[^0]
References

- "The Joy of Pi", Blatner, Penguin 1997
- "Pi: A Source Book", Berggren, Borwein, and Borwein, Springer 2004
- "A History of Pi", Beckmann, Golem 1970
- "Pi: A Biography of the World’s Most Mysterious Number", Posamentier and Lehmann, Prometheus 2004
- http://www.joyofpi.com
- http://www-groups.dcs.st-and.ac.uk/~history/

Ancient values for π

- Babylonians: $\pi=3$ 1/8
- "And he made the molten sea of ten cubits from brim to brim, round in compass, and the height thereof was five cubits; and a line of thirty cubits did compass it round about" - 1 Kings 7:23

The molten sea, as reconstructed by Gressmann
from the description in 2 Kings vii. ${ }^{3}$

- Implies $\pi=3$.

Rhind Papyrus

- Purchused by Henry Rhind in 1858 , in Luxor, Egypt
- Scribed in $1650 B C$, and copied from an earlier work from ~2000BC
- One of the oldest mathematical texts in existence
- Gives a value for π

Problem number 24

"A heap and its 1/7 part become 19. What is the heap?"

Then 1 heap is 7 .
And $1 / 7$ of the heap is 1.

$$
x+\frac{x}{7}=19
$$

Making a total of 8.
But this is not the right answer, and therefore we must rescale 7 by the proportion of 19/8 to give

$$
7 \times \frac{19}{8}=16 \frac{5}{8}
$$

Problem number 50

- A circular field with diameter 9 units has the same area as a square with side eight units
$\pi\left(\frac{9}{2}\right)^{2}=8^{2}$
$\pi=4\left(\frac{8}{9}\right)^{2}=3.16049 \ldots$

Octagon method?

- Egyptians made use of square nets
- Cover circle in 3×3 grid
- Area of octagon is 63 , which gives

$$
\pi=4\left(\frac{63}{81}\right) \approx 4\left(\frac{64}{81}\right)=4\left(\frac{8}{9}\right)^{2}
$$

Archimedes (287BC-212BC)

- Brilliant physicist, engineer, mathematician
- Links circumference relation and area relation; shows $\pi=\pi$ ' in $C=2 \pi$ ' r and $A=\pi r^{2}$
- Sandwiches circle between inscribed and superscribed polygons

Archimedes' Method

- Let a_{n} and b_{n} be the circumferences of inscribed and superscribed polygons of 3.2^{n-1} sides
- For k sides,

$$
\begin{gathered}
a_{n}=k \tan \frac{\pi}{k}, b_{n}=k \sin \frac{\pi}{k} \\
\Rightarrow \\
\frac{1}{a_{n}}+\frac{1}{b_{n}}=\frac{2}{a_{n+1}}, a_{n+1} b_{n}=b_{n+1}^{2}
\end{gathered}
$$

Archimedes uses $n=6$ (96 sides) to find $3 \frac{10}{71}<\pi<3 \frac{1}{7}$!

The Dark Ages

- Religious persecution of science brings study of π to a halt in Europe
- Most developments in Asia
- Decimal notation
- Zu Chongzhi (429-500) uses a polygon with 3×2^{14} sides; obtains $\pi=3.1415926$...
- Also finds ratio $\pi \approx 355 / 113$
- Best result for a millennium!

(Zu Chongzhi postage stamp)

European Middle Ages (10001500)

- Figures of $31 / 8,22 / 7$ and $(16 / 9)^{2}$ still in use
- Decimal notation gradually introduced
- Leonardo of Pisa (Fibonacci) uses Archimedes' method, but more accurately; obtains

$$
\pi=\frac{864}{275}=3.141818 \ldots
$$

François Viète (1540-1603)

- Finds the first infinite sequence
- Let $A(n)$ be the area of the n-sided inscribed polygon
For the diagram, $A(2 n) / A(n)=\cos \beta$ so

$$
\begin{aligned}
A\left(2^{k} n\right) & =A(n) \times \frac{A(2 n)}{A(n)} \times \frac{A(4 n)}{A(2 n)} \times \ldots \times \frac{A\left(2^{k} n\right)}{A\left(2^{k-1} n\right)} \\
& =A(n) \cos \beta \cos \beta / 2 \ldots \cos \beta / 2^{k-1}
\end{aligned}
$$

Using $n=4, k \rightarrow \infty$ and $\cos \theta / 2=\sqrt{(1+\cos \theta) / 2}$,

$$
\frac{2}{\pi}=\sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}}} \cdots
$$

James Gregory (1638-1675)

- Discovers the arctangent series

$$
\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots
$$

- Putting $x=1$ gives

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

- Extremely slow convergence

Isaac Newton (1642-1727)

- Discovers related series

$$
\sin ^{-1} x=x+\frac{1}{2} \frac{x^{3}}{3}+\frac{1 \times 3}{2 \times 4} \frac{x^{5}}{5}+\ldots
$$

- Putting $x=1 / 2$ gives

$$
\frac{\pi}{6}=\frac{1}{2}+\frac{1}{2} \frac{1}{3.2^{3}}+\frac{1.3}{2.4} \frac{1}{5.2^{5}}+\ldots
$$

- Converges much faster
- Newton calculates 15 digits, but is "embarrassed"

John Machin (1680-1752)

- If $\tan \alpha=1 / 5$
$\tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}=\frac{5}{12} \Rightarrow \tan 4 \alpha=\frac{2 \tan 2 \alpha}{1-\tan ^{2} 2 \alpha}=\frac{120}{119}$
- This is very close to one, and we see

$$
\tan (4 \alpha-\pi / 4)=\frac{\tan 4 \alpha-1}{1+\tan 4 \alpha}=\frac{1}{239}
$$

- From this, we obtain

$$
\frac{\pi}{4}=4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}
$$

Alternative derivation

- Many arctangent formulae can be derived
- Can also be found using complex numbers consider

$$
(3+i)(3+i)(7+i)=50+50 i
$$

- Since the arguments of complex numbers add, we know that

$$
\begin{aligned}
2 \arg (3+i)+\arg (7+i) & =\arg (50+50 i) \\
2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7} & =\frac{\pi}{4}
\end{aligned}
$$

William Jones (1675-1749): the first use of " π "

Taking a as an are of 30°, aud t as a tangent in a figure given, he states (p. 243):

$$
6 a, \text { or } 6 \times t-\frac{1}{3} t^{2}+\frac{1}{5} t^{5}, \& c .=\frac{1}{2} \text { Periphery }(\pi) \ldots
$$

Let

$$
\alpha=2 \sqrt{3}, \beta=\frac{1}{3} \alpha, \gamma=\frac{1}{3} \beta, \delta=\frac{1}{3} \gamma, \& c .
$$

Then

$$
\alpha-\frac{1}{3} \beta+\frac{1}{5} \gamma-\frac{1}{7} \delta+\frac{1}{9} \epsilon, \& \mathrm{c} .=\frac{1}{2^{\pi}}
$$

or

$$
\alpha-\frac{1}{3} \frac{3 \alpha}{9}+\frac{1}{5} \frac{\alpha}{9}-\frac{1}{7} \frac{3 \alpha}{9^{2}}+\frac{1}{9} \frac{\alpha}{9^{2}}-\frac{1}{11} \frac{3 \alpha}{9^{3}}+\frac{1}{13} \frac{\alpha}{9^{3}}, \& \mathrm{c} .
$$

Theref. the (Radius is to $1 / 2$ Periphery, or) Diameter is to the Periphery, as $1,000, \& \mathrm{c}$ to 3.141592653 . 5897932384 . 6264338327 . 9502884197 . 1693993751 . 0582097494 . 4592307816 . 4062862089. 9862803482.5342117067. 9+ True to above a 100 Places; as Computed by the accurate and Ready Pen of the Truly Ingenious Mr. Jobn Macbin.

William Jones (1675-1749): the first use of " π "

There are various other ways of finding the Lengtbs, or Areas of particular Curve Lines, or Planes, which may very much facilitate the Practice; as for Instance, in the Circle, the Diameter is to Circumference as 1 to

$$
\begin{aligned}
\frac{16}{3}-\frac{4}{239}-\frac{1}{3} \frac{16}{5^{3}}-\frac{4}{239^{3}}+\frac{1}{5} \frac{16}{5^{6}}-\frac{4}{239^{6}}-, \& c .= \\
3.14159, \& c .=\pi \ldots
\end{aligned}
$$

Whence in the Circle, any one of these three, α, c, d, being given, the other two are found, as, $d=c \div \pi=\alpha \div\left.\frac{1}{4}\right|^{3 / 2}, c=d \times \pi$ $=\left.\overline{\alpha \times 4 \pi}\right|^{3 / 2}, \alpha=\frac{1}{4} d^{2}=c^{2} \div 4 \pi$.

Euler (1707-1783)

"He calculated just as men breathe, as eagles sustain themselves in the air" - François Arago

- Adopted π symbol
- Derived many series, such as

$$
\frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots
$$

- Calculated 20 digits in an hour using

$$
\frac{\pi}{4}=5 \tan ^{-1} \frac{1}{7}+2 \tan ^{-1} \frac{3}{79}
$$

The arctangent digit hunters

- 1706: John Machin, 100 digits
- 1719: Thomas de Lagny, 112 digits
- 1739: Matsunaga Ryohitsu, 50 digits
- 1794: Georg von Vega, 140 digits
- 1844: Zacharias Dase, 200 digits
- 1847: Thomas Clausen, 248 digits
- 1853: William Rutherford, 440 digits
- 1876: William Shanks, $70 \not$ digits
(incorrect after 527 digits!)

A short poem to Shanks

Seven hundred seven Shanks did state
Digits of π he would calculate
And none can deny It was a good try
But he erred in five twenty eight!

Transcendence

- 1767: Lambert proves π is irrational
- 1794: Legendre proves π and $\pi{ }^{2}$ irrational: they can't be written as p / q
- 1882: Lindemann proves π is transcendental - π can't be expressed as the solution to an algebraic equation

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0
$$

You can't square a circle

- Given a rectangle, you can construct a square of equal area with just geometry
- What about for a circle? If you could do it, you could geometrically find π
- But geometry will never give you a transcendental number, so it's impossible

How to square a rectangle

- Lots of people tried anyway

The circle-squarers

- "With the straight ruler I set to make the circle four-cornered."
- Aristophanes, The Birds, 414BC
- "I have found, by the operation of figures, that this proportion is as 6 to 19. I am asked what evidence I have to prove that the proportion the diameter of a circle has to its circumference is as 6 to 19? I answer, there is no other way to prove that an apple is sour, and why it is so, than by common consent." John Davis, The Measure of the Circle, 1854
- "It is utterly impossible for one to accomplish the work in a physical way; it must be done metaphysically and geometrically, not mathematically." - A. S. Raleigh, Occult Geometry, 1932

Circle-squaromania: Carl Theodore Heisel

- In his 1931 book, he squares the circle, rejects decimal notation, and disproves the Pythagorean theorem
- Finds $\pi=256 / 81$, and verifies it by checking for circles with radius $1,2, \ldots, 9$ "thereby furnishing incontrovertible evidence of the exact truth"
- There's a copy in the Harvard library

Title page from Heisel's book

Edwin J. Goodwin, Indiana

- "Squares the circle" in 1888; introduced to Indiana house in 1897
- "A bill for an act introducing a new mathematical truth and offered as a contribution to education to be used only by the state of Indiana free of cost by paying any royalties whatever on the same, provided it is accepted and adopted by the official action of the legislature of 1897"
- Passed unanimously by the house $67-0$, without fully understanding the content of the bill

EMGROSSED HOUSE BILL

Edwin J. Goodwin, Indiana

- "It has been found that a circular area is to the square on a line equal to the quadrant of the circumference, as the area of an equilateral rectangle is to the square on one side"
- Six different values of π !
- Prof C. A. Waldo (Purdue) visiting at the time, and is shocked that the billed passed
- Persuades Senate to indefinitely postpone action on it

Ramanujan (1887-1920)

- Born to a family without wealth in Southern India

- Math prodigy, but failed college entrance exams
- Went to Cambridge to work with G. H. Hardy in 1913
- Work formed the basis of many modern π formulae
- Became chronically ill during WWI
- Returned to India in 1919; died a year later

$$
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4 n)!}{(n!)^{4}} \times \frac{1103+26390 n}{396^{n}}
$$

Machine calculators

- 1947: Ferguson uses mechanical calculator to compute 710 digits
- 1949: ENIAC calculates 2037 digits in 70 hours - the first automatic calculation of π
- Used the Machin formula
- Built robustness into code

ENIAC statistics: 10 feet tall, $1800 f t^{2}$ floor area, 30 tons, 18000 vacuum tubes, 10000 capacitors, 5000 operations a second

Shanks and Wrench: 100,000 decimals (1961)

"I feel the need, the need for speed!"

- Maverick and Goose
- Used the arctangent formula

$$
\frac{\pi}{4}=6 \tan ^{-1} \frac{1}{8}+2 \tan ^{-1} \frac{1}{37}+\tan ^{-1} \frac{1}{239}
$$

(IBM 7090)

- Factor of $1 / 8$ becomes a shift in binary
- Calculate two terms at a time to halve the number of divisions

$$
\tan ^{-1} \frac{1}{m}=\sum_{k=0}^{\infty} \frac{m\left[(4 k+3) m^{2}-(4 k+1)\right]}{\left(16 k^{2}+16 k+3\right) m^{4(k+1)}}
$$

- Calculated in 8 h 43 m ; verified with a second arctangent formula

Faster algorithms (1)

- Arctangent formulae give a fixed number of digits per iteration
- 1976: Brent and Salamin find quadratically convergent algorithm
- 1985: Borwein and Borwein find quartically convergent algorithm:

$$
\begin{aligned}
& a_{0}=6-4 \sqrt{2}, y_{0}=\sqrt{2}-1 \\
& y_{k+1}=\frac{1-\left(1-y_{k}^{4}\right)^{1 / 4}}{1+\left(1-y_{k}^{4}\right)^{1 / 4}} \\
& a_{k+1}=a_{k}\left(1+y_{k+1}\right)^{4}-2^{2 k+3} y_{k+1}\left(1+y_{k+1}+y_{k+1}^{2}\right) \\
& a_{k} \rightarrow 1 / \pi
\end{aligned}
$$

Faster algorithms (2)

- Rapid convergence comes with a drawback
- Methods require high-precision division, and high-precision square root both computationally expensive
- Multiplication rapid using FFT technique
- To divide x by a, use the quadratically convergent scheme

$$
x_{k+1}=x_{k}\left(2-a x_{k}\right)
$$

Digit extraction formulae

- Bailey, Borwein, and Plouffe (1996)

$$
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right)
$$

- Can extract a hexadecimal digit without computing the previous ones in $\mathrm{O}(\mathrm{n})$ time and $\mathrm{O}(\log (\mathrm{n}))$ space
- No such expression for a decimal base

Hardcore digit hunters

- Chudnovsky brothers (USA) and Kanada (Japan) swap digit record throughout 1980's
- Chudnovsky formula
$\frac{1}{\pi}=12 \sum_{n=0}^{\infty}(-1)^{n} \frac{(6 n)!}{(n!)^{3}(3 n)!} \frac{13591409+n 545140134}{\left(640320^{3}\right)^{n+1 / 2}}$
- 15 digits per term

Current record 1,241,100,000,000 digits

- Computed in December 2002 by Kanada et al.
- Hitachi SR8ooo: 64 nodes, 14.4GFlops/node
- Used two different arctangent formulae
- Takes 601 hours, including the time to move 400 Tb of data from memory to disk

Last 500 digits

(3) 500 digits ending $1,241,100,000,000-$ th (1,241,099,999,501-1,241,100,000,000)

37167871696567692125279728690185035575376530193499
35338501671616469990598445442176231315515483436562 78068005570748706663510865932765794614967987525534 76890682777037671632775386776017764719009279382597 65273393246948904759287270248546189729653547547082 45040168402350653293625420539245029593263809170954 83102797987965959470845519992244355520025054585883 09970161649607402417529669090756222177051785600450 07074551981744551596631382012448250460542311034186 55911989182262704528269689669928567064873410311045
(passes all tests for randomness)

Frequency analysis for the first 1.2×10^{12} digits

$\left.\begin{array}{l:ll}0 & : 119999636735 & 1\end{array}\right) 120000035569$
(Acceptable X^{2} value)

Interesting sequences

π curiosities

$$
\begin{aligned}
& \pi \approx \sqrt{2}+\sqrt{3}=3.14626 \ldots \\
& \pi \approx \frac{47^{3}+20^{3}}{30^{3}}-1=3.141592593 \ldots \\
& e^{\pi}-\pi=19.999099979 \ldots
\end{aligned}
$$

Coincidences

$4 \sum_{k=1}^{500000} \frac{(-1)^{k-1}}{2 k-1}=3.141590653589793240462643383269502884197 \ldots$
This agrees with π to forty decimal places, except for the four places shown

- The sequence 999999 occurs in the first 1000 digits
- The probability any ten digit block contains one of each number is $\sim 1 / 40000$. Interestingly, this happens in the seventh block (digits 61-70).

π Memorizing

- A very cool party trick
- 1970's: world record held by Simon Plouffe (4096 digits)
- 1983: Rajan Mahadevan sets record with 31811 digits
- 1995: Hiroyuki Goto sets record with 42000 digits!

(Simon Plouffe)

Pi Mnemonics

- "See, I have a rhyme assisting my feeble brain, it's tasks oft-times resisting."
- "How I wish I could remember pi."
- "How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics."

Pi Mnemonics

Sir, I bear a rhyme excelling In mystic force and magic spelling Celestial sprites elucidate All my own striving can't relate Or locate they who can cogitate And so finally terminate. Finis.
$\Pi=3.1415926535897932384626433832795 \ldots$

π problem

- Show that there exists exactly one solution for $a, b, c \in \mathbb{N}$ such that

$$
\frac{\pi}{4}=\tan ^{-1} \frac{1}{a}+\tan ^{-1} \frac{1}{b}+\tan ^{-1} \frac{1}{c}
$$

[^0]: 3.14159265358979323846264338327950288419716939937510582097494459230781640628620 8998628034825342117067982148086513282306647093844609550582231725359408128481117 4502841027019385211055596446229489549303819644288109756659334461284756482337867 8316527120190914564856692346034861045432664821339360726024914127372458700660631 5588174881520920962829254091715364367892590360011330530548820466521384146951941 5116094330572703657595919530921861173819326117931051185480744623799627495673518 8575272489122793818301194912983367336244065664308602139494639522473719070217986 0943702770539217176293176752384674818467669405132000568127145263560827785771342 7577896091736371787214684409012249534301465495853710507922796892589235420199561 The Life of π 5778185778053217122680661300192787661119590921642019893809525720106548586327886 5936153381827968230301952035301852968995773622599413891249721775283479131515574 8572424541506959508295331168617278558890750983817546374649393192550604009277016 7113900984882401285836160356370766010471018194295559619894676783744944825537977

 5735255213347574184946843852332390739414333454776241686251898356948556209921922 2184272550254256887671790494601653466804988627232791786085784383827967976681454 1009538837863609506800642251252051173929848960841284886269456042419652850222106 6118630674427862203919494504712371378696095636437191728746776465757396241389086 5832645995813390478027590099465764078951269468398352595709825822620522489407726 7194782684826014769909026401363944374553050682034962524517493996514314298091906

