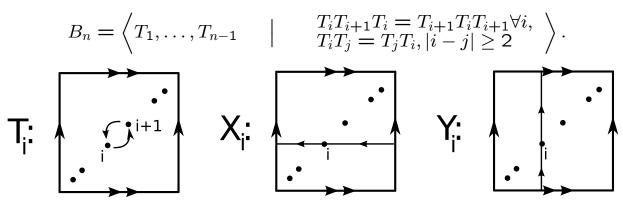
Quantum D-modules and the elliptic braid group

David Jordan,

Advisors: P. Etingof, K. Kremnizer

Definition 1 (Birman, Scott) The elliptic braid group, B_n^{Ell} , is the fundamental group of the configuration space of n points on the torus. It is generated by

- the commuting elements X_1, \ldots, X_n
- the commuting elements Y_1, \ldots, Y_n
- and the braid group of the plane,



The cross relations are:

- $\bullet \quad T_i X_i T_i = X_{i+1},$
- $\bullet \quad T_i Y_i T_i = Y_{i+1},$
- $X_1Y_2 = Y_2X_1T_1^2$
- $\tilde{Y}X_i = X_i\tilde{Y}$, where $\tilde{Y} = \prod_i Y_i$.

Definition 2 Cherednik's double affine Hecke algebra (DAHA) $\mathcal{H}(q,t)$ is the quotient of the group algebra $\mathbb{C}B_n^{Ell}$ of the elliptic braid group by the additional relations

$$(T_i - q^{-1}t)(T_i + q^{-1}t^{-1}) = 0,$$

where q, t are complex parameters.

Remark 1 Note that when q, t = 1, we have an isomorphism $\mathcal{H}(1,1) \cong \mathbb{C}[S_n \ltimes \mathbb{Z}^{2n}]$. If we are more careful, and remember first derivatives of Y_i , we get the so-called trigonometric Cherednik algebra $\mathcal{H}_n^{tr}(k)$.

Two nice theorems

Theorem 3 (Calaque, Enriquez, Etingof) Let G = SL(N), let M be a D(G)-module, and let $V = \mathbb{C}^N$ be the defining representation for $\mathfrak{g} = sl_N$. Consider the space

$$W = (\underbrace{V \otimes \cdots \otimes V}_{n} \otimes M)^{inv},$$

of invariants with respect to the adjoint action of vector fields on M. Then W carries an action of the trigonometric Cherednik algebra $H_n^{tr}(k)$, where k = N/n.

- ullet s_{ij} were defined by the usual symmetric group action on $V^{\otimes n}$
- X_i were defined by:

$$X_i = \sum_{r,s} (E_s^r \otimes A_r^s)_{i,0}$$

• y_i were defined by:

$$y_j = k(\sum_p (b_p \otimes L_{b_p})_{j,0} + \sum_{i < j} s_{ij})$$

Theorem 4 (Lyubashenko, Majid) Let \mathcal{C} be a ribbon tensor category, let $V \in \mathcal{C}$, and let A be the "CoEnd" object, if it exists (e.g. if \mathcal{C} is semi-simple then $A = \oplus W^* \otimes W$). Consider the space

$$W = (\underbrace{V \otimes \cdots \otimes V}_{n} \otimes A)^{inv} := Hom(1, \underbrace{V \otimes \cdots \otimes V}_{n} \otimes A)$$

of invariants. W carries an action of the elliptic braid group on n strands.

These theorems overlap by applying Theorem 4 to $U = U_t(sl_N)$, and taking a trigonometric degeneration. But you only recover the "basic" D(G)-module of functions on G. A technique to wed these two theorems will be the focus of this talk.

Definition 5 Let (H, Δ, ϵ, S) be a Hopf algebra. A normal left 2-cocycle on H (a.k.a a twist) is an invertible element $c \in H \otimes H$ such that

$$(\epsilon \otimes id)(c) = (id \otimes \epsilon)(c) = 1 \otimes 1$$
, and $(\Delta \otimes id)(c)(c \otimes 1) = (id \otimes \Delta)(c)(1 \otimes c)$.

Definition 6 The twisted Hopf algebra, H_c , is the algebra H

- with twisted comultiplication $\Delta_c(h) = c^{-1}\Delta(h)c$
- and antipode $S_c(h) = QS(h)Q^{-1}$, where $Q = \mu \circ (id \otimes S)(c)$

Remark 2 H- $mod \cong H_c$ -mod, as tensor categories.

Definition 7 An algebra F is H-equivariant if

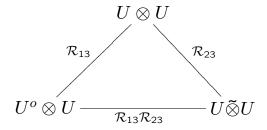
- F is an H-module
- $\mu: F \otimes F \to F$ is a map of H-modules

Definition 8 Let F be H-equivariant, and let c be a 2-cocycle for H. Then F_c is H_c -equivariant, where

$$\mu_c(f_1 \otimes f_2) := \mu(c(f_1 \otimes f_2))$$

. F_c is called the H_c -equivariant algebra associated to F.

Let U denote a quasi-triangular Hopf algebra with universal R matrix $\mathcal{R}=\sum_k r_k^+\otimes r_k^-.$



- ullet U^o : algebra U, with opposite co-multiplication.
- ullet $U\otimes U$: tensor product Hopf algebra.
- $U^o \otimes U$: tensor product Hopf algebra.
- $U \tilde{\otimes} U := (U \otimes U)_{\mathcal{R}_{23}} = (U^o \otimes U)_{\mathcal{R}_{13}\mathcal{R}_{23}}.$

Remark 3 $\tilde{\Delta} \circ \Delta(x) = \mathcal{R}_{23}^{-1}(x_1 \otimes x_3 \otimes x_2 \otimes x_4) \mathcal{R}_{23} = x_1 \otimes x_2 \otimes x_3 \otimes x_4$

- U: a ribbon Hopf algebra (e.g. $U = U_q(\mathfrak{g})$),
- F: dual Hopf algebra relative to the category of finite dimensional *U*-modules:

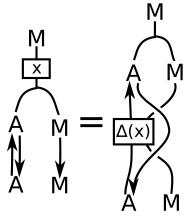
$$F = \{c_{f,v}(u) := f(uv), | f \in V^*, v \in V, V \text{ f.d. } U\text{-mod} \}.$$

- ullet F is $U^o\otimes U$ -equivariant action by $(x\otimes y)c_{f,v}=c_{xf,yv}$
- $A := F_c$, the $U \tilde{\otimes} U$ -module associated to F via $c = \mathcal{R}_{13} \mathcal{R}_{23}$.
- Why all the fuss? A is $U \tilde{\otimes} U$ equivariant, and thus U-equivariant for the adjoint action! A is generated by $\{V^* \otimes V\}$, which are U-submodules. In BTC diagrammatical language,

$$\mu_{\text{A}} = \bigvee_{\text{A}} \bigvee_{\text{W}} \bigvee_{\text{W}} \bigvee_{\text{W}} \Delta_{\text{A}} = \bigvee_{\text{A}} \bigwedge_{\text{A}} \Delta_{\text{W}} = \bigvee_{\text{A}} \bigvee_{A$$

• Let $\partial_{\triangleleft}: U = U \otimes 1 \hookrightarrow U \tilde{\otimes} U$ denote the inclusion into the right tensor factor.

Definition 9 (Varagnolo, Vasserot) A quantum D_U module is a module over $A \rtimes \partial_{\triangleleft}(U)$. In BTC diagrammatical language,



Remark 4 Varagnolo, Vasserot showed that this agrees with usual definition in terms of Heisenberg double, and explained how to construct adjoint action of vector fields as a quantum moment map.

Results

Theorem 10 Let M be a D_U -module, and let V be a U-module. Consider the space

$$W = (\underbrace{V \otimes \cdots \otimes V}_{n} \otimes M)^{inv},$$

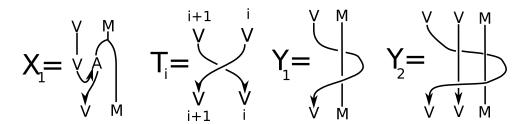
where we take invariants with respect to the adjoint action on M. W carries an action of the elliptic braid group on n strands, which gives rise to a functor:

$$F_{n,V}:D_U ext{-mod} o B_n^{Ell} ext{-mod}.$$

Corollary 11 If V is Hecke, the above descends to a representation of $\mathcal{H}_n(q,t)$ with corresponding parameters.

Proposition 12 If M is the "basic" D_U -module A, we recover the construction of Lyubashenko and Majid. If $U = U_t(sl_N)$, $V = \mathbb{C}^N$ and M is arbitrary, we recover the construction of Calaque, Enriquez, and Etingof as a quasi-classical limit when $t \to 1$.

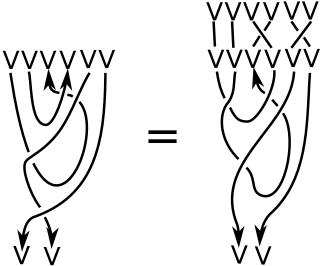
Proof of Theorem 8. We define operators as follows:



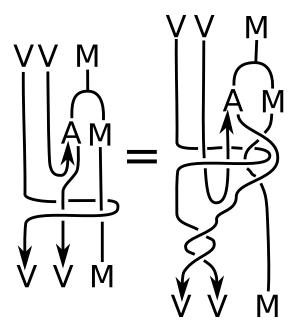
- The T_i act in the obvious way on the copy of $V^{\otimes n}$.
- X_1 first comultiplies V as an A-comodule, then absorbs the new A-factor into M.
- Y_1 braids V around the back of M.
- Remaining X_i and Y_i determined by relations $X_{i+1} = T_i X_i T_i$, $Y_{i+1} = T_i Y_i T_i$.

That these operators preserve W is clear from functorial description. Now we have to check all the relations.

• X's commute: This is the well-known reflection equation for A: (e.g. $X_2X_1=X_1X_2$)



- Y's commute: This is the well-known QYBE equation for R-matrix.
- $X_1Y_2 = Y_2X_1T_1^2$.



 \bullet Express \tilde{Y} via the ribbon element, find that it multiplies by a constant, so it's trivially central.

Forward directions

- \bullet Eliminate Hopf algebra U, work in BTC
- Thus extend to Deligne's $U_t(sl_z)$, where z is an arbitrary complex number, and build DAHA representations for any parameters.
- Higher genus generalizations in braided and trigonometric case, modular group.
- Geometric/operadic interpretation of Elliptic braid relations? Categorical interpretation of Heisenberg double analogous to Drinfeld double?
- Quantum quiver varieties?