
High Performance Parallel
Computing: A Beginner’s

Guide
Chris H. Rycroft

SPAMS, October 2006

Parallel versus serial

• Traditional model of computing: a single
processor executes instructions sequentially

Parallel versus serial

• Parallel computer: execute multiple programs
simultaneously

Shared Memory Machine

• Multiple CPUs
access the same
memory
concurrently

• Typical of a
dual/quad
processor computer

Distributed Memory
Machine

• Each CPU has its own
memory

• Each connected to a
network (ethernet,
internet, etc.)

• Can also hybrid model:
most common for the
fastest parallel
machines

Trends towards
parallel

• Moore’s law breaking
down

• Absolute physical limits
on the speed of one
processor (9cm/ns for
signals in copper wire)

• Manufacturers
switching to multiple
core processors, and
advertising it!

Disadvantages of parallel

• Always a communication overhead
• One worker can dig a hole in six hours,

but six workers can’t dig the hole in
one hour

• Try and split up the computation as
efficiently as possible

“Embarrassingly
parallel”

• Some tasks can very
easily be split into
independent chunks

• Each can be done in
series

• Examples:
– SETI@Home
– Folding@Home
– Pixar/Dreamworks

TOP500 - www.top500.org

• “The TOP500 project was started in 1993 to
provide a reliable basis for tracking and
detecting trends in high-performance
computing”

• Releases lists of the 500 most powerful
computers in the world every six months

• Measures rate of execution of FLoating point
OPerations, or “Flops”.

LINPACK Benchmark

• LINPACK: a standard numerical linear
algebra library

• Solve a dense set of n equations using LU
factorization with partial pivoting

• Takes 2/3 n3 + O(n2) operations
• Test different values of n, and find when the

Flop execution rate is maximized: RMax
• Also report RPeak: the theoretical peak

performance of the system

Top 10

1075200409603586051202002JapanEarth-SimulatorNECThe Earth Simulator Center10

11000004352036190108802005USARed Storm Cray XT3,
2.0 GHz

Cray Inc.Sandia National Laboratories9

6635514587537330163842006GermanyeServer Blue Gene
Solution

IBMForschungszentrum Juelich (FZJ)8

133416049868.838180103682006JapanSun Fire X4600
Cluster, Opteron
2.4/2.6 GHz, Infiniband

NEC/SunGSIC Center, Tokyo Institute of
Technology

7

64972.83827090242006USAPowerEdge 1850, 3.6
GHz, Infiniband

DellSandia National Laboratories6

55705.64290087042006FranceNovaScale 5160,
Itanium2 1.6 GHz,
Quadrics

Bull SACommissariat a l'Energie Atomique
(CEA)

5

12902406096051870101602004USASGI Altix 1.5 GHz,
Voltaire Infiniband

SGINASA/Ames Research Center/NAS4

13836009278175760122082006USAeServer pSeries p5 575
1.9 GHz

IBMDOE/NNSA/LLNL3

98303911468891290409602005USAeServer Blue Gene
Solution

IBMIBM Thomas J. Watson Research
Center

2

17694713670002806001310722005USAeServer Blue Gene
Solution

IBMDOE/NNSA/LLNL1

NmaxRPeakRMaxProcsYearCountryComputerMan.SiteRank

Blue Gene: the fastest
computer in the world

• 216 dual processors
• Interconnected in a

three-dimensional
torus network

• 33TB of main
memory

• Several
implementations of
this architecture

Blue Gene hierarchy

The Earth Simulator

Example #1: Large-
scale atomistic

modeling
• Large-scale Atomic/

Molecular Massively
Parallel Simulator

• http://lammps.sandia.gov
• Models a huge variety of

molecular simulations
• Domain decomposition;

very efficient
• 450,000 granular particles

in a pebble-bed reactor,
run on Sandia’s Xeon
cluster

 C. H. Rycroft et al., Phys. Rev. E 74, 021306 (2006).

Example #2:
Supernovae

collapse

• Terascale
Supernova Initiative

• http://www.phy.ornl
.gov/tsi

• 3D simulations
show behavior not
seen in 2D
simulations

 J. M. Blondin et al., Ap. J. 584, 971-980 (2003).

Example #3: Weather
simulations

• Carried out on the
Earth Simulator

• http://www.es.jams
tec.go.jp/esc

• An enormously
complicated
system; many
coupled processes

• Build a parallel computer
using off-the-shelf
components

• First done by Thomas
Sterling and Donald
Becker, NASA

• 16 100MHz processors,
16MB ram each, 10Mb
ethernet

• Named it “Beowulf”

Parallel computing for the
masses

Beowulf
Clusters

• Became a general term
for cluster

• We have a 32
processor Beowulf
called the AMCL in the
basement

• Buying factors
– Processors
– Memory
– Software
– Interconnect “In off the moors, down through the mist bands,

god-cursed Grendel came greedily loping. The
bane of the race of men roamed forth, hunting

for prey in the high hall.”

Interconnects: Ethernet

• Extremely popular,
and fairly cheap

• Use gigabit internet
for clusters

• Latency: 120
microseconds

• Bandwidth: 1 Gb/s

Interconnects
: Myrinet

• Expensive, but very
fast and popular

• Fiber-optic connections
• Network cards can

bypass OS and talk
directly to processes

• Latency: 2
microseconds

• Bandwidth: 10Gb/s

Software components

• Linux/FreeBSD;
some versions
specifically

• PBS queue
management
system

• Ganglia cluster
toolkit

http://amcl.mit.edu/ganglia

Practical considerations

• Space
• Rackmount
• Power
• Cables
• Ventilation
• Noise

Parallel programming

• A wide variety of
parallel
programming
languages exist

• Range from being
very high level, to
complete control

• Autoparallelization:
let the compiler do
it for you

void main () {
int i;
for(i=0;i<1000;i++) {

hard_func(i);
}

}

A possible autoparallelization
candidate:

High-level scientific
languages

• Star-P: a parallel version of Matlab
• Very similar, but matrices are

distributed across parallel processors
• Most work is hidden from the user
• Other similar products:

gridMathematica, HPC-Grid for Maple

Cilk

• A parallel extension to the C
programming language

• Primarily shared-memory machines
• Developed at MIT:

http://supertech.lcs.mit.edu/cilk/
• Simple commands to spawn functions

to other processors

C and Cilk for Fibonacci
int fib (int n) {
 if (n<2) return n;
 else {
 int x,y;
 x=fib(n-1);
 y=fib(n-2);

 return (x+y);
 }
}

cilk int fib (int n) {
 if (n<2) return n;
 else {
 int x,y;
 x=spawn fib(n-1);
 y=spawn fib(n-2);
 sync;
 return (x+y);
 }
}

• Extra keywords cause function calls to be
spawned to new processors

• Removing Cilk keywords gives back a serial
program

Message Passing Interface
(MPI)

• A widely used library for low-level access
• Can be used in many programming

languages (C, C++, Fortran, etc.)
• Provides commands for message passing

between processors
• http://www.lam-mpi.org/
• http://www-unix.mcs.anl.gov/mpi/mpich2/

Hello World!
#include <mpi.h>

void main(int argc, char *argv[]) {
 int me, nprocs;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);
 printf(“Hello from node %d of %d\n”, me, nprocs);
 MPI_Finalize();
}

Hello from node 2 of 4
Hello from node 3 of 4
Hello from node 0 of 4
Hello from node 1 of 4

Program output:

Passing a message

• Use the commands MPI_Send and MPI_Recv
• Can send an arbitrary chunk of data
• Usually faster to send one large message

than lots of small ones

A B

data

MPI_Send(data,...) MPI_Recv(data,...)

Data exchange

• Problems occur
when data is
exchanged between
processes

• The send
commands only
complete when the
data is received

A B

d1 d2

MPI_Send(d1,...)
MPI_Recv(d2,...)

MPI_Send(d2,...)
MPI_Recv(d1,...)

Data exchange

• Use the command
MPI_Isend to send
data and not wait
for a response

• Once the MPI_Recv
is done, call
MPI_Wait to wait
for the Isend to
complete

A B

d1 d2

MPI_Isend(d1,...,r)
MPI_Recv(d2,...)
MPI_Wait(r)

MPI_Isend(d2,...,r)
MPI_Recv(d1,...)
MPI_Wait(r)

More advanced
commands

• Use MPI_Barrier for synchronization: all
processes must enter the barrier before
leaving it

• Use MPI_Bcast to send messages to all
nodes

• Use MPI_Allreduce to collect data from
all nodes simultaneously

A parallel cumulative sum

• Let be a set of numbers for
 where
• We want to compute the cumulative

sums

• Do in parallel?
y[0]=x[0];
for(i=1;i<M;i++) {
 y[i]=y[i-1]+x[i];
}

Parallel Prefix

1 2 3 4 5 6 7 8

3 7 11 15

3 10 21 36

1 3 6 10 15 21 28 36

(Recurse)

Parallel Prefix #2

• Total time is O(log N)
• Works for any associative operator
• Can be generalized to N which aren’t

powers of two
• Can be generalized when the number

of processors is less than N

A lesson

• First set of data from
Sandia

• Looks okay?

More issues

