A naive \mathbb{A}^1-homotopy between morphisms f, g from a variety X to a variety Y is a cycle on $(X \times \mathbb{A}^1) \times Y$ whose support is finite and surjective over $X \times \mathbb{A}^1$ and whose fibers over 0 and 1 are the graphs of f and g respectively. Using this notion of naive \mathbb{A}^1-homotopy, one can define naive \mathbb{A}^1-homotopy equivalences of varieties. In this talk, we’ll discuss how an analog of a theorem of Whitehead can be used to show that there are no nontrivial \mathbb{A}^1-homotopy equivalences between smooth projective varieties.