Bökstedt's theorem on $\text{THH}_*(\mathbb{F}_p)$

Adela (YiYu) Zhang

Feb 25, 2020

In this talk, we present a proof of Bökstedt's theorem $\text{THH}_*(\mathbb{F}_p) = \mathbb{F}_p[x]$ using a result of Steinberger on Dyer-Lashof operations and Hopkins-Mahowald's theorem that there is an equivalence of \mathbb{E}_2 -ring spectra $H\mathbb{F}_p \simeq M(\Omega^2 S^3 \to BGL_1(\mathbb{S}_p^\wedge)).$

Note that Bökstedt's theorem reduces to the following fact:

Claim 0.1. THH $(\mathbb{F}_p) = H\mathbb{F}_p \otimes \Sigma^{\infty}_+ \Omega S^3$.

Then $\text{THH}_*(\mathbb{F}_p) = \pi_*(\text{THH}(\mathbb{F}_p))$ is the homology of ΩS^3 with \mathbb{F}_p coefficients, which has a single generator in degree 2. Bökstedt's theorem thus follows.

Convention: We denote by S and Sp the infinity categories of spaces and spectra. Unless specifically noted, the tensor product \otimes is taken over S.

1 Thom spectrum

We begin by recalling the construction of the generalized Thom spectrum following [1].

Let *R* be a ring spectrum and $X \in S$. We want to obtain an analogous construction of a line bundle with fiber *R* over a topological space.

First off, we can put a free rank 1 *R*-module $L_p \simeq R$ at each point $p \in X$. Then we need to specify homotopy coherence conditions: for every path γ connecting points p, q, there should be an equivalence L_{γ} of *R*-modules between the fibers L_p, L_q ; for every homotopy *h* between γ and γ' , there should be a homotopy $L_{\gamma} \rightarrow L_{\gamma'}$ in the space of *R*-module equivalences $L_p \rightarrow L_q$; etc.

To sum up, we define a *bundle of R-line bundle over X* to be a functor of infinity groupoids

$$f: X \simeq X^{op} \to BGL_1(R)$$

sending each point of X to the unique point of $BGL_1(R)$. Here $GL_1(R) \simeq \operatorname{Aut}_R(R)$ is the grouplike space of

$$\begin{array}{ccc} GL_1(R) & \longrightarrow & \Omega^{\infty}(R) \\ & & & & & \\ & & & & & \\ & & & & \\ \pi_0(R)^{\times} & \longrightarrow & \pi_0(R) \end{array} \quad \text{in } \mathcal{S}.$$

Definition 1.1. The (generalized) *Thom spectrum* Mf of a map $f: X \to BGL_1(R)$ in S is the spectrum

$$Mf := \operatorname{colim}(X \xrightarrow{J} BGL_1(R) \to R\operatorname{-mod}).$$

For fixed R, we obtain a Thom spectrum functor

$$M: \mathcal{S}_{/BGL_1(R)} \to R\text{-mod.}$$

Note that if f is an \mathbb{E}_n map, then Mf inherits an \mathbb{E}_n -ring structure.

Remark 1.2. There is a "change of fiber" formula. Given a morphism $r : R \to R'$, there is a commutative

diagram connecting two line bundles
$$\begin{array}{c} X \xrightarrow{J} BGL_1(R) \longrightarrow R \text{-mod} \\ \downarrow = & \downarrow_{\hat{r}} & \downarrow_{-\otimes_R R'} \\ X \longrightarrow BGL_1(R') \longrightarrow R' \text{-mod} \end{array}$$

The Thom spectrum of the bottom row is given by

$$M(\hat{r} \circ f) = \operatorname{colim}(X \xrightarrow{f} BGL_1(R) \xrightarrow{\hat{r}} BGL_1(R') \to R\operatorname{-mod})$$
$$\simeq R' \bigotimes_R \operatorname{colim}(X \xrightarrow{f} BGL_1(R) \to R'\operatorname{-mod})$$
$$= R' \bigotimes_R Mf$$

Example 1.3. The "trivial line bundle with fiber R" is the constant functor \underline{R} , and

$$M\underline{R} = R \otimes \Sigma^{\infty}_{+} X$$

is the generalized homology with coefficient in R.

Example 1.4. If X = BG is the classifying space of an \mathbb{E}_1 group, then $f : BG \to BGL_1(R)$ induces an action of *G* on *R* via $\Omega f : G \to GL_1(R)$. Hence *Mf* is by definition the homotopy orbit space

$$R_{hG} := \operatorname{colim}(BG \to R\operatorname{-mod} \to Sp),$$

where the map in the colimit sends the unque point of BG to R.

One may compare this with the following unstable construction: given a fibration $F \rightarrow E \rightarrow BG$ of topological spaces, there is a $G \simeq \Omega BG$ -action on the fiber F, whose homotopy orbit space is

$$E \simeq F_{hG} \simeq F \times_G EG.$$

Example 1.5. Taking $R = \mathbb{S}$ recovers the classical construction of stable spherical fibrations. A map $BG \rightarrow BGL_1(\mathbb{S})$ produces an action of *G* on the fiber \mathbb{S} , which is equivalent to a Σ^{∞}_+G -module structure on *S*. Hence

$$(\mathbb{S})_{hG} \simeq \mathbb{S} \underset{\Sigma^{\infty}_{+}G}{\otimes} \mathbb{S}$$

with the two augmentations given respectively by the module structure and the trivial map $G \rightarrow *$.

Example 1.6. The universal real Thom spectra MO can be obtained using the J-homomorphism

$$BJ: BO \rightarrow BGL_1(\mathbb{S}).$$

Example 1.7. Let $Conf_k(M)$

2 Hopkins-Mahowald's Theorem

Recall that a two-fold loop map $\Omega^2 S^3 \to BGL_1(\mathbb{S}_p^{\wedge})$ is induced from a map $S^1 \to BGL_1(\mathbb{S}_p^{\wedge})$. Equivalently, such a map is the adjoint to an element of

$$\pi_1(BGL_1(\mathbb{S}_p^{\wedge})) = \pi_0(GL_1(\mathbb{S}_p^{\wedge})) = \mathbb{Z}_p^{\times}$$

Let f_p be the two-fold loop map corresponding to $1 + u \cdot p \in \mathbb{Z}_p^{\times}$, where u is a unit.

Theorem 2.1 (Hopkins-Mahowald). *There is an equivalence of* \mathbb{E}_2 *-ring spectra*

$$Mf_p \simeq H\mathbb{F}_p$$

Proof. We follow the proof in [8, A.1]. By definition $Mf_p = (\mathbb{S}_p^{\wedge})_{h\Omega^3 S^3}$. We want to compute $\pi_0(Mf_p)$. Note that $\pi_0 : \tau_{\geq 0}Sp \to \mathbb{A}$ has right adjoint the Eilenberg-MacLane spectrum functor, so it commutes colimits for connective spectra. Furthermore, since Ab is a 1-category, the 1-truncation of any colimit diagram *D* in Ab are cofinal, i.e. taking colimit indexed by *D* is equivalent to taking colimit indexed by the 1-truncation of *D*. Hence we deduce that 1

$$\pi_{0}(Mf_{p}) = \pi_{0}((\mathbb{S}_{p}^{\wedge})_{h\Omega^{3}S^{3}}) = \pi_{0}(\operatorname{colim}(\Omega^{2}S^{3} \to BGL_{1}(\mathbb{S}_{p}^{\wedge})))$$

$$\simeq \operatorname{colim}_{B\Omega^{3}S^{3}} (BGL_{1}(\mathbb{S}_{p}^{\wedge}))$$

$$\simeq \operatorname{colim}_{B\pi_{0}(\Omega^{3}S^{3})} \pi_{0}(BGL_{1}(\mathbb{S}_{p}^{\wedge}))$$

$$\simeq (\pi_{0}(BGL_{1}(\mathbb{S}_{p}^{\wedge}))_{h\pi_{0}(\Omega^{3}S^{3})} = (\mathbb{Z}_{p})\mathbb{Z}$$

Since $1 \in \mathbb{Z}$ acts on \mathbb{Z}_p by 1-p, we have $(\mathbb{Z}_p)_{\mathbb{Z}} \cong \mathbb{Z}_p/(1-(1+u \cdot p)) \cong \mathbb{F}_p$. Thus we obtain an \mathbb{E}_2 -map

 $\phi: Mf_p \to H\mathbb{F}_p$

to the 0th stage of the Postnikov tower of Mf with all stages and maps \mathbb{E}_2 .²

We claim that ϕ is an equivalence. Note that Mf_p and $H\mathbb{F}_p$ are *p*-torsion³ and connective, so it suffices to show that

$$\phi_*: H_*(Mf_p; \mathbb{F}_p) \to H_*(H\mathbb{F}_p; \mathbb{F}_p)$$

is an isomorphism on homology. To understand $H_*(Mf_p; \mathbb{F}_p)$, we compare two ways of computing the Thom spectrum of the \mathbb{E}_2 -map

$$\Omega^2 S^3 \xrightarrow{J_p} BGL_1(\mathbb{S}_p^{\wedge}) \xrightarrow{r} BGL_1(H\mathbb{F}_p) = B\mathbb{F}_p^{\times},$$

where *r* is induced by the reduction mod *p*. The change of fiber formula gives an equivalences of \mathbb{E}_2 -ring spectrum

$$M(r \circ f_p) = \operatorname{colim}_{\Omega^2 S^3}(r \circ f_p) \simeq H\mathbb{F}_p \underset{\mathbb{S}_p^{\wedge}}{\otimes} \operatorname{colim}_{\Omega^2 S^3} f_p \simeq H\mathbb{F}_p \otimes Mf_p.$$

On the other hand, the 2-fold loop map $r \circ f_p$ is a lift of

$$S^1 \xrightarrow{1+u \cdot p} BGL_1(\mathbb{S}_p^{\wedge}) \xrightarrow{r} BGL_1(H\mathbb{F}_p),$$

which has to be null-homotopic since $1 + u \cdot p = 1 \mod p$. Hence there is an equivalence of \mathbb{E}_2 -ring spectra

$$H\mathbb{F}_p \otimes \Sigma^{\infty}_+ \Omega^2 S^3 \simeq M(r \circ f_p) \simeq H\mathbb{F}_p \otimes Mf_p,$$

both sides of which are the \mathbb{F}_p -homology.

As a result, we only need to check that

$$\phi_*: H_*(Mf_p; \mathbb{F}_p) \cong H_*(\Omega^2 S^3; \mathbb{F}_p) \to H_*(H\mathbb{F}_p; \mathbb{F}_p)$$

is an isomorphism in degree 0 and 1. Then the following classical results [black-box] ensure that ϕ_* extends to an isomorphism, since both sides are generated by \mathbb{E}_2 -Dyer-Lashof operations from degree 1 as \mathbb{E}_2 -rings.

$$E_{*,*}^2 = H_*(BG, \pi_*(E)) \Rightarrow \pi_*(E_{hG})$$

which is first-quadrant for connective G-spectrum E. [6, 2.5] Here we have an action of $\Omega^3 S^3$ on \mathbb{S}_p^{\wedge} . The (0,0) term survives and is given by the 0th homology group with local coefficients

$$\pi_0(Mf_p) = H_0(\Omega^2 S^3; \pi_0(\mathbb{S}_p^{\wedge})) = \operatorname{Tor}^{\pi_1(\Omega^2 S^3)}(\mathbb{Z}; H_0(\mathbb{S}_p^{\wedge})) = \operatorname{Tor}^{\mathbb{Z}}(\mathbb{Z}; \mathbb{Z}_p) = (\mathbb{Z}_p)_{\mathbb{Z}}.$$

²Such a tower is constructed by using exclusively \mathbb{E}_n cells to kill off higher homotopy groups in the usual Postnikov tower construction. See [2, Section 4] for details.

¹Alternatively, one can see this using a spectral sequence for the homotopy orbit space E_{hG} with

³This is because the unit $1 \in \pi_0(Mf_p)$ of the associative graded ring $\pi_*(Mf_p)$ is *p*-torsion.

Lemma 2.2. 1). $H_*(\Omega^2 S^3; \mathbb{F}_p) = \mathbb{F}_p[y_0, y_1, \dots; z_1, z_2, \dots]/(y_i^2)$, where $|y_i| = 2p^i - 1$ and $|z^i| = 2p^i - 2$. The elements y_i and z_i are generated from the degree 1 element y_0 via Dyer-Lashof operations.

2). There is an (\mathbb{E}_{2}) ring isomorphism $H_{*}(\Omega^{2}S^{3};\mathbb{F}_{p}) \cong H_{*}(H\mathbb{F}_{p};\mathbb{F}_{p})$ of Pontryagin rings, i.e. this isomorphism is compatible with the Dyer-Lashof operations.

Consider the \mathbb{E}_1 map $\mathbb{Z} \to \Omega^3 S^3$ induced from the canonical map $g: S^1 \to \Omega^2 S^3$. Then we get a map

$$\mathbb{S}/p = (\mathbb{S}_p^{\wedge})_{h\mathbb{Z}} \to (\mathbb{S}_p^{\wedge})_{h\Omega^3 S^3} = Mf_p$$

This is an isomorphism on homology in degree 0 and 1 since g is 1-connected. The composition

$$\mathbb{S}/p \to Mf_p \to H\mathbb{F}_p$$

is the map to the 0th section of the postnikov tower of S/p, which is an isomorphism in degree 0 and 1 \mathbb{F}_p -homology. This concludes the proof.

3 An algebraic proof

Now we prove that $\text{THH}(\mathbb{F}_p) = H\mathbb{F}_p \otimes \Sigma^{\infty}_+ \Omega S^3$. This proof was sketched in [7, 1.2] and explained in [9] using an argument in [5, 5.7].

Proof of Claim 0.1. There is a homotopy fiber sequence

$$\Omega X \times \Omega X \to \Omega X \xrightarrow{ev_{1/2}} X,$$

where $ev_{1/2}$ sends a loop $\gamma: I \to X$ to $\gamma(1/2)$. Then $\Omega X = (\Omega X \times \Omega X)_{h\Omega X}$ is the homotopy orbit space of the fibration

$$\Omega X \to \Omega X \times \Omega X \to \Omega X$$

Take $\Omega X = \Omega^2 S^3 \in \mathcal{S}_{/BGL_1(\mathbb{S}_p^{\wedge})}$ with the augmentation f_p and

$$\Omega^2 S^3 \times \Omega^2 S^3 \xrightarrow{f_p \times f_p} BGL_1(\mathbb{S}_p^{\wedge}) \times BGL_1(\mathbb{S}_p^{\wedge}) \xrightarrow{\mu} BGL_1(\mathbb{S}_p^{\wedge}).$$

Then we have $\Omega^2 S^3 = (\Omega^2 S^3 \times \Omega^2 S^3)_{h\Omega^2 S^3}$ in $S_{/BGL_1(\mathbb{S}_p^{\wedge})}$. Apply the Thom spectrum funtor on both sides. Then the Hopkins-Mahowald result implies that the $H\mathbb{F}_p \otimes H\mathbb{F}_p$ -module structure of $H\mathbb{F}_p$ is given by

$$H\mathbb{F}_p = (H\mathbb{F}_p \otimes H\mathbb{F}_p)_{h\Omega^2 S^3} = (H\mathbb{F}_p \otimes H\mathbb{F}_p) \underset{\Sigma^+_+\Omega^2 S^3}{\otimes} \mathbb{S}.$$

Thus we have

$$\mathrm{THH}(\mathbb{F}_p) = H\mathbb{F}_p \underset{n \in \mathbb{H}}{\otimes} H\mathbb{F}_p \qquad (1)$$

$$= H\mathbb{F}_{p} \underset{H\mathbb{F}_{p} \otimes H\mathbb{F}_{p}}{\otimes} (H\mathbb{F}_{p} \otimes H\mathbb{F}_{p}) \underset{\Sigma_{+}^{\infty} \Omega^{2} S^{3}}{\otimes} S$$
(2)

$$=H\mathbb{F}_{p}\underset{\Sigma_{\pm}^{\infty}\Omega^{2}S^{3}}{\otimes}\mathbb{S}$$
(3)

$$=H\mathbb{F}_p\otimes\mathbb{S}\underset{\Sigma_+^{\infty}\Omega^2S^3}{\otimes}\mathbb{S}$$
(4)

$$=H\mathbb{F}_p\otimes\Sigma^{\infty}_+(*\underset{\Omega^2S^3}{\otimes}*)$$
(5)

$$=H\mathbb{F}_p\otimes\Sigma^{\infty}_+(B(*,\Omega^2S^3,*))$$
(6)

$$=H\mathbb{F}_p\otimes\Sigma^{\infty}_+\Omega S^3.$$
(7)

4 A topological proof

Next we look briefly at a proof in [3] that is more hands-on. The main idea is that THH(Mf) can be expressed as a Thom spectrum. Under good conditions, a generalized version of Thom isomorphism allows one to factor out Mf.

Theorem 4.1. Let $F: X \to BGL_1(R)$ be any *R*-line bundle over a connected \mathbb{E}_1 -algebra *X*. Then

$$\text{THH}(MF) = M(\mathcal{L}BX \to BGL_1(R))$$

as *R*-modules, where \mathcal{L} is the free loop space functor. If *F* is an \mathbb{E}_2 -map, then they are equivalent as \mathbb{E}_1 -*R* algebras.

Proof. Since the Thom spectrum functor preserves colimits and tensor product, and thus the cyclic bar construction, we have

$$\mathrm{THH}(MF) = \mathrm{HH}(MF/Sp) = M(\mathrm{HH}(X/\mathcal{S}_{/BGL_1(R)})).$$

We want to understand the map we are taking the Thom spectrum funtor over on the right hand side. Recall a classical theorem of Goodwillie [4] that for a topological loop space ΩZ , the ordinary Hochschild complex of the singular chain complex HH($C_*(\Omega Z)$) is isomorphic to the chain complex $C_*(\mathcal{L}Z)$ of the free loop space on Z.

Now consider the Hochshild complex of X in the over category $S_{/BGL_1(R)}$. Then $HH(X/S_{/BGL_1(R)})$ consists of a map

$$\operatorname{HH}(X/S) \to \operatorname{HH}(BGL_1(R)/S) \to BGL_1(R).$$

Using the theorem above and the fact that the two constructions Hochschild complex of a DGA in the classical and the ∞ -categorical settings agree [8, Proposition 3.6], this is equivalent to a map of spaces

$$h: \mathcal{L}BX \to \mathcal{L}B^2GL_1(R) \to BGL_1(R)$$

Thus we conclude that THH(MF) = Mh.

If F is an \mathbb{E}_2 map, then BF is \mathbb{E}_1 and the structure is preserved by taking Hochshild complex.

Recall that the fibration

$$X \simeq \Omega B X \to \mathcal{L} B X \xrightarrow{ev_0} B X$$

admits a section given by the constant loops. If X is an \mathbb{E}_1 -space, then the composite

$$X \times BX \to \mathcal{L}BX \times \mathcal{L}BX \xrightarrow{\mu} \mathcal{L}BX$$

is an equivalence. Note that this is an \mathbb{E}_1 -equivalence only after taking Thom spectrum. Under good conditions, we can use the following version of the Thom isomorphism to factor the Thom spectrum of \mathcal{LBX} .

Lemma 4.2. Let Y be an \mathbb{E}_n -space and X an \mathbb{E}_{n+1} -grouplike space over $BGL_1(R)$ such that $\downarrow_{\mathcal{X}}$

commutes. Suppose that $Mg: MY \to MX$ refines to a map of \mathbb{E}_n -ring spectra. Then there is an equivalence of \mathbb{E}_n -ring spectra $MX \otimes MY \xrightarrow{\simeq} MX \otimes Y$.

 $\xrightarrow{f} BGL_1(R)$

Then for an \mathbb{E}_2 -map f with an \mathbb{E}_3 structure on Mf, we can deduce that there are equivalences of E_1 -R-algebras

$$\mathrm{THH}(Mf) \simeq M(\mathcal{L}BX \to BGL_1(R)) \simeq M(X \times BX \to BGL_1(R)) \simeq Mf \otimes BX.$$

To conclude the proof of Bökstedt's theorem, we simply plug in the map $F = f_p : \Omega^2 S^3 \to BGL_1(\mathbb{S}_p^{\wedge})$.

References

- [1] Ando, Matthew, et al. "An∞-categorical approach to R-line bundles, R-module Thom spectra, and twisted R-homology." Journal of Topology 7.3 (2014): 869-893. 1
- [2] Basterra, Maria, and Michael A. Mandell. "The multiplication on BP." arXiv preprint arXiv:1101.0023 (2010). 3
- [3] Blumberg, Andrew J., Ralph L. Cohen, and Christian Schlichtkrull. "Topological Hochschild homology of Thom spectra and the free loop space." Geometry & Topology 14.2 (2010): 1165-1242. 5
- [4] Goodwillie, Thomas G. "Cyclic homology, derivations, and the free loopspace." Topology 24.2 (1985): 187-215. 5
- [5] Klang, Inbar. "The factorization theory of Thom spectra and twisted nonabelian Poincaré duality." Algebraic & Geometric Topology 18.5 (2018): 2541-2592.
- [6] Hedenlund, Alice. "The Tate construction and spectral sequences." https://www.math.ru.nl/ ~sagave/east2018/tate_construction_talk_EAST2018.pdf 3
- [7] Krause, Achim, and Thomas Nikolaus. "Bökstedt periodicity and quotients of DVRs." arXiv preprint arXiv:1907.03477 (2019). 4
- [8] Krause, Achim, and Thomas Nikolaus."Lectures on topological Hochschild homology and cyclotomic spectra." https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/ Lectures.pdf 3, 5
- [9] Wilson, Dylan. "Revisiting THH(\mathbb{F}_p)."(answer). MathOverflow. Version: 2019-01-06. https://mathoverflow.net/q/320246 4