
Ramification of weak Arthur packets for p-adic groups
(joint work w. Emile Okada)

Maxim Gurevich

Technion - IIT

Lie Groups Seminar (remote talk)
MIT, Oct 2024

Max Gurevich (Technion) Weak Arthur packets Lie Groups Seminar 1 / 40



1 Quick and biased review of local Arthur packets (can skip)

2 Second introduction: A cheap ideology

3 Weak Arthur packets

4 Weak sphericity (main theorem)

5 Nilpotent cone geometry
Relative special pieces
Lusztig’s canonical quotients

Max Gurevich (Technion) Weak Arthur packets Lie Groups Seminar 2 / 40



Quick and biased review of local Arthur packets (can skip)

1 Quick and biased review of local Arthur packets (can skip)

2 Second introduction: A cheap ideology

3 Weak Arthur packets

4 Weak sphericity (main theorem)

5 Nilpotent cone geometry
Relative special pieces
Lusztig’s canonical quotients

Max Gurevich (Technion) Weak Arthur packets Lie Groups Seminar 3 / 40



Quick and biased review of local Arthur packets (can skip)

Some global matters

For exposition, G is a semisimple group defined over a number field k. For
all but finitely many (p-adic) completions k < kv, the locally compact group
G(kv) has a well-defined (hyperspecial) maximal compact subgroup
Kv = G(Ov), where Ov < kv is the p-adic ring of integers.

An irreducible representation smooth representation of the adélic group
G(Ak) =

∏′
vG(kv) is an infinite tensor products of the form

π = ⊗vπv ,

where each πv is a smooth irreducible G(kv)-representation, so that all but
finitely many of them are spherical.

A spherical (or, unramified) πv is one that has a non-zero Kv-invariant
vector.
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Quick and biased review of local Arthur packets (can skip)

Some global matters

Two such representations π = ⊗vπv, π′ = ⊗vπ′
v of are said to be

near-equivalent, when for all but finitely many v, the (spherical)
representations πv ∼= π′

v are isomorphic.

When classifying automorphic representations of G(Ak), the
near-equivalence relation seems to be natural.

Indeed, (at least) for G = Sp2n,SO2n+1, the celebrated endoscopic project
of Arthur and others gave a description of all near-equivalence classes in a
suitable automorphic space. (sorry for lack of details...)

Essentially, these are the (global) Arthur packets {ΠΨ}Ψ.
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Quick and biased review of local Arthur packets (can skip)

Arthur packets for classical groups

Still for G = Sp2n,SO2n+1, an Arthur packet ΠΨ defines a local Arthur
packet for each completion k < kv: A finite set ΠΨ,v of isomorphism classes
of irreducible unitarizable smooth G(kv)-representations.

The set of automorphic representations ΠΨ is then described as a certain
subset (with multiplicites) of the set

{⊗vπv : πv ∈ ΠΨ,v}

of G(Ak)-representations.

” ΠΨ = ⊗′
vΠΨ,v ”
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Quick and biased review of local Arthur packets (can skip)

Local Arthur packets: What is it about?

One can wonder: Does the representation theory of p-adic groups have a
right to exist without relying on number theory?

If your answer is positive, what is the ’true’ meaning of local Arthur packets?
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Quick and biased review of local Arthur packets (can skip)

Local Arthur packets: Things to notice

Local Arthur packets may intersect, that is, an irreducible
G(kv)-representation πv can belong to ΠΨ,v ∩ΠΨ′,v, even when
ΠΨ,v ̸= ΠΨ′,v.

Yet, when πv is spherical, there is at most a unique local Arthur packet Π
containing it (Moeglin).

These local packets Π are the anti-tempered packets, that is, Aubert-dual to
the tempered local Arthur packets.

Thus, in a global Arthur packet ΠΨ = ⊗′
vΠΨ,v, for all but finitely many v,

ΠΨ,v is an anti-tempered packet.
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Second introduction: A cheap ideology

Size of representations of p-adic groups

Now, G is a reductive p-adic group. i.e. G = Sp2n(Qp).
V/C an irreducible smooth representation G↷ V .

Usually V is infinite-dimensional. Still, how to quantify its ’size’?

Maybe use compact subgroups K < G, because, by admissibility
dim(V K) <∞.

Fix a basis of open compact subgroups

. . . < Ki+1 < Ki < . . . < K0 < G , ∩iKi = {e}

Since V = ∪iV Ki , limi→∞ dim(V Ki) = ∞ .
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Second introduction: A cheap ideology

(Vague) invariants

The Gelfand-Kirillov dimension GKdim(V ) measures the rate by which
dim(V Ki) grows. (It can be determined by the algebraic wavefront set.)

The ’depth’ of V looks at the minimal i, for which dim(V Ki) > 0.

What is the relation between them?

Specifically, what are the smallest representations with respect to the two
invariants?
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Second introduction: A cheap ideology

Minimizers

Irreducible representations with minimal GKdim are a known source of
interest.

When G is split, minimal ’depth’ can be taken as the class of spherical
representations. i.e. taking K0 to be the hyperspecial maximal compact
subgroup.

Meta-claim: The two notions of small size are related.
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Second introduction: A cheap ideology

Example and speculations

Each irreducible spherical representation of GLn(F ) (F a p-adic field) is the
unique representation with minimal GKdim among irreducible
representations on same supercuspidal support.

(Follows from classical results of Moeglin–Waldspurger and Zelevinsky.)

Speculations - Same may/should remain true for other reductive groups, with
the following adjustments:

supercuspidal support ⇝ infinitesimal character.
spherical ⇝ weakly spherical (drop hyperspecial restriction!).
unique ⇝ share a local Arthur packet.

Max Gurevich (Technion) Weak Arthur packets Lie Groups Seminar 13 / 40



Weak Arthur packets

1 Quick and biased review of local Arthur packets (can skip)

2 Second introduction: A cheap ideology

3 Weak Arthur packets

4 Weak sphericity (main theorem)

5 Nilpotent cone geometry
Relative special pieces
Lusztig’s canonical quotients

Max Gurevich (Technion) Weak Arthur packets Lie Groups Seminar 14 / 40



Weak Arthur packets

Classical groups and their Langlands reciprocity

From now, G is either Sp2n(F ) or SO2n+1(F ), for a p-adic field F .

Langlands dual group G∨ is then either SO2n+1(C) or Sp2n(C).

Local Langlands Reciprocity: Each irreducible representation π ∈ Irr(G) has
an L-parameter

ϕπ :WF × SL2(C) → G∨

attached to it (up to conjugation). WF is the Weil group of the field.
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Weak Arthur packets

Infinitesimal characters

The infinitesimal character of π ∈ Irr(G) is the composed homomorphism

χπ :WF

w 7→

w,
|w|1/2 0

0 |w|−1/2


−−−−−−−−−−−−−−−−−−−−−−→WF × SL2(C)

ϕπ−−→ G∨ ,

up to conjugation.

Terminology is motivated by an analogy to the natural notion for
representations of real groups.

For a spherical π, χπ(Fr) is the Satake parameter classifying π.
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Weak Arthur packets

Basic infinitesimal characters

Let U∨ be the set of unipotent conjugacy classes in G∨.

A class O∨ ∈ U∨ gives by Jacobson–Morozov a homormorphism

ϕO∨ : SL2(C) → G∨. i.e. ϕO∨

((
1 1

0 1

))
∈ O∨

We inflate ϕO∨ into a basic L-parameter

ϕO∨ :WF × SL2(C) → G∨

by making it trivial on WF .

Representations π ∈ Irr(G) with ϕπ = ϕO∨ are tempered, and their
infinitesimal character we denote as χO∨ .

O∨ 7→ χO∨
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Weak Arthur packets

Weak Arthur packets

Barbasch–Vogan have given a local meaning to the notion of an Arthur
packet for real groups. The following definition emulates their approach.

For a unipotent conjugacy class O∨ ∈ U∨, the set

ΠwO∨ =

{
π ∈ Irr(G) : χπ = χO∨ ,

GKdim(π) ≤ GKdim(π′),
∀π′ ∈ Irr(G), s.t.χπ′ = χO∨

}
is called a weak Arthur packet.
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Weak Arthur packets

Spherical Arthur packets revisited

For a conjugacy class O∨ ∈ U∨, there is a unique spherical representation
π ∈ Irr(G) with infinitesimal character (Satake parameter) χπ = χO∨ .

Recall that a unique (’strong’) local Arthur packet π ∈ ΠO∨ is known to
contain it.

The packet consists of all anti-tempered representations that admit χO∨ as
their infinitesimal character. Namely, the representations in ΠO∨ are those
Aubert-dual to those admitting the tempered L-parameter ϕO∨ .

Ciubotaru – Mason-Brown – Okada, 23’

ΠO∨ ⊂ ΠwO∨
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Weak sphericity (main theorem)

Weak sphericity

We say that a representation (π, V ) ∈ Irr(G) is weakly spherical, when a
maximal compact subgroup K < G exists, so that V K ̸= {0}.
Our groups G have maximal compact subgroups that are not (conjugate to)
hyperspecial:

Ki = G ∩

 GLi(OF ) Mi,N−2i(OF ) Mi,i(p
−1
F )

MN−2i,i(pF ) GLN−2i(OF ) MN−2i,i(OF )
Mi,i(pF ) Mi,N−2i(pF ) GLi(OF )

 < G .

Here, pF < OF < F is the ring of integers and its maximal ideal.
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Weak sphericity (main theorem)

Weakly spherical Arthur packets

We say that a local Arthur packet Πψ ⊂ Irr(G) is weakly spherical, if it
contains an anti-tempered weakly spherical representation π ∈ Πψ.

Suspecture: Removing ”anti-tempered” from the definition is harmless. (i.e
when an Arthur packet contains a weakly spherical representation, it must
also contain an anti-tempered weakly spherical one.)
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Weak sphericity (main theorem)

Main result: Symplectic case

G. – Okada (arXiv:2404.03485)

Let Π ⊂ Irr(Sp2n(F )) be a local Arthur packet, whose constituents admit the
infinitesimal character χO∨ , for a unipotent conjugacy class O∨ of G∨.

Then, Π is weakly spherical, if and only if, Π ⊂ ΠwO∨ .

Moreover, each weak Arthur packet ΠwO∨ is precisely the union of all weakly
spherical Arthur packets whose constituents admit the infinitesimal character χO∨ .

Thought process guide: One member of an Arthur packet minimizes ’depth’, if
and only if, all members of the packet minimize Gelfand-Kirillov dimension.
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Weak sphericity (main theorem)

Example

G = Sp8(F ) and O∨ the unipotent orbit in SO9(C) corresponding to the
partition 135.

Tempered L-parameter is

ϕO∨ = 1⊗ ν1 + 1⊗ ν3 + 1⊗ ν5 ,

where νk is the k-dimensional irreducible SL2(C)-representation.
The anti-tempered Arthur packet has 4 representations ΠO∨ = {δ, δ′, π, σ}.
δ is spherical, δ′ is weakly-spherical (π is Iwahori-invariant, σ is
supercuspidal).

While ΠO∨ is the only Arthur packet containing δ, there is another Arthur
packet Πψ = {δ′, σ, τ} that contains δ′.

Indeed,
ΠwO∨ = ΠO∨ ∪Πψ = {δ, δ′, π, σ, τ} .
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Weak sphericity (main theorem)

Consequences/Observations

Weak Arthur packets are unions of Arthur packets. That was proved in
parallel by Liu–Lo.

In particular, all constituents of weak Arthur packets are unitarizable, a
conjecture of Ciubotaru–Mason-Brown–Okada is settled, and a nice analogy
with the real groups case is seen.

We see a ’weak’ analogue to the stated Moeglin result about uniqueness of
an Arthur packet that contains a given spherical representation:
A weak Arthur packet is the unique ’packet’ with infinitesimal character χO∨

containing (anti-tempered) weakly spherical representations.
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Weak sphericity (main theorem)

’Awkwardness’ in the orthogonal case

G = SO2n+1(F ) is not simply-connected, giving a central element −I ∈ G∨.

Hence, L-parameters and their infinitesimal characters can all be tensored
with the unramified quadratic character κ of WF : χ−1,O∨ .

Resulting operation on Irr(G) is tensoring with a quadratic character κ of G
(abusing notation). Has to do with the spinor norm.

Since κ may not be trivial on maximal compact groups (!) We say that a
representation is −1-weakly spherical when it has non-zero κ-equivariant
vectors under a maximal compact subgroup.

More Arthur packets and weak Arthur packets need to be naturally
introduced: Π−1,O∨ ,Πw−1,O∨ .
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Weak sphericity (main theorem)

Main theorem: Orthogonal case

G. – Okada

Let Π ⊂ Irr(SO2n+1(F )) be a local Arthur packet, whose constituents admit the
infinitesimal character χs,O∨ , for a unipotent conjugacy class O∨ of G∨ and
s ∈ {±1}.

Then, Π is (−s)-weakly spherical, if and only if, Π ⊂ Πws,O∨ .

Moreover, each weak Arthur packet Πws,O∨ is precisely the union of all
(−s)-weakly spherical Arthur packets whose constituents admit the infinitesimal
character χs,O∨ .
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Weak sphericity (main theorem)

Three theorems

Proof of our main theorem follows from three separate results.(Though could be
nice to find a direct proof!)

1 Explicit description of the Arthur packets that compose a weak Arthur
packet. (extending Liu-Lo)

Main tool: Explicit knowledge of algebraic wavefront sets for unipotent
representations (CMBO).

2 Identification of the weakly spherical spectrum in terms of the enhanced
Langlands reciprocity.

Main tool: Kazhdan-Lusztig geometric constructions for affine Hecke algebras,
and recent advances in Springer theory by Waldspurger and La.

3 Identification of Arthur packets that contain the weakly spherical spectrum.

Main tool: The theory of intersections of Arthur packets, as developed by
Moeglin, Xu, Atobe.
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Weak sphericity (main theorem)

Standalone interest

Question 1:

Which local Arthur packets (beyond the anti-tempered packet) are included in the
weak Arthur packet ΠwO∨?

Question 2:

Which anti-tempered representations (in ΠO∨) are weakly spherical?

The answers to both questions are given in terms of the structure of the
nilpotent/unipotent cone of the dual group G∨.
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Nilpotent cone geometry
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Nilpotent cone geometry Relative special pieces

Special pieces

The conjugacy classes (or, orbits) in U∨ are divided into equivalence classes
known as special pieces.

Each special piece consists of power-of-2 orbits. Toplogical order between
them is the hypercube lattice.

There is a (Barbasch–Vogan–Lusztig–Spaltenstein) duality map d from U∨ to
the nilpotent orbits of Lie(GF ). Special pieces may be defined as the fibers
of that map.

For an orbit O∨ ∈ U∨, we set the relative special piece Spc(O∨) of it, to be
the set of orbits in U∨ that share a special piece with O∨ and are contained
in its closure.

Still |Spc(O∨)| = 2k.

Max Gurevich (Technion) Weak Arthur packets Lie Groups Seminar 31 / 40



Nilpotent cone geometry Relative special pieces

Weakly spherical Arthur parameters

One meaningful invariant of Arthur parameters ψ ∈ Ψ(G) is their SL2-type:

Namely, when viewed as a homomorphism

ψ :WF × SLL2 (C)× SLA2 (C) → G∨ ,

this is the restriction ψ|SLA
2 (C), whose isomorphism class is again

parameterized by an orbit O∨
ψ ∈ U∨.

Proposition

For any O∨
1 ∈ U∨ and any O∨

2 ∈ Spc(O∨
1 ), there is a unique Arthur parameter

ψ = ψO∨
1 ,O∨

2
∈ Ψ(G) with infinitesimal character coming from O∨

1 and SL2-type
O∨

2 .
χψ = χO∨

1
, O∨

ψ = O∨
2 .

For example, ΠψO∨,O∨ = ΠO∨ is the anti-tempered Arthur packet.
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Nilpotent cone geometry Relative special pieces

Weakly spherical Arthur packets

Theorem (G.-Okada)

For any unipotent orbit O∨
1 ∈ U∨, the weak Arthur packet attached to it is

decomposed as a (non-disjoint) union of |Spc(O∨
1 )| Arthur packets

ΠwO∨
1
=

⋃
O∨

2 ∈Spc(O∨
1 )

ΠψO∨
1 ,O∨

2
.
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Nilpotent cone geometry Lusztig’s canonical quotients

Question 2:

Which anti-tempered representations (in ΠO∨) are weakly spherical?
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Nilpotent cone geometry Lusztig’s canonical quotients

A side plot: Representation theory of Weyl groups

Our groups G∨ (and G...) have the finite group Wn of signed permutations
as their Weyl group.

For each unipotent conjugacy class O∨ in G∨, Springer theory constructs an
action of Wn on the cohomology space H∗(BO∨) of the variety of Borel
subgroups of G∨ containing a fixed representative of u ∈ O∨.

The component (2-)group A(O∨) := ZG∨(u)/ZG∨(u)◦ acts on H∗(BO∨) as
well, commuting with the Wn-action.

Each irreducible local system ρ ∈ Â(O∨) gives a Wn-representation

Σ(O∨, ρ) = HomA(O∨)(ρ,H
∗(BO∨)) .
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Nilpotent cone geometry Lusztig’s canonical quotients

Kazhdan–Lusztig K-theory construction

For the principal block of representations of split p-adic groups,
Kazhdan–Lusztig have adopted a Springer-like approach to construct
Langlands reciprocity.

Idea is that these cases are equivalent to representation of an affine Hecke
algebra, which is viewed as a quantized version of the affine Weyl group (of
the p-adic group in question).

Lusztig later extended this approach to treat all unipotent representations.

Bottom line for our needs: A geometric construction and parameterization

ΠO∨ =
{
δ(O∨, ρ) : ρ ∈ Â(O∨)0

}
of anti-tempered representations is in place.
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Nilpotent cone geometry Lusztig’s canonical quotients

Weak sphericity translated to Springer theory

Lusztig and Reeder showed that when ”q → 1” (q = residue characteristic of
F ) is suitably performed, one obtains the Wn-representation Σ(O∨, ρ) out of
the G-representation δ = δ(O∨, ρ), whenever δ is Iwahori-invariant.

Turns out weak-sphericity can be detected on the ”q → 1” level!

Proposition

dim
(
Σ(O∨, ρ)Wi×Wn−i

)
= dim

(
δ(O∨, ρ)Ki

)
Here, Wi ×Wn−i < Wn is the (non-parabolic, in Coxeter formalism) subgroup of
signed permutations perserving {1, . . . , i}.
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Nilpotent cone geometry Lusztig’s canonical quotients

Green theory

Want to know when is Σ(O∨, ρ)Wi×Wn−i ̸= {0}.

Recall, Σ(O∨, ρ) is not irreducible. Determining its decomposition to
irreducible representations has to do with the theme of Green functions.

Recently, Waldspurger devised closed formulas for such a decomposition for
the G∨ = Sp2n(C) case. Methods were extended to G∨ = SO2n+1(C) by La.
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Nilpotent cone geometry Lusztig’s canonical quotients

Lusztig’s canonical quotient

Theorem: Symplectic case (G.–Okada)

The representation δ(O∨, ρ) is weakly spherical, if and only if, the character ρ of
the component group A(O∨) factor through Lusztig’s canonical quotient.

The subgroup A†(O∨) < Â(O∨) of characters factoring through that
quotient has its own history.

Recall that each non-zero Σ(O∨, ρ) has an irreducible summand
L(O∨, ρ) = HomA(O∨)(ρ,H

top(BO∨)) ∈ Irr(Wn).

Irr(Wn) is divided into Kazhdan–Lusztig (two-sided) cells. Those are
conveniently in bijection with the set of special pieces in U∨.

Achar–Sage: A†(O∨) consists of those characters ρ, for which the KL cell of
L(O∨, ρ) matches the special piece of O∨.
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Nilpotent cone geometry Lusztig’s canonical quotients

Thank you for listening!
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