On the cohomology of simple Shimura varieties at non-quasi split primes

Thomas J. Haines

Mathematics Department University of Maryland

Lie Groups Seminar MIT November 13, 2024

Joint with Jingren Chi

I will report on joint work in progress with Jingren Chi.

Outline

- Shimura varieties in the Langlands program
- 2 The Test Function Conjecture
- The Scholze Test functions
- 4 The new local ingredients

Cohomology of Shimura varieties in the Langlands program

- A Shimura variety $\operatorname{Sh}_K := \operatorname{Sh}_K(\mathbb{G}, \mathbb{X})$ is a a variety defined in terms of a connected reductive group \mathbb{G} over \mathbb{Q} and a Hermitian symmetric domain \mathbb{X} for $\mathbb{G}(\mathbb{R})$, satisfying certain axioms of Deligne, together with a sufficiently small compact open subgroup $K \subset \mathbb{G}(\mathbb{A}_f)$.
- The tower $\{\operatorname{Sh}_K(\mathbb{G},\mathbb{X})\}_K$ consists of quasi-projective varieties all defined over a number field \mathbb{E} , called the reflex field. For simplicity below, assume they are projective over \mathbb{E} .
- Fix any prime number ℓ and ξ an algebraic representation of \mathbb{G} giving ℓ -adic local systems $\mathcal{F}_{\xi,K}$ on Sh_K (e.g. $\mathcal{F}_{\xi,K}=\overline{\mathbb{Q}}_{\ell}$).
- The ℓ-adic étale cohomology groups

$$H_{\xi}^{i} := \varinjlim_{K} H_{\acute{e}t}^{i}(\operatorname{Sh}_{K} \otimes_{\mathbb{E}} \overline{\mathbb{Q}}, \mathcal{F}_{\xi,K}).$$

carry actions of $\mathbb{G}(\mathbb{A}_f) \times \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{E})$.

• Overarching Goal: describe **explicitly** the virtual $\mathbb{G}(\mathbb{A}_f) \times \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{E})$ -module $H_{\varepsilon}^* := \sum_i (-1)^i H_{\varepsilon}^i$.

Relation to global Langlands correspondence

- We can write $H_{\xi}^* = \bigoplus_{\pi_f} \pi_f \otimes \sigma_{\xi}(\pi_f)$.
- Here π_f ranges over irreducible admissible representations of $\mathbb{G}(\mathbb{A}_f)$ and $\sigma_{\xi}(\pi_f)$ is a virtual finite dimensional representation of $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{E})$ or, looking locally, of $W_{\mathbb{E}_n}$.
- In principle this should give a description of each local factor of the Hasse-Weil zeta function $\zeta_{\mathfrak{p}}(\operatorname{Sh}_K,s)$ in terms of local factors of automorphic L-functions $L(s,\pi_p,r_{\mathfrak{p}})$.
- The map $\pi_f \mapsto \sigma_{\xi}(\pi_f)$ is supposed to reflect aspects of the **global** Langlands correspondence for the group \mathbb{G} .
- Expect local-global compatibility: **roughly**, if $\pi_f = \pi^p \otimes \pi_p$ for $p \neq \ell$, then $\pi_p \in \operatorname{Irrep}(\mathbb{G}(\mathbb{Q}_p))$ should belong to the **local** L-packet given by $\pm \sigma_{\xi}(\pi_f)|_{W_{\mathbb{R}_n}}$ where $\mathfrak{p} \in \operatorname{Spec}(\mathcal{O}_{\mathbb{E}})$ has $\mathfrak{p}|_p$.
- First step: understand H_{ξ}^* as virtual $\mathbb{G}(\mathbb{A}_f) \times W_{\mathbb{E}_{\mathfrak{p}}}$ -module, for the local Weil group $W_{\mathbb{E}_{\mathfrak{p}}} \subset \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{E}_{\mathfrak{p}})$.

Example: Modular curves

- The **modular curves** are attached to $\mathbb{G} = \mathrm{GL}_2$ and $\mathbb{X} = \mathfrak{H}^{\pm}$.
- ullet Here the Sh_K are (finite unions of) open Riemann surfaces.
- If for example $K=K(N)\subset \mathrm{GL}_2(\widehat{\mathbb{Z}})$ are the principal congruence subgroups for $N\geq 3$, then

$$\operatorname{Sh}_{K(N)}(\mathbb{C}) = \coprod_{\varphi(N)} \Gamma(N) \backslash \mathfrak{H}^+.$$

- ullet They are moduli spaces of "elliptic curves + full level-N structure".
- $\mathbb{GL}_2(\mathbb{A}_f)$ -action is given by classical Hecke operators.
- The study of their H_{ξ}^* and the associated modularity of the Hasse-Weil zeta functions was essentially completed by Eichler-Shimura in the 1950's.

About the Kottwitz simple Shimura varieties

These have the following properties:

- They are moduli spaces of abelian varieties with PEL structure, initially defined over a number field (sometimes over a ring of integers.)
- As Shimura varieties, they are attached to a "fake" unitary group (more later).
- They are compact (more precisely, projective over the number field of definition).
- They have "no global endoscopy" a technical result which means that the isogeny classes of their points modulo p have the simplest possible group-theoretic interpretation via Honda-Tate theory almost as if they were modular curves.

More Shimura data and notation

- (\mathbb{G}, \mathbb{X}) : \mathbb{G} connected reductive \mathbb{Q} -group, $\mathbb{X} = \mathbb{G}(\mathbb{R})/K_{\infty}$ Hermitian symmetric space; these are required to satisfy the axioms of Deligne.
- In particular, $\mathbb{X} \ni h : \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_{m,\mathbb{C}} \to \mathbb{G}_{\mathbb{R}}$ gives rise to a $\mathbb{G}(\mathbb{C})$ -conjugacy class $\{\mu\}$ of *minuscule* cocharacters $\mathbb{G}_{m,\mathbb{C}} \to \mathbb{G}_{\mathbb{C}}$ (the Shimura cocharacters).
- Example: $\mathbb{G}=\mathbb{GL}_2$, $\mathbb{X}=\mathfrak{H}^\pm=\mathbb{C}\backslash\mathbb{R}$, and $\mu(z)=\mathrm{diag}(z,1)$, i.e., $\mu=(1,0)$.
- Let $\mathbb{E} \subset \mathbb{C}$ be the field of definition of $\{\mu\}$. Then for $K \subset \mathbb{G}(\mathbb{A}_f)$ ranging over compact open subgroups,

$$\operatorname{Sh}(\mathbb{G},\mathbb{X})(\mathbb{C}) := \varprojlim_K \operatorname{Sh}_K(\mathbb{G},\mathbb{X})(\mathbb{C}) := \varprojlim_K \mathbb{G}(\mathbb{Q}) \setminus [\mathbb{X} \times \mathbb{G}(\mathbb{A}_f)/K],$$

is the \mathbb{C} -points of inverse limit of quasi-projective varieties over \mathbb{E} .

• Abbreviate $\mathrm{Sh}_K := \mathrm{Sh}_K(\mathbb{G}, \mathbb{X})$. Fix primes $p \neq \ell$.

Statement of the problem

- $\bullet \ \ \text{Write} \ G = \mathbb{G}_{\mathbb{Q}_p} \text{, } E = \mathbb{E}_{\mathfrak{p}} \text{, } {}^L G = \widehat{G}(\bar{\mathbb{Q}}_\ell) \rtimes W_{\mathbb{Q}_p} \text{, and } {}^L G_E = \widehat{G}(\bar{\mathbb{Q}}_\ell) \rtimes W_E.$
- The Shimura cocharacter $\mu: \mathbb{G}_{m,\bar{\mathbb{Q}}_p} \to G_{\bar{\mathbb{Q}}_p}$ gives rise to an algebraic representation $r_{-\mu}: {}^LG \to \operatorname{Aut}(V_{-\mu})$ on the highest weight \widehat{G} -rep. $V_{-\mu}$.

Theorem (Target Theorem)

For "nice" unitary Shimura varieties (e.g., simple Kottwitz type, i.e.,compact, no global endoscopy), we have an isomorphism of virtual $\mathbb{G}(\mathbb{A}_p^p) \times K_p^0 \times W_{\mathbb{B}_p}$ -modules

$$H_{\xi}^* \cong \sum_{\pi_f = \pi^p \otimes \pi_p} a(\pi_f) \, \pi_f^p \otimes \pi_p \otimes (r_{-\mu} \circ \varphi_{\pi_p}|_{W_{\mathbb{E}_p}}) |\cdot|_{\mathbb{E}_p}^{-\dim Sh/2}.$$

for certain "virtual multiplicities" $a(\pi_f) = a_{\xi}(\pi_f) \in \mathbb{Z}$ defined by Kottwitz.

• Here $K_p^0 \subset G(\mathbb{Q}_p)$ is a compact open subgroup (for us, a parahoric), and $\varphi_{\pi_p}: W_{\mathbb{Q}_p} \to {}^L G$ is the **semisimple** local Langlands parameter attached to π_p (exists in general by Fargues-Scholze).

Consequence for local Hasse-Weil zeta functions

We now take $\mathcal{F}_{\xi,K}=ar{\mathbb{Q}}_{\ell}.$

Corollary

In the above situation, let $K \subset \mathbb{G}(\mathbb{A}_f)$ be any sufficiently small compact open subgroup contained in K_p^0 . Then the semisimple local Hasse-Weil factor of Sh_K at the place $\mathfrak p$ of $\mathbb E$ is given by

$$\zeta_{\mathfrak{p}}^{\mathrm{ss}}(\mathrm{Sh}_K, s) = \prod_{\pi_f} L^{\mathrm{ss}}(s - \frac{\dim \mathrm{Sh}_K}{2}, \pi_p, r_{\mathfrak{p}})^{a(\pi_f)\dim \pi_f^K}$$

Here

$$r_{\mathfrak{p}} = \operatorname{Ind}_{\hat{G} \rtimes W_{\mathbb{E}_{\mathfrak{p}}}}^{\hat{G} \rtimes W_{\mathbb{Q}_p}} r_{-\mu}.$$

Our target case: Kottwitz simple Shimura varieties

- The Kottwitz simple Shimura varieties: let $\mathbb{F} \supset \mathbb{F}_0 \supset \mathbb{Q}$ be a CM field, let $(\mathbb{D},*)$ be a central division algebra over \mathbb{F} of rank n^2 , with involution * of 2nd type, let $\mathbb{G} = \mathbb{GU}(\mathbb{D},*)$.
- We get a "fake" unitary group Shimura variety, which is projective, and has no global endoscopy.
- We do not assume G quasi-split over \mathbb{Q}_p .
- We **do** assume p is unramified in \mathbb{F}_0 and splits in \mathbb{F} .
- Assume $K = K^p \times K_p$.
- It is PEL type. Also, for K_p parahoric $\mathrm{Sh}_{K^pK_p}$ has integral \mathcal{O}_E -model the moduli space of abelian schemes with additional structure $(A_{\bullet},\lambda,\iota,\eta^p)$. (Rapoport-Zink parahoric integral model).
- The endomorphism structure $\iota: \mathcal{O}_{\mathbb{D}^{\mathrm{op}}} \otimes \mathbb{Z}_{(p)} \to \mathrm{End}(A) \otimes \mathbb{Z}_{(p)}$ must satisfy Kottwitz' determinant condition, and η^p is a K^p -level structure on A.

Some History: Target Theorem proved by

- Kottwitz: in good reduction situation, where G/\mathbb{Q}_p is unramified, $K_p^0=\mathcal{G}(\mathbb{Z}_p)$ for a hyperspecial maximal parahoric group scheme \mathcal{G} . All π_p appearing are unramified.
- Harris-Taylor: in the Harris-Taylor cases. Among other things, essentially $\mathbb{G}_{\mathbb{R}}=\mathrm{GU}(1,n-1)\times\mathrm{GU}(0,n)^{[\mathbb{F}_0:\mathbb{Q}]-1}$. That is, essentially $\mu=(1,0^{n-1})$. And $G=\prod_i\mathrm{GL}_{n_i}\times\prod_iD_i^{\times}$.
- Scholze-Shin: like Kottwitz (any signature at ∞ , any μ), but require $G = \mathbb{G}_{\mathbb{Q}_p}$ a product of Weil-restrictions of GL_n 's.
- Xu Shen: like Harris-Taylor, essentially $\mu=(1,0^{n-1})$, but G required to be a certain product of units of division algebras with invariants $\pm 1/n_j$ (p-adic uniformization situation).

Theorem (Chi-H.)

The Target theorem holds in the Scholze-Shin situation, except we may allow G to be any inner form of a product of Weil-restrictions of GL_n 's.

• We thus generalize both Scholze-Shin and Shen, but we do not rely on their results (there is some overlap in method of course).

One caveat

- At the moment, Jingren and I cannot identify the π_p -factor as a representation of all of K_n^0 , when $\mathbb{G}_{\mathbb{Q}_n}$ is not quasi-split.
- That is, we only understand Hecke operators at p given by functions $h \in C_c^{\infty}(K_p^0) = C_c^{\infty}(\mathcal{G}(\mathbb{Z}_p))$ which are base change transfers (more later) of elements $\tilde{h} \in C_c^{\infty}(G(\mathbb{Q}_{p^r}))$ for all sufficiently large r.
- This class includes the unit elements $h=1_{K_p}$ for any congruence subgroup $K_p\subset K_p^0$.
- Hence, we have enough information to determine local Hasse-Weil zeta functions.

Counting Points

- We fix a parahoric $\mathcal{G}(\mathbb{Z}_p) = K_p^0$, and integral model $\mathcal{S}_{K_p^0} = \operatorname{Sh}_{K^p K_p^0}$ over \mathcal{O}_E . For $K_p \subset K_p^0$, we have finite étale morphisms $\pi_{K_p K_p^0} : \operatorname{Sh}_{K^p K_p} \to \operatorname{Sh}_{K^p K_p^0}$.
- From now on, fix sufficiently small $K = K^p K_p$ with $K_p \subset K_p^0$ arbitrarily deep. We drop ξ from the notation.
- Let $f^p \in C_c^{\infty}(\mathbb{G}(\mathbb{A}_f^p)/\!/K^p)$, $h \in C_c^{\infty}(K_p^0/\!/K_p)$, $\tau \in \operatorname{Frob}^j I_E$, $r = j[\kappa_E : \mathbb{F}_p]$ (sufficiently large).
- Then Grothendieck-Lefschetz trace formula applied to Frobenius-Hecke correspondence **should** give a formula (for *some* function $\phi_{\tau,h} \in C_c^\infty(G(\mathbb{Q}_{p^r}))$)

$$\operatorname{Tr}(\tau \times hf^p \mid H^*) = \sum_{(\gamma_0, \gamma, \delta)} c(\gamma_0, \gamma, \delta) O_{\gamma}(f^p) TO_{\delta\sigma}(\phi_{\tau, h}).$$

• Point: RHS resembles the geometric side of the Arthur-Selberg trace formula for \mathbb{G} . So after (pseudo)stabilization, this would connect H^* with automorphic representations.

- Much work has shown: if K_p parahoric (and $h=e_{K_p}$), ϕ_{τ} is determined by $\mathrm{Tr}(\tau|R\Psi^{\mathcal{M}^{\mathrm{loc}}_{K_p}}(\bar{\mathbb{Q}}_{\ell}))$ (in the **center** of a parahoric Hecke algebra).
- For deep K_p there is no integral model \mathcal{S}_{K_p} and no local model $\mathcal{M}_{K_p}^{\mathrm{loc}}$, but nevertheless we still expect to be able to take a function in the **stable Bernstein center**.

Conjecture (The Test Function Conjecture, H.-Kottwitz)

For any Shimura variety, a formula like the above holds with $\phi_{\tau,h} = Z_{\tau,-\mu,r} \star \tilde{h}$. Here $\tilde{h} \in C_c^\infty(G(\mathbb{Q}_{p^r}))$ is any function with "base-change transfer" $h \in C_c^\infty(G(\mathbb{Q}_p))$.

- Here $Z_{\tau,-\mu,r}$ is an element in the usual Bernstein center $\mathfrak{Z}(G/\mathbb{Q}_{p^r})$ which is the image of an element $Z_{\tau,V_{-\mu,r}}$ in the stable Bernstein center $\mathfrak{Z}^{\mathrm{st}}(G/\mathbb{Q}_{p^r})$.
- "Base change transfer" is like the usual special case of twisted endoscopic transfer, except G/\mathbb{Q}_p is not assumed quasi-split. So not every \tilde{h} has a "base change transfer" h and not every given h comes from a \tilde{h} .

(Stable) Bernstein center – motivated by Vogan

- Change notation: F non-arch. local, G connected reductive over F. Choose isom $\mathbb{C} \cong \overline{\mathbb{Q}}_{\ell}$.
- The Bernstein variety: a variety structure on the set of supercuspidal supports $(M(F), \sigma)_G$. (Act by twisting σ by elements of the torus $X^{\mathrm{un}}(M) = \mathrm{Hom}(M(F)/M(F)^1, \mathbb{C}^\times)$.)
- The Bernstein center is the ring of regular functions $\mathfrak{Z}(G/F)$.
- The stable Bernstein variety: a variety structure on \widehat{G} -conjugacy classes of semisimple Langlands parameters $\varphi:W_F\to{}^LG$.
- If $\varphi: W_F \to {}^LG$ factors minimally through ${}^LM \subset {}^LG$, we can twist it by any 1-cocycle in the torus $H^1(\operatorname{Frob}_F, Z(\widehat{M})^{I_F})^{\circ} \cong X^{\mathrm{un}}(M)$.
- Stabilizers are finite, so get infinite union of tori mod finite groups. The **stable Bernstein center** is the ring of regular functions $\mathfrak{Z}^{\mathrm{st}}(G/F)$.

Theorem (Fargues-Scholze)

For every G/F, there is a semisimple local Langlands correspondence $\pi \mapsto \varphi_{\pi}$, which is compatible with unramified twists, with normalized parabolic induction, and which is suitably functorial. Consequently, there is a natural homomorphism of commutative rings $\mathfrak{Z}^{\mathrm{st}}(G/F) \to \mathfrak{Z}(G/F)$.

- In particular, given $Z \in \mathfrak{Z}^{\mathrm{st}}(G/F)$, we can take its image Z in $\mathfrak{Z}(G/F)$ (thus view Z as a distribution on G(F)).
- Given any $(V,r) \in \operatorname{Rep}({}^LG)$, we get $Z_{\tau,V} \in \mathfrak{Z}^{\operatorname{st}}(G/F)$ by

$$Z_{\tau,V}(\varphi) := \operatorname{tr}(\tau \mid r \circ \varphi).$$

• **Upshot:** The Test Function Conjecture is now unconditional, thanks to Fargues-Scholze: they provided the missing homomorphism $\mathfrak{Z}^{\mathrm{st}}(G/F) \to \mathfrak{Z}(G/F)$.

- Scholze constructed functions $\phi_{\tau,h}$ which satisfy the point counting formula, using deformations of p-divisible groups.
- This applies to PEL Shimura varieties (Alex Youcis made progress extending this to abelian type Shimura varieties).
- Recall we don't have an integral model at level K_p . Scholze suggested pushing down to the integral model $\mathcal{S}_{K_p^0}$ and studying the nearby cycles of the sheaf $\pi_{K_p^0K_p,*}(\mathcal{F}_{\xi})$ on the generic fiber $\mathrm{Sh}_{K_p^0}$.
- But he still needed a purely local construction of the test function $\phi_{\tau,h}$, which he defined as follows.
- Setting: $\kappa\supset\kappa_E$ perfect field of characteristic p, endowed with $\mathcal{O}_E\to\kappa$. Let H_{\bullet} chain of p-divisible groups over κ . (Really, consider those with (P)EL structure: action of \mathcal{O}_B , Kottwitz determinant condition, etc.).

Definition

The deformation space $\mathcal{X}_{H_{\bullet}}$ of H_{\bullet} is the functor that associates to any Artin local \mathcal{O}_E -algebra R with residue field κ the set of isomorphism classes of p-divisible groups (with (P)EL)-structure) \tilde{H}_{\bullet} over $\operatorname{Spec}(R)$, together with an isomorphism $\tilde{H}_{\bullet} \otimes_R \kappa \overset{\sim}{\to} H_{\bullet}$, i.e. an isomorphism of p-divisible \mathcal{O}_B -modules $\tilde{H}_{\bullet} \otimes_R \kappa \overset{\sim}{\to} H_{\bullet}$.

- Scholze proved: The functor $\mathcal{X}_{H_{\bullet}}$ is represented by a complete Noetherian local \mathcal{O}_E -algebra $R_{H_{\bullet}}$ with residue field κ .
- Let $X_{H_{\bullet}}$ denote the Raynaud generic fiber of the formal scheme $\operatorname{Spf}(R_{H_{\bullet}})$. This is a rigid analytic space over $k:=W_{\mathcal{O}_E}(\kappa)[\frac{1}{p}]$.
- If chain H_{\bullet} corresponds to parahoric $\mathcal{G}(\mathbb{Z}_p)$, any $K \subset \mathcal{G}(\mathbb{Z}_p)$ gives étale cover $\pi_K: X_{H_{\bullet},K} \to X_{H_{\bullet}}$ (parametrize level-K structures on universal p-adic Tate module).
- Rational covariant Dieudonné module $M_{\bullet} \otimes \mathbb{Q}$ with σ -linear Frobenius F can be integrally rigidified:

$$(M_{\bullet}, F) \cong (\Lambda_{\bullet}, p\delta\sigma),$$

for $\delta \in G(W_{\mathcal{O}_E}(\kappa)[\frac{1}{p}])$, well-defined up to $G(W_{\mathcal{O}_E}(\kappa))$ - σ -conjugacy.

• The association $H_{\bullet} \mapsto \delta \in G(W_{\mathcal{O}_E}(\kappa)[\frac{1}{p}])/\sim$ is an injection.

End of Scholze construction

Definition

Let $\delta \in G(\mathbb{Q}_{p^r})$. If δ comes from an H_{\bullet} over $\kappa = \mathbb{F}_{p^r}$ with controlled cohomology, then set

$$\phi_{\tau,h}(\delta) = \operatorname{tr}(\tau \times h \mid H^*(X_{H_{\bullet},K} \otimes_k \hat{\overline{k}}, \mathbb{Q}_{\ell})),$$

where K is any normal pro-p open compact subgroup such that h is K-biinvariant. If δ does not arise this way, set $\phi_{\tau,h}(\delta) = 0$.

- Scholze: the function $\phi_{\tau,h}$ is locally constant \mathbb{Q} -valued, compactly supported function on $G(\mathbb{Q}_{p^r})$. It is $\mathcal{G}(\mathbb{Z}_{p^r})$ - σ -conjugacy invariant. It is independent of $\ell \neq p$.
- His main result: This function $\phi_{\tau,h}$ satisfies the point counting formula (PEL type cases):

$$\operatorname{tr}(\tau \times hf^p \mid H^*) = \sum_{(\gamma_0; \gamma, \delta)} c(\gamma_0, \gamma, \delta) O_{\gamma}(f^p) TO_{\delta\sigma}(\phi_{\tau, h}).$$

Why controlled cohomology?

This just means the cohomology of the rigid analytic space is the same as that of some quasi-compact admissible open subset, where finiteness theorems are known.

Local to global geometry in Scholze's method

- Let $\pi: Sh_{K_pK^p} \to Sh_{K_{\mathcal{L}}K^p}$ be the natural projection to the parahoric level $K_{\mathcal{L}}$, which has an integral model $\mathcal{S}_{K_{\mathcal{L}}K^p}$ over \mathcal{O}_E .
- By the proper base change theorem,

$$H^*(Sh_{K_pK^p} \otimes_{\mathbb{E}} \overline{\mathbb{E}}, \mathcal{F}_{\xi}) \cong H^*(Sh_{K_{\mathcal{L}}K^p} \otimes_{\mathbb{E}} \overline{\mathbb{E}}, \pi_*\mathcal{F}_{\xi})$$

is

$$H^*(\mathcal{S}_{K_{\mathcal{L}}K^p} \otimes_{\kappa_E} \overline{\mathbb{F}}_p, R\psi\pi_*\mathcal{F}_{\xi}).$$

• Say $f^p = 1_{K^p g^p K^p}$. Then

$$\operatorname{tr}(\tau \times hf^p|H_{\xi}^*) = \sum_{x \in \operatorname{Fix}_{j,\mathcal{L}}(g^p)} \operatorname{tr}(\tau \times hf^p|(R\psi \pi_* \mathcal{F}_{\xi})_x).$$

• Now use "Serre-Tate": deforming an abelian variety is the same as deforming its *p*-divisible group.

Wrinkle

$$\operatorname{Tr}(\tau \times hf^p \mid H^*) = \sum_{(\gamma_0; \gamma, \delta)} c(\gamma_0, \gamma, \delta) O_{\gamma}(f^p) TO_{\delta\sigma}(\phi_{\tau, h}).$$

- Wrinkle: Scholze requires G/\mathbb{Q}_p unramified, in particular, quasi-split.
- In general, there is an obstruction to constructing the triple $(\gamma_0; \gamma, \delta)$ from a Frobenius-Hecke fixed point: if G is **not quasi-split**, then there is no reason that $N_r(\delta) := \delta \sigma(\delta) \cdots \sigma^{r-1}(\delta)$ should be stably conjugate to an element in $G(\mathbb{Q}_p)$.
- This is the main source of difficulty we encounter for non-quasi-split groups.
- To make things work, we need to know the vanishing property: $TO_{\delta\sigma}(\phi_{\tau,h})=0$ if $N_r(\delta)$ is not stably conjuate to $G(\mathbb{Q}_p)$.
- Also needed for spectral reasons: How is Scholze's $\phi_{\tau,h}$ related to the conjectural test functions $Z_{\tau,-\mu,r}\star \tilde{h}$?

Relation between test functions

• How is Scholze's $\phi_{\tau,h}$ related to the conjectural test function $Z_{\tau,-\mu,r}\star \tilde{h}$ and their transfers to $G^*(\mathbb{Q}_p)$, where G^* is the quasi-split inner form of G/\mathbb{Q}_p ?

Theorem (Chi-H.)

In the various situations of the Target Theorem, the two test functions essentially agree, in the sense that for any $\delta \in G(\mathbb{Q}_{p^r})$ with $N_r(\delta)$ semisimple, we have $TO_{\delta\sigma}(\phi_{\tau,h}) = TO_{\delta\sigma}(Z_{\tau,-\mu,r}\star \tilde{h})$.

• Thus, in light of Scholze point-counting formula, the Test Function Conjecture holds here.

Our main local results are the following.

Theorem (Chi-H.)

In the situation of the Target Theorem,

- (1) The Scholze function $\phi_{\tau,h}$ satisfies the vanishing property. Thus it has a base-change to a function $b(\phi_{\tau,h}) \in C_c^{\infty}(G(\mathbb{Q}_p))$.
- (2) If h is the base-change transfer of a function $\tilde{h} \in C_c^{\infty}(G(\mathbb{Q}_{p^r}))$, then we have $b(\phi_{\tau,h}) = Z_{\tau,-\mu,1} \star h$.
 - The unusual notion of base-change in (1) appears because we need to use pseudo-stabilization to rewrite the point-counting formula in terms of automorphic representations for G.
 - Global method: (1) is proved first: by embedding the local situation into that attached to a certain global inner form \mathbb{G}'' with $\mathbb{G}_{\mathbb{Q}_p} = \mathbb{G}''_{\mathbb{Q}_p}$. Using Harris-Taylor and Fargues methods, we can arrange

$$\operatorname{tr}(\tau \times hf^p|H_{\mathbb{G}''}^*) = \sum_{\pi} m(\pi) \operatorname{tr}(f_{\tau,h}f^p f_{\infty}^{\mathbb{G}''} | \pi)$$

where $f_{\tau,h}:=Z_{\tau,-\mu,1}\star h$ and the sum ranges over automorphic representations of \mathbb{G}'' .

- The stable Bernstein center at p does not change when \mathbb{G}'' is replaced by a global inner form \mathbb{G}' which is isomorphic to \mathbb{G}'' outside p, ∞ , but which is **quasi-split** at p.
- For a well-chosen \mathbb{G}' , we can count points using generalized Kottwitz triples $(\gamma_0'; \gamma, \delta)$ attached to \mathbb{G}' . Recall $\mathbb{G}'_{\mathbb{Q}_p}$ is quasi-split by assumption. We get

$$\operatorname{tr}(\tau \times hf^p \mid H_{\mathbb{G}''}^*) = \sum_{(\gamma_0'; \gamma, \delta)} c(\gamma_0', \gamma, \delta) O_{\gamma}(f^p) TO_{\delta\sigma}(\phi_{\tau, h})$$

where $(\gamma_0'; \gamma, \delta)$ ranges over generalized Kottwitz triples such that $\gamma_0' \in \mathbb{G}'(\mathbb{Q})$ is transferred from $\delta \in \mathbb{G}(\mathbb{Q}_{p^r}) = G(\mathbb{Q}_{p^r})$.

• The RHS is $\sum_{\pi'} m(\pi') \operatorname{tr} \pi' (f_{\tau,h}^* f^p f_{\infty}^{\mathbb{G}'})$, where the sum is over automorphic representations π' of $\mathbb{G}'(!)$ and $f_{\tau,h}^* \in \mathbb{G}'(\mathbb{Q}_p)$ is the twisted endoscopic transfer of $\phi_{\tau,h} \in \mathbb{G}(\mathbb{Q}_{p^r})$.

- Then a comparison of global trace formulas for \mathbb{G}' vs \mathbb{G}'' (namely global Jacquet-Langlands) allows us to prove that $z_{\tau,-\mu}*h$ is the Langlands-Jacquet transfer of $f_{\tau,h}^*$.
- We can then deduce (1,2) for the local data (G, μ) .
- The Target Theorem follows from the local results, using standard pseudo-stabilization techniques of Kottwitz.
- One more interesting local ingredient, proved by a global method.

Twisted local Jacquet-Langlands transfer

- Notation: F p-adic field, F_r/F unramified extension of degree r, $\mathrm{Gal}(F_r/F) = \langle \sigma \rangle$.
- G^* a product of Weil restrictions of general linear groups over finite extensions of F, G any F-inner form of G^* .
- $G_r^* = \operatorname{Res}_{F_r/F} G_{F_r}^*$ with F-automorphism σ^* ; Similarly (G_r, σ) .
- A key result is: if $\phi \in \mathcal{H}(G_r)$ has the vanishing property for its $TO_{\delta\sigma}$, and $Z_r \in \mathcal{Z}(G_r)$, then $Z_r * \phi$ has the vanishing property.

The main tool in proving the above fact about the vanishing property is the following result.

Theorem

Let π^* be an irreducible tempered representation of G^* and let Π^* be the base change lift of π^* , which is by definition a σ -stable representation of G^*_r with canonical intertwining operator I^*_{σ} , see Arthur-Clozel.

• If Π^* has a Langlands-Jacquet transfer to an irreducible tempered representation Π of G_r , then Π is σ -stable and we can choose an intertwining operator I_σ on Π such that for any $\phi \in C_c^\infty(G_r)$ with stable base change transfer $\phi^* \in C_c^\infty(G^*)$ we have

$$\operatorname{Tr}(\phi I_{\sigma}|\Pi) = e(\mathbf{G}_r)\operatorname{Tr}(\phi^*|\pi^*).$$

② If Π^* does not have a Langlands-Jacquet transfer to G_r , then for any $\phi \in C_c^\infty(G_r)$ with stable base change transfer $\phi^* \in C_c^\infty(G^*)$ we have

$$Tr(\phi^*|\pi^*) = 0.$$

Shimura varieties in the Langlands program The Test Function Conjecture The Scholze Test functions The new local ingredients

The above gives rise to the following criterion for the vanishing property.

Proposition

Let $\phi \in C_c^\infty(G(F_r))$ and let $\phi^* \in C_c^\infty(G^*(F))$ be its stable base change transfer. Then ϕ has the vanishing property if and only if $\operatorname{Tr}(\phi^*|\pi^*)=0$ for any irreducible tempered representation π^* of $G^*(F)$ that does not have a Langlands-Jacquet transfer to G(F).