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In this talk, we present a proof of Bökstedt’s theorem THH∗(Fp) =Fp[x] using a result of Steinberger on
Dyer-Lashof operations and Hopkins-Mahowald’s theorem that there is an equivalence of E2-ring spectra
HFp 'M(Ω2S3→ BGL1(S∧p )).

Note that Bökstedt’s theorem reduces to the following fact:

Claim 0.1. THH(Fp) = HFp⊗Σ∞
+ΩS3.

Then THH∗(Fp) = π∗(THH(Fp)) is the homology of ΩS3 with Fp coefficients, which has a single
generator in degree 2. Bökstedt’s theorem thus follows.

Convention: We denote by S and Sp the infinity categories of spaces and spectra. Unless specifically
noted, the tensor product ⊗ is taken over S.

1 Thom spectrum
We begin by recalling the construction of the generalized Thom spectrum following [1].

Let R be a ring spectrum and X ∈ S . We want to obtain an analogous construction of a line bundle with
fiber R over a topological space.

First off, we can put a free rank 1 R-module Lp ' R at each point p ∈ X . Then we need to specify
homotopy coherence conditions: for every path γ connecting points p,q, there should be an equivalence Lγ

of R-modules between the fibers Lp,Lq; for every homotopy h between γ and γ ′, there should be a homotopy
Lγ → Lγ ′ in the space of R-module equivalences Lp→ Lq; etc.

To sum up, we define a bundle of R-line bundle over X to be a functor of infinity groupoids

f : X ' Xop→ BGL1(R)

sending each point of X to the unique point of BGL1(R). Here GL1(R)'AutR(R) is the grouplike space of

units of the ring R. Explicitly, it is the pullback

GL1(R) Ω∞(R)

π0(R)× π0(R)

p in S .

Definition 1.1. The (generalized) Thom spectrum M f of a map f : X → BGL1(R) in S is the spectrum

M f := colim(X
f−→ BGL1(R)→ R-mod).

For fixed R, we obtain a Thom spectrum functor

M : S/BGL1(R)→ R-mod.

Note that if f is an En map, then M f inherits an En-ring structure.
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Remark 1.2. There is a "change of fiber" formula. Given a morphism r : R→ R′, there is a commutative

diagram connecting two line bundles

X BGL1(R) R-mod

X BGL1(R′) R′-mod

f

= r̂ −⊗RR′ .

The Thom spectrum of the bottom row is given by

M(r̂ ◦ f ) =colim(X
f−→ BGL1(R)

r̂−→ BGL1(R′)→ R-mod)

'R′⊗
R

colim(X
f−→ BGL1(R)→ R′-mod)

=R′⊗
R

M f

Example 1.3. The "trivial line bundle with fiber R" is the constant functor R, and

MR = R⊗Σ
∞
+X

is the generalized homology with coefficient in R.

Example 1.4. If X = BG is the classifying space of an E1 group, then f : BG→ BGL1(R) induces an action
of G on R via Ω f : G→ GL1(R). Hence M f is by definition the homotopy orbit space

RhG := colim(BG→ R-mod→ Sp),

where the map in the colimit sends the unqiue point of BG to R.

One may compare this with the following unstable construction: given a fibration F → E → BG of
topological spaces, there is a G'ΩBG-action on the fiber F , whose homotopy orbit space is

E ' FhG ' F×G EG.

Example 1.5. Taking R = S recovers the classical construction of stable spherical fibrations. A map BG→
BGL1(S) produces an action of G on the fiber S, which is equivalent to a Σ∞

+G-module structure on S. Hence

(S)hG ' S ⊗
Σ∞
+G

S

with the two augmentations given respectively by the module structure and the trivial map G→∗.

Example 1.6. The universal real Thom spectra MO can be obtained using the J-homomorphism

BJ : BO→ BGL1(S).

Example 1.7. Let Confk(M)

2 Hopkins-Mahowald’s Theorem
Recall that a two-fold loop map Ω2S3→ BGL1(S∧p ) is induced from a map S1→ BGL1(S∧p ). Equivalently,
such a map is the adjoint to an element of

π1(BGL1(S∧p )) = π0(GL1(S∧p )) = Z×p .

Let fp be the two-fold loop map corresponding to 1+u · p ∈ Z×p , where u is a unit.

Theorem 2.1 (Hopkins-Mahowald). There is an equivalence of E2-ring spectra

M fp ' HFp.
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Proof. We follow the proof in [8, A.1]. By definition M fp =(S∧p )hΩ3S3 . We want to compute π0(M fp). Note
that π0 : τ≥0Sp→A has right adjoint the Eilenberg-MacLane spectrum functor, so it commutes colimits for
connective spectra. Furthermore, since Ab is a 1-category, the 1-truncation of any colimit diagram D in Ab
are cofinal, i.e. taking colimit indexed by D is equivalent to taking colimit indexed by the 1-truncation of
D. Hence we deduce that 1

π0(M fp) = π0((S∧p )hΩ3S3) = π0(colim(Ω2S3→ BGL1(S∧p )))
' colim

BΩ3S3
π0(BGL1(S∧p ))

' colim
Bπ0(Ω3S3)

π0(BGL1(S∧p ))

' (π0(BGL1(S∧p ))hπ0(Ω3S3) = (Zp)Z.

Since 1 ∈ Z acts on Zp by 1− p, we have (Zp)Z ∼= Zp/(1− (1+u · p))∼= Fp. Thus we obtain an E2-map

φ : M fp→ HFp

to the 0th stage of the Postnikov tower of M f with all stages and maps E2.2

We claim that φ is an equivalence. Note that M fp and HFp are p-torsion3 and connective, so it suffices
to show that

φ∗ : H∗(M fp;Fp)→ H∗(HFp;Fp)

is an isomorphism on homology. To understand H∗(M fp;Fp), we compare two ways of computing the
Thom spectrum of the E2-map

Ω
2S3 fp−→ BGL1(S∧p )

r−→ BGL1(HFp) = BF×p ,

where r is induced by the reduction mod p. The change of fiber formula gives an equivalences of E2-ring
spectrum

M(r ◦ fp) = colim
Ω2S3(r ◦ fp)' HFp⊗

S∧p
colim

Ω2S3 fp ' HFp⊗M fp.

On the other hand, the 2-fold loop map r ◦ fp is a lift of

S1 1+u·p−−−→ BGL1(S∧p )
r−→ BGL1(HFp),

which has to be null-homotopic since 1+u · p = 1 mod p. Hence there is an equivalence of E2-ring spectra

HFp⊗Σ
∞
+Ω

2S3 'M(r ◦ fp)' HFp⊗M fp,

both sides of which are the Fp-homology.

As a result, we only need to check that

φ∗ : H∗(M fp;Fp)∼= H∗(Ω2S3;Fp)→ H∗(HFp;Fp)

is an isomorhism in degree 0 and 1. Then the following classical results [black-box] ensure that φ∗ extends
to an isomorphism, since both sides are generated by E2-Dyer-Lashof operations from degree 1 as E2-rings.

1Alternatively, one can see this using a spectral sequence for the homotopy orbit space EhG with

E2
∗,∗ = H∗(BG,π∗(E))⇒ π∗(EhG),

which is first-quadrant for connective G-spectrum E. [6, 2.5] Here we have an action of Ω3S3 on S∧p . The (0,0) term survives and is
given by the 0th homology group with local coefficients

π0(M fp) = H0(Ω
2S3;π0(S∧p )) = Torπ1(Ω

2S3)(Z;H0(S∧p )) = TorZ(Z;Zp) = (Zp)Z.

2Such a tower is constructed by using exclusively En cells to kill off higher homotopy groups in the usual Postnikov tower con-
struction. See [2, Section 4] for details.

3This is because the unit 1 ∈ π0(M fp) of the associative graded ring π∗(M fp) is p-torsion.
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Lemma 2.2. 1). H∗(Ω2S3;Fp) = Fp[y0,y1, . . . ;z1,z2, . . .]/(y2
i ), where |yi|= 2pi−1 and |zi|= 2pi−2. The

elements yi and zi are generated from the degree 1 element y0 via Dyer-Lashof operations.
2). There is an (E2-) ring isomorphism H∗(Ω2S3;Fp) ∼= H∗(HFp;Fp) of Pontryagin rings, i.e. this

isomorphism is compatible with the Dyer-Lashof operations.

Consider the E1 map Z→Ω3S3 induced from the canonical map g : S1→Ω2S3. Then we get a map

S/p = (S∧p )hZ→ (S∧p )hΩ3S3 = M fp.

This is an isomorphism on homology in degree 0 and 1 since g is 1-connected. The composition

S/p→M fp→ HFp

is the map to the 0th section of the postnikov tower of S/p, which is an isomorphism in degree 0 and 1
Fp-homology. This concludes the proof.

3 An algebraic proof
Now we prove that THH(Fp) = HFp⊗Σ∞

+ΩS3. This proof was sketched in [7, 1.2] and explained in [9]
using an argument in [5, 5.7].

Proof of Claim 0.1. There is a homotopy fiber sequence

ΩX×ΩX →ΩX
ev1/2−−−→ X ,

where ev1/2 sends a loop γ : I→ X to γ(1/2). Then ΩX = (ΩX ×ΩX)hΩX is the homotopy orbit space of
the fibration

ΩX →ΩX×ΩX →ΩX .

Take ΩX = Ω2S3 ∈ S/BGL1(S∧p ) with the augmentation fp and

Ω
2S3×Ω

2S3 fp× fp−−−→ BGL1(S∧p )×BGL1(S∧p )
µ−→ BGL1(S∧p ).

Then we have Ω2S3 = (Ω2S3×Ω2S3)hΩ2S3 in S/BGL1(S∧p ). Apply the Thom spectrum funtor on both
sides. Then the Hopkins-Mahowald result implies that the HFp⊗HFp-module structure of HFp is given
by

HFp = (HFp⊗HFp)hΩ2S3 = (HFp⊗HFp) ⊗
Σ∞
+Ω2S3

S.

Thus we have

THH(Fp) = HFp ⊗
HFp⊗HFp

HFp (1)

= HFp ⊗
HFp⊗HFp

(HFp⊗HFp) ⊗
Σ∞
+Ω2S3

S (2)

= HFp ⊗
Σ∞
+Ω2S3

S (3)

= HFp⊗S ⊗
Σ∞
+Ω2S3

S (4)

= HFp⊗Σ
∞
+(∗ ⊗

Ω2S3
∗) (5)

= HFp⊗Σ
∞
+(B(∗,Ω2S3,∗)) (6)

= HFp⊗Σ
∞
+ΩS3. (7)
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4 A topological proof
Next we look briefly at a proof in [3] that is more hands-on. The main idea is that THH(M f ) can be
expressed as a Thom spectrum. Under good conditions, a generalized version of Thom isomorphism allows
one to factor out M f .

Theorem 4.1. Let F : X → BGL1(R) be any R-line bundle over a connected E1-algebra X. Then

THH(MF) = M(LBX → BGL1(R))

as R-modules, where L is the free loop space functor. If F is an E2-map, then they are equivalent as E1-R
algebras.

Proof. Since the Thom spectrum functor preserves colimits and tensor product, and thus the cyclic bar
construction, we have

THH(MF) = HH(MF/Sp) = M(HH(X/S/BGL1(R))).

We want to understand the map we are taking the Thom spectrum funtor over on the right hand side. Recall
a classical theorem of Goodwillie [4] that for a topological loop space ΩZ, the ordinary Hochschild complex
of the singular chain complex HH(C∗(ΩZ)) is isomorphic to the chain complex C∗(LZ) of the free loop
space on Z.

Now consider the Hochshild complex of X in the over category S/BGL1(R). Then HH(X/S/BGL1(R))
consists of a map

HH(X/S)→ HH(BGL1(R)/S)→ BGL1(R).

Using the theorem above and the fact that the two constructions Hochschild complex of a DGA in the
classical and the ∞-categorical settings agree [8, Proposition 3.6], this is equivalent to a map of spaces

h : LBX → LB2GL1(R)→ BGL1(R).

Thus we conclude that THH(MF) = Mh.
If F is an E2 map, then BF is E1 and the structure is preserved by taking Hochshild complex.

Recall that the fibration
X 'ΩBX → LBX

ev0−−→ BX

admits a section given by the constant loops. If X is an E1-space, then the composite

X×BX → LBX×LBX
µ−→ LBX

is an equivalence. Note that this is an E1-equivalence only after taking Thom spectrum. Under good
conditions, we can use the following version of the Thom isomorphism to factor the Thom spectrum of
LBX .

Lemma 4.2. Let Y be an En-space and X an En+1-grouplike space over BGL1(R) such that
Y

X BGL1(R)

g

f

commutes. Suppose that Mg : MY →MX refines to a map of En-ring spectra. Then there is an equivalence
of En-ring spectra MX⊗MY '−→MX⊗Y.

Then for an E2-map f with an E3 structure on M f , we can deduce that there are equivalences of E1-R-
algebras

THH(M f )'M(LBX → BGL1(R))'M(X×BX → BGL1(R))'M f ⊗BX .

To conclude the proof of Bökstedt’s theorem, we simply plug in the map F = fp : Ω2S3→ BGL1(S∧p ).
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