−jN12jθ∗(x).
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Since we assume |x| ∼ r ≫ r1−2ϵ, and the directions of θ∗ are r−
1
2+ϵ-separated, x

lies in at most ⪅ 1 of the θ∗. Therefore,

|qσθ(x)| ⪅ |θ| ∼ r−
1
2+ϵ.

Now we prove (ii), but instead of using wave packets, we give a proof based on
stationary phase considerations. Let x = (x′, x3) with |x| ≫ 1. Suppose that x is
spacelike and lies in the upper half-space, so |x′| > x3 > 0. The case of |x′| < x3

is similar. For an appropriate smooth and compactly supported function a(ξ) in
{1 < |ξ| < 2}, we can write

qσ(x) =

∫
1<|ξ|<2

a(ξ)ei(x
′·ξ+x3|ξ|) dξ =: Ea(x).

Here E is the extension operator for the cone.
Let w be the nearest point on the cone Γ0 to x. By elementary geometry, x−w

is orthogonal to the lightcone at w, and from this, we can compute the coordinates
of w in terms of x:

w = w(x) =

(
|x′|+ x3

2

x′

|x′|
,
|x′|+ x3

2

)
.

Note from this formula for w that

d(x,Γ0) = |x− w| ≤ |x′| − x3 ≲ |x− w| = d(x,Γ0),

so d(x,Γ0) ∼ ||x′| − x3|. Write

Ea(x) = Ea(w + (x− w)) =

∫
a(ξ)ei(w

′·ξ+w3|ξ|)ei[(x
′−w′)·ξ+(x3−w3)|ξ|] dξ

=

∫
a(ξ)ei(w

′·ξ+w3|ξ|)e
i
|x′|−x3

2 ( x′
|x′| ·ξ−|ξ|)

=

∫
a(ξ)eiϕ1(ξ)eiλϕ2(ξ) dξ,

where

ϕ1(ξ) = w′ · ξ + w3|ξ|

ϕ2(ξ) =
x′

|x′|
· ξ − |ξ|

λ = λ(x) =
|x′| − x3

2
.

Let Σ1 = {1 < |ξ| < 2 : ∇ϕ1(ξ) = 0}, and similarly denote Σ2 as the set of critical
points of ϕ2. Since w is the nearest point to x lying in Γ0, the critical points of
ϕ1(ξ) in {1 < |ξ| < 2} are precisely the line segment

Σ1 = {1 < |ξ| < 2 :
ξ

|ξ|
= − x′

|x′|
}.

Likewise, Σ2 is the line segment

Σ2 = {1 < |ξ| < 2 :
ξ

|ξ|
=

x′

|x′|
}.

Consider the open sets

U1 = {1 < |ξ| < 2 : ∠(ξ,−x′) > 0.1}, U2 = {1 < |ξ| < 2 : ∠(ξ,−x′) < 0.2},
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and a smooth partition of unity η1, η2 subordinate to U1, U2. Then Ea = E(aη1)+
E(aη2). Since the phase x′ · ξ + x3|ξ| has no critical points in U1, |E(aη1)(x)| ≲N

(1+ |x|)−N via integration by parts. So we only have to show that |E(aη2)(x)| ≲N

d(x,Γ0)
−N .

Since we only work with aη2 from now on, to reduce clutter, we let a denote aη2,
so dist(supp a,Σ2) ≳ 1. Lastly, we note that the phase ϕ2 satisfies

∥ϕ2∥CN (1<|ξ|<2) ≲N 1.

Consider the following vector field and its transpose

L =
1

iλ
v · ∇, Ltf = − 1

iλ
∇ · (fv)

where v = ∇ϕ2/|∇ϕ2|. By definition, Leiλϕ2 = eiλϕ2 , and consequently integrating
by parts one time,

Ea(x) =

∫
Lt(aeiϕ1)eiλϕ2

= − 1

iλ

∫
∇ · (aeiϕ1v)eiλϕ2 .

Using the vector calculus identity

∇ · (fgv) = f∇g · v + g∇f · v + fg∇ · v,

we get

Ea(x) = − 1

iλ

(∫
a(ieiϕ1∇ϕ1 · v)eiλϕ2 +

∫
eiϕ1 (∇a · ∇v + a∇ · v)︸ ︷︷ ︸

≡ a′

eiλϕ2

)
.

Note that

∇ϕ1 = w′ + w3
ξ

|ξ|
= (

|x′|+ x3

2
)(

x′

|x′|
+

ξ

|ξ|
)

and

v =
1

|∇ϕ2|
(
x′

|x′|
− ξ

|ξ|
).

Therefore, ∇ϕ1 · v = 0, so Ea(x) simplifies to

Ea(x) = − 1

iλ

∫
a′eiϕ1eiλϕ2 .

Since a′ is a smooth phase with all the same essential properties as those of a(= aη2),
we are ready to run the same integration by parts argument N times to get

|Ea(x)| ≲N
1

λN
=

1

(|x′| − x3)N
.

Since ||x′| − x3| ∼ d(x,Γ0), we have proved

|Ea(x)| ≲N
1

d(x,Γ0)N
.

Together with the proof of (i), this finishes the proof. □
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