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In this talk, we present a proof of Bokstedt’s theorem THH, (F,) = F, x| using a result of Steinberger on
Dyer-Lashof operations and Hopkins-Mahowald’s theorem that there is an equivalence of [E;-ring spectra
HF, ~ M(Q*S® — BGL,(S))).

Note that Bokstedt’s theorem reduces to the following fact:
Claim 0.1. THH(F,) = HF, @ £7QS>.

Then THH.(F,) = m.(THH(F,)) is the homology of QS* with F, coefficients, which has a single
generator in degree 2. Bokstedt’s theorem thus follows.

Convention: We denote by S and Sp the infinity categories of spaces and spectra. Unless specifically
noted, the tensor product ® is taken over S.

1 Thom spectrum

We begin by recalling the construction of the generalized Thom spectrum following [1].

Let R be a ring spectrum and X € S. We want to obtain an analogous construction of a line bundle with
fiber R over a topological space.

First off, we can put a free rank 1 R-module L, ~ R at each point p € X. Then we need to specify
homotopy coherence conditions: for every path y connecting points p, g, there should be an equivalence Ly
of R-modules between the fibers L, L,; for every homotopy & between y and ¥/, there should be a homotopy
Ly — Ly in the space of R-module equivalences L, — Lg; etc.

To sum up, we define a bundle of R-line bundle over X to be a functor of infinity groupoids
f:X ~X° — BGL(R)

sending each point of X to the unique point of BGL(R). Here GL;(R) ~ Autg(R) is the grouplike space of
GL{(R) —— Q~(R)
units of the ring R. Explicitly, it is the pullback l : inS.

To(R)* —— mo(R)
Definition 1.1. The (generalized) Thom spectrum M f of a map f: X — BGL;(R) in S is the spectrum
Mf := colim(X ER BGL(R) — R-mod).
For fixed R, we obtain a Thom spectrum functor
M : S i, (r) — R-mod.

Note that if f is an [E,, map, then M f inherits an E,-ring structure.



Remark 1.2. There is a "change of fiber" formula. Given a morphism r : R — R/, there is a commutative

X —' BGL{(R) —— R-mod
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diagram connecting two line bundles J: l lfQ@RR/ .
X —— BGL{(R')) —— R'-mod
The Thom spectrum of the bottom row is given by
M(#o f) =colim(X L BGL,(R) % BGL,(R') — R-mod)
~R © colim(X 2, BGL\(R) — R'-mod)
=R oMf
R
Example 1.3. The "trivial line bundle with fiber R" is the constant functor R, and
MR=R®X7X
is the generalized homology with coefficient in R.

Example 1.4. If X = BG is the classifying space of an E; group, then f : BG — BGL (R) induces an action
of Gon R via Qf : G — GL(R). Hence M f is by definition the homotopy orbit space

Ry := colim(BG — R-mod — Sp),
where the map in the colimit sends the unqiue point of BG to R.

One may compare this with the following unstable construction: given a fibration F — E — BG of
topological spaces, there is a G ~ QBG-action on the fiber F', whose homotopy orbit space is

EZF],G:FXGEG.

Example 1.5. Taking R = S recovers the classical construction of stable spherical fibrations. A map BG —
BGL, (S) produces an action of G on the fiber S, which is equivalent to a £ G-module structure on S. Hence

(S)e =S @ S
£2G

with the two augmentations given respectively by the module structure and the trivial map G — .
Example 1.6. The universal real Thom spectra MO can be obtained using the J-homomorphism
BJ : BO — BGL,(S).

Example 1.7. Let Confy, (M)

2 Hopkins-Mahowald’s Theorem

Recall that a two-fold loop map Q2S> — BGL, (S) is induced from a map § ' - BGL, (S}). Equivalently,
such a map is the adjoint to an element of

m (BGL(S)))) = m(GLi(S))) =Z, .
Let f, be the two-fold loop map corresponding to 1 +u- p € Z;;, where u is a unit.

Theorem 2.1 (Hopkins-Mahowald). There is an equivalence of E,-ring spectra

Mf, ~HF,.



Proof. We follow the proof in [&, A.1]. By definition M f, = (S},),q353. We want to compute 79 (M f, ). Note
that 7y : T>0Sp — A has right adjoint the Eilenberg-MacLane spectrum functor, so it commutes colimits for
connective spectra. Furthermore, since Ab is a 1-category, the 1-truncation of any colimit diagram D in Ab
are cofinal, i.e. taking colimit indexed by D is equivalent to taking colimit indexed by the 1-truncation of
D. Hence we deduce that !

Mo (Mfp) = 70((S))passs) = To(colim(Q?S® — BGL((S))))
=~ colimmy (BGL (S)))
BQ3S3

~ colim BGL,(S"
Bﬂo(5;3s3)7r0( 1( p))

= (0 (BGL1(S})) iz 03s3) = (Zp)z.-
Since 1 € Z acts on Z, by 1 — p, we have (Z,)7 = Z,/(1 — (1 +u- p)) = F,. Thus we obtain an E;-map
¢:Mf,— HF,
to the Oth stage of the Postnikov tower of M f with all stages and maps E,.”

We claim that ¢ is an equivalence. Note that M f,, and HF, are p-torsion® and connective, so it suffices
to show that
O H (Mf,;F,) — H (HF ,;F )

is an isomorphism on homology. To understand H.(Mf,;F,), we compare two ways of computing the
Thom spectrum of the [E;-map

Q253 2, BGLy (S) & BGL, (HF,) = BF,

where r is induced by the reduction mod p. The change of fiber formula gives an equivalences of [E,-ring
spectrum
M(ro fp) = colimgags(ro fp) ~ HF ) @ colimgags f = HIE , @ M f.
Sy

On the other hand, the 2-fold loop map ro f, is a lift of
s' 2P BGLI(S)) 5 BGLy (HF,),
which has to be null-homotopic since 1+ u«- p = 1 mod p. Hence there is an equivalence of [E,-ring spectra
HF,®X3Q°S3 ~ M(ro f,) ~ HF, @ Mf,,
both sides of which are the IF,-homology.
As aresult, we only need to check that
9. Ho(Mfp:Fp) = H QS F,) — Ho(HF;F))

is an isomorhism in degree 0 and 1. Then the following classical results [black-box] ensure that ¢, extends
to an isomorphism, since both sides are generated by [E,-Dyer-Lashof operations from degree 1 as [£,-rings.

! Alternatively, one can see this using a spectral sequence for the homotopy orbit space Ej,g with
E?, = H.(BG,7.(E)) = m.(Eg),

which is first-quadrant for connective G-spectrum E. [6, 2.5] Here we have an action of Q353 on SIA,. The (0,0) term survives and is
given by the Oth homology group with local coefficients

(M) = Ho(Q28%; 70(S))) = Tor™ @) (2 Ho (S))) = Tor(Z:Z,) = (Zp)z.
2Such a tower is constructed by using exclusively [E, cells to kill off higher homotopy groups in the usual Postnikov tower con-

struction. See [2, Section 4] for details.
3This is because the unit 1 € 7 (Mf,) of the associative graded ring 7, (Mf,,) is p-torsion.



Lemma 2.2. 1). H.(Q?S*;F),) =F,[yo,y1,-..321,22,.-.]/ (?), where |y;| = 2p' — 1 and |7'| = 2p’ — 2. The
elements y; and z; are generated from the degree 1 element yo via Dyer-Lashof operations.

2). There is an (Ey-) ring isomorphism H*(QZS3;]FP) = H,(HF,;F,) of Pontryagin rings, i.e. this
isomorphism is compatible with the Dyer-Lashof operations.

Consider the E; map Z — Q353 induced from the canonical map g : ' — Q25°. Then we get a map
S/p=(S))z = (S))gsss = Mfp.
This is an isomorphism on homology in degree 0 and 1 since g is 1-connected. The composition
S/p—Mf, — HF,

is the map to the Oth section of the postnikov tower of S/p, which is an isomorphism in degree 0 and 1
I ,-homology. This concludes the proof. O

3 An algebraic proof

Now we prove that THH(F,) = HF), ®Z°+°QS3. This proof was sketched in [7, 1.2] and explained in [9]
using an argument in [5, 5.7].

Proof of Claim 0.1. There is a homotopy fiber sequence

evl/z

QX x QX - QX —— X
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where ev, /, sends a loop y: 1 — X to y(1/2). Then QX = (QX x QX),qx is the homotopy orbit space of
the fibration
QX — QX x QX — QX.

Take QX = Q?S3 € S /BGLy(S)) with the augmentation f,, and

Q253 x 0253 700, BGL, (8)) x BGLI(S)) £ BGL(S)).

Then we have Q25° = (Q2$% x Q25%), > @ inS /BGL, (S})- Apply the Thom spectrum funtor on both
sides. Then the Hopkins-Mahowald result implies that the HF, ® HF ,-module structure of HIF, is given
by

HF,= (HF,®HF )53 = (HF,®HF,) ® 8§.

Q283
Thus we have
THH(F,) = HF ® HF 1
() P ur,enr, ¥ M
=HF ® (HF,®HF,) ® S 2
P e S, EPSHE) & @)
=HF, ® S 3)
230283

=HF,®S ® S “4)

Q283
=HF,QX7(x ® *) (5)

Q253
=HF, ®X%(B(*,Q%S° %)) (6)
=HF, 21708 (7)



4 A topological proof

Next we look briefly at a proof in [3] that is more hands-on. The main idea is that THH(M f) can be
expressed as a Thom spectrum. Under good conditions, a generalized version of Thom isomorphism allows
one to factor out M f.

Theorem 4.1. Let F : X — BGL(R) be any R-line bundlie over a connected E-algebra X. Then
THH(MF) = M(LBX — BGL(R))

as R-modules, where L is the free loop space functor. If F is an Ey-map, then they are equivalent as E1-R
algebras.

Proof. Since the Thom spectrum functor preserves colimits and tensor product, and thus the cyclic bar
construction, we have

THH(MF) = HH(MF /Sp) = M(HH(X /S /pc1, (r)))-

We want to understand the map we are taking the Thom spectrum funtor over on the right hand side. Recall
a classical theorem of Goodwillie [4] that for a topological loop space QZ, the ordinary Hochschild complex
of the singular chain complex HH(C,(QZ)) is isomorphic to the chain complex C,(LZ) of the free loop
space on Z.
Now consider the Hochshild complex of X in the over category S/pgyr,(r)- Then HH(X/S g1, (r))
consists of a map
HH(X/S) — HH(BGL(R)/S) — BGL;(R).

Using the theorem above and the fact that the two constructions Hochschild complex of a DGA in the
classical and the oo-categorical settings agree [8, Proposition 3.6], this is equivalent to a map of spaces

h: LBX — LB*GL;{(R) — BGL;(R).

Thus we conclude that THH(MF) = Mh.
If F is an [E, map, then BF is [E; and the structure is preserved by taking Hochshild complex. [

Recall that the fibration
X ~ QBX — LBX =% BX

admits a section given by the constant loops. If X is an E;-space, then the composite

X x BX — LBX x £LBX & £BX

is an equivalence. Note that this is an E;-equivalence only after taking Thom spectrum. Under good
conditions, we can use the following version of the Thom isomorphism to factor the Thom spectrum of
LBX.

Y

Lemma4.2. LetY be an E,-space and X an E, . 1-grouplike space over BGL, (R) such that Lg \

x - BorL,

commutes. Suppose that Mg : MY — MX refines to a map of E,-ring spectra. Then there is an equivalence
of E,-ring spectra MX @ MY = MX ®Y.

Then for an E;-map f with an [E3 structure on M f, we can deduce that there are equivalences of E|-R-
algebras
THH(Mf) ~M(LBX — BGL(R)) ~M(X x BX — BGL|(R)) ~Mf ®BX.

To conclude the proof of Bokstedt’s theorem, we simply plug in the map F = f, : Q253 — BGL, (SQ).
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