Modularity for W-algebras, affine Springer Fibres and associated variety.

Peng Sham
Motivation from physics
Beem-Lemos - Liendo

$$
\begin{array}{rll}
\{4 d \mathrm{~N}=2 \text { SCAT }\} & \xrightarrow{\text {-Peelnes -Rastelli-VarRees }} & \{\text { Vertex Alg\} } \\
\cup & \sigma \longrightarrow(T)
\end{array}
$$

Class S of type $A D E$

$$
\left(6 d(2,0) \quad S^{\prime \prime} C F T \text { on } \mathbb{R}^{3,1} \times C\right)
$$

Coulomb
Gaiotho-Moore -
Hings (Arakawa)
$M_{c}=$ Hitchin moduli space
Associated variety

$$
X_{V(T)}
$$

generalised Argyres-Douglas theory

$$
\left\{w_{k}(\hat{g}, f)\right\}
$$

A reg ss.

$$
W_{-N+\frac{N}{N+M}}\left(A_{N-1}, \text { principal }\right)
$$

Fredrickson-Neitzke 2017 : for $W_{N}(N, M)$ minimal model \exists bijection $\left\{\begin{array}{c}\mathbb{C}^{2} \text {-fixed point } \\ \text { in Hitchinfibre }\end{array}\right\} \longleftrightarrow$ Irrep $(W$-alg $)$

- We estabish such a bijection for arbitrary W-aly at boundary admissible level. (modulo conj). using ASF

Plan: - explain bijection for affine KM-aly

- modularity of characters in terms of DAHA explain the W-alg case.
further result / conj about nonadmissible case and $]$ it with
associated var. Wenbin Man - Qixian Tho

1. Admissible rep
of fid. simple Lie alg

$$
\left.\begin{array}{ll}
\hat{\theta}=g\left[t, t^{-1}\right] \oplus \mathbb{C} k \oplus \mathbb{C d} & \text { affine Lie alg }
\end{array} \begin{array}{l}
\text { talk: of simply-laced } \\
\text { paper: any affine } K M
\end{array}\right]
$$

$L_{k}=$ simple quotient of V_{x}
Fix k boundary admissible
i.e. $\quad k+h^{2}=\frac{h^{2}}{u}$, for $\left(u, h^{2}\right)=1, u \in \mathbb{Z}_{>0}$
$\operatorname{Rep}\left(L_{k}\right)$ inside $\theta(\hat{g})_{k}$ is semi-simple, with
simples given by $L(\lambda), \lambda \in A d m_{k}=\{$ admissible wis of level $k\}$, where $\lambda \in A d m_{k} \stackrel{d f}{\Leftrightarrow}\left\{\begin{array}{r}\lambda \text { reg. dom, ie. }\left\langle\lambda+\hat{\rho}, \alpha^{2}\right\rangle \notin\{0,1,2, \cdots\} \\ \forall \alpha^{v} \in \Phi^{+, v}\end{array}\right.$

$$
\Phi(\lambda)^{v} \simeq \Phi^{v}
$$ $\forall \alpha^{v} \in \Phi_{r e}^{+v}$

[Kw]

$$
\stackrel{k w}{=}\left\{w \cdot k \Lambda_{0} \mid w \in W_{e x}, \omega\left(\pi_{u}^{v}\right) \subset \Phi^{+, v}\right\}
$$

where $\Pi_{u}^{v}=\left\{\alpha_{1}^{v}, \cdots, \alpha_{l}^{v},-\theta^{v}+u k\right\}$

$$
W_{e x}=W \kappa P^{v}, P^{\prime} \text { coweight lattice }
$$

2. Affine Springe Fibre (ASF)
of Langlands dual Lie all
G^{v} conn. algebraic esp of adjoint type w/ Lie $\left(G^{v}\right)=\mathcal{G}^{v}$ $B^{v}>T^{v}$
$F_{l}=G^{2}((z)) / I^{2}, \quad I^{2}=$ Iwahori subgroup
$\Omega=\pi_{0}(F l) \sim F l$, let $F l^{0}$ be neutral Component
$\gamma=\sum_{i=1}^{l} e_{\alpha_{i}}+z^{u} f_{\theta^{v}} \in \sigma^{v}[z]$ homo elliptic element. slope $\frac{u}{h^{2}}$

ASF: $F_{\gamma}:=\left\{g I^{v} \mid \operatorname{Adg-1}(\gamma) \in \operatorname{Lie}\left(I^{v}\right)\right\}$ fid. projvar.

$$
\begin{aligned}
& \mathbb{C}^{x} \curvearrowright \mathrm{Fl}_{\gamma} \quad \text { via } \quad \mathbb{C}^{x} \longrightarrow \stackrel{v}{T} \times \mathbb{C}_{\text {rot }}^{x} \\
& t \longmapsto\left(t^{u \rho}, t^{h^{v}}\right) \\
& \mathrm{Fl}_{\gamma}^{\mathbb{C}^{x}}=\mathrm{Fl}_{\gamma} \cap \cap_{\| l} \mathrm{Fl}^{T^{v}} \quad \subset \mathrm{Fl}^{T^{v}} \\
&\left\{x \in W_{c x} \mid x^{-1}\left(\pi_{u}^{v}\right)<\Phi_{+}^{v}\right\} \subset W_{e x}
\end{aligned}
$$

The $1(S X Y)$ The natural map $F l_{\gamma}^{\mathbb{C}^{x}} \rightarrow A d m_{k}, \quad x \mapsto x^{-1} \cdot k \Lambda_{0}$ yields a bijection $\left(F l_{\gamma}^{0}\right)^{\mathbb{C}^{x}} \simeq A d m_{k}$

Re 1: Works for any affine Lie algebra \hat{g} (including twastedone), with \mathbb{C}^{x}-fixed point in $A S F$ for $(\hat{0})^{V}$

Rk2: [BBAMY] Hitchin fibre $\underset{\text { homes }}{\simeq} F l_{j}^{0}$ so matches with physics expectation.
3. Modularity [talk: of simplytaced, paper: $\hat{\theta}$ untwisted AKM] $\forall \lambda \in A d m_{k}$, the renormalised character

$$
C h_{\lambda}(v):=e^{2 \pi i \tau S_{\lambda}} \operatorname{Tr}_{L(\lambda)}\left(e^{v}\right)
$$

for $v \in Y=\left\{(z, \tau, t):=2 \pi i(z+t k-\tau d) \left\lvert\, \begin{array}{l}z \in h, \tau, t \in \mathbb{C} \\ I_{m}(\tau)>0\end{array}\right.\right\}$
is meromorphic function on Y
Kac-Wakimoto:
$\mathbb{V}_{\text {ch }}=$: span $\left\{C_{z} \mid \lambda \in \operatorname{Adm}_{k}\right\} \subset \operatorname{Fun}(Y)$
invariant under $S L_{2}(\mathbb{Z})$-action
and give explicit formulae for matrices for $S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), T=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$

DAh

$$
\begin{aligned}
& \mathbb{H}_{q, t}=\mathbb{C}_{q, t} \text {-alg deforming } \mathbb{C}_{q, t}\left[x_{b} \mid b \in P^{2}\right] \otimes \mathbb{C} W \otimes \mathbb{C}\left[Y_{b}, b \in P\right] \\
& \mathbb{H}_{q, t} \curvearrowright P_{o l}=\mathbb{C}\left[x_{b}, b \in P^{v}\right]
\end{aligned}
$$

$\left\{\varepsilon_{L}\right\}_{b \in P^{\sim}}$ renoimalised Non-Symmetric MacDonald pol
form eigenbusis for $\mathbb{C}[Y]$-acting on P Pl.
sit. $L_{f}(\gamma)\left(\varepsilon_{b}\right)=f\left(q^{-b_{\#}}\right) \varepsilon_{b}, \quad b_{\#}=b-u_{b}^{-1}(k \rho)$.
Assume $t^{t^{2}}=q^{-u}, q$ generic
Pol has a finite dim quotient \mathbb{N}_{γ}
Pol $\rightarrow \mathbb{V}_{\gamma}, \quad \varepsilon_{b} \mapsto 0$ if $b \notin \Sigma_{u} c P^{v}$
X-acts semi-simply on $\mathbb{V}_{\gamma}=\operatorname{Fun}\left(\Sigma_{u} / \Omega\right)$
V_{γ} has basis $\left\{X_{b}\right\}_{b \in \Sigma_{u} / \Omega}$
Geometric picture $\quad H_{q, t}=K\left(\hat{S t} / G\left((1) \mid x C_{o t^{x} \times} \mathbb{C}^{x}\right) \curvearrowright K^{\mathbb{C}^{x}}\left(\mathcal{F g}_{\gamma}\right)_{\text {bloc }}=V_{\gamma}\right.$
Cherednik $\mathrm{PSL}_{2}^{c}(\mathbb{\mathbb { Z }}) \quad \sim \operatorname{PAut}\left(H_{q, t}\right)$

$$
\left\langle\sigma, \tau_{+} \mid\left(\sigma \tau_{+}\right)^{3}=\sigma^{2}\right\rangle \quad C \text { PAnt }\left(V_{\gamma}\right)
$$

with $\quad S_{b, b^{\prime}}=\varepsilon_{b}\left(q^{b_{*}^{\prime}}\right) \mu\left(q^{b_{*}^{\prime}}\right)$

$$
T=\text { mult by Guusian }
$$

The 2 (SXY) Set $q=e^{-2 \pi i h^{2} / u} \quad(\Rightarrow t=1)$
The ism $\mathbb{V}_{c h} \simeq \mathbb{V}_{\gamma} \quad$ commute with $S L_{2}(\mathbb{Z})$-act ${ }^{n}$.

$$
(-1)^{l\left(u_{b}\right)} C h_{\pi_{b}} \longleftrightarrow x_{b}
$$

4. W-algebrus
of simply-laced.
f has good even grading (otherwise, need Raymond twist)
Assume f regular in a Lévi L (let $\Phi_{L}^{V}=$ corot for L)

$$
W_{k}(g, f)=:+ \text {-quantum } D S \text {-reduction of } U_{k}(g) \quad[K R W]
$$

$$
\psi_{11}^{-}: \quad U_{k}(g)-\bmod \quad \longrightarrow \quad W_{k}(g, f)-\bmod
$$

- reduction functor

Conj (KRW, Arakawa) For $\lambda=x \cdot k \Lambda_{0} \in A d m_{k}$ $\psi_{f}^{-}(L(\lambda))$ is simple if it is nonzero

$$
\begin{aligned}
& \psi_{f}^{-}(L(\lambda)) \neq 0 \Leftrightarrow x\left(\Pi_{u}^{v}\right) \subset \Phi_{+}^{v} \backslash \Phi_{L} \\
& \psi_{f}^{-}(L(\lambda))=\psi_{f}^{-}\left(L\left(\lambda^{\prime}\right)\right) \Leftrightarrow \lambda \in W_{L} \cdot \lambda^{\prime}, \text { where } W_{L}= \\
& \text { Weyl gp for } L
\end{aligned}
$$

All simple modules are obtained in this way.

Conj proved for - f principal

- any f in type A
- exceptional (f, u).

Spaltenstein variety: let $L^{v} \subset G^{2}$ levi subge defined by Φ_{L}^{v} $P^{v} \subset G^{v}$ parabolic subgp gen by L^{v} and B^{v}.

$$
\begin{aligned}
& G^{\prime}(k)>G^{2}(\theta) \xrightarrow{\text { er }} G^{v} \\
& U \quad U \\
& e v^{-1}\left(P^{2}\right)=P^{v} \rightarrow P^{v} \\
& C^{x} \leadsto \mathcal{F l} \mathbb{P}_{\gamma}^{\mathbb{P}^{v}}:=\left\{g \mathbb{P}^{v} \mid g^{-1} \gamma g \in \operatorname{Lia}\left(\operatorname{rad}\left(\mathbb{P}^{2}\right)\right)\right\} \quad \subset G^{v}(k) / \mathbb{P}^{v}
\end{aligned}
$$

Than Assuming conjectures hold. Then the bijection [SAY]

$$
\begin{equation*}
\operatorname{Irr}\left(\mathbb{U}_{k}\right) \simeq\left(\mathcal{F l}_{\gamma}^{0}\right)^{\mathbb{C}^{x}} \tag{*}
\end{equation*}
$$

induces a bijection

$$
\operatorname{Irr}\left(W_{k}(g, f)\right) \simeq\left(F=l_{\gamma}^{\mathbb{P}_{\rho}}\right) \mathbb{C}^{x}
$$

Cor: $\left|\operatorname{Irr}\left(W_{k}(g, f)\right)\right|=\frac{1}{\left|W_{L}\right|} u^{l-j} \prod_{i=1}^{j}\left(u-e_{i}\right)$
where e_{1}, \cdots, e_{j} are exponents of $W_{L}, l=r k$ of
The: let $\mathbb{V}_{k}^{f}=\left\{C h_{L} \mid L \in \operatorname{Irr}\left(W_{k}(g, f)\right)\right\} \quad \forall S L_{2}(\mathbb{Z})$
$[S X Y]$

$$
\mathbb{V}_{\gamma}^{p^{\nu}=e_{L}^{-}\left(\mathbb{V}_{\gamma}\right)} \underset{\cup}{\operatorname{PSL}_{2}^{c}(\bar{\Omega})} \underset{\sim}{e_{L}^{-} H_{q \cdot t} e_{L}^{-}}
$$

Then $\mathbb{V}_{k}^{f} \simeq \mathbb{V}_{\gamma}^{\mathbb{P}^{2}}$ defined by the bijection $(*)$ is $S L_{2}(\mathbb{Z})$-equivariant.
REL: Such identifications bass estabisined previously for

- Virasoro minima model by Kocrac-Shakiovo Kan.
- $W_{N}(N, M)$ minimal model by Gukeo-Koroteou-Nawataulei-Saberi.

5. Associated variety [yt with Yan-Zhao]

Physics th expect $M_{\text {Hings }}$ has finitely many symplectic leaves.
Q: For which K. L_{k} is quasi-lisse? $\left(\Leftrightarrow X_{L_{k}}\right.$ satisfy $\left.{ }^{\uparrow}\right)$
L_{k} quasi-lisse \Rightarrow it has finitely many highest wt modules. not always true.

Expect: \exists bijection $\Pi_{0}\left(F_{l} \mathbb{C}_{\gamma}^{x}\right) \longleftrightarrow \operatorname{Irr}\left(L_{k}\right)$
for γ homo. elliptic. $\Rightarrow k+h^{2}=\frac{m}{u}$,
m elliptic reg number

$$
(u, m)=1 . \quad(\text { non -adm }) .
$$

let $\Phi: \underline{W} \rightarrow \underline{N}^{v} \quad$ Lusztig $\operatorname{map}\left(R T_{\text {min }}\right.$ by $\left.Y_{u n}\right)$

$$
\gamma \leadsto\left[\omega_{\gamma}\right] \longmapsto \Phi\left[\omega_{\gamma}\right]:=\theta_{\gamma}
$$

$d: N^{v} \rightarrow N \quad$ Barbasch-Vogan - Lusztig-Spaltenstein duality
Conj (SYZ) let $k+h^{v}=\frac{m}{u}, m$ elliptic regular, $(u, m)=1$. then $X_{L_{k}}=d\left(\theta_{\gamma}\right)$

Examples of known cases:
0) Admissible case $\left(u, h^{v}\right)=1$ ecg. (type A)

- $u>h^{v}, \quad \theta_{x}=\{0\}, \quad d\left(\theta_{x}\right)=\mathbb{N}$
- $u<h^{v}$, let $\lambda^{h^{v}, u}=$ partition with u parts, sit. each part is either $\left\lfloor\frac{h^{v}}{u}\right\rfloor$ or $\left[\frac{u}{h^{v}}\right]$

$$
d\left(\theta_{\lambda^{h}, u}\right)=\theta_{\left(\lambda^{h i n}\right)^{t}}=[u, \cdots, u, s]
$$

(Jakob-Yun)
In this case $X_{L_{k}}$ computed by Arakawn

Works for all cases

1) Sub-loxeter case $(u=1)$

Deligne exceptional sequence.

$$
D_{4} \subset E_{6} \subset E_{7} \subset E_{8}
$$

| m | 4 | 9 | 14 | 24 | level |
| :---: | :---: | :---: | :---: | :---: | :---: |$\quad k+h^{2}=m$

$O_{x}=$ subregular orbit $d\left(O_{x}\right)=$ minimal orbit

$$
=x\left(L_{k}\right) \text { by [Arakawa-Morean]. }
$$

2) $L_{2-n}\left(D_{n}\right)$, with n even, $m=n$ Coxeter $2 n-2$

$$
\begin{aligned}
& X_{L_{2-n}\left(D_{n}\right)}=\overline{\theta_{\left(2^{n-2}, 1^{*}\right)}} \quad[A M] \\
& O_{x}=[n+1, n-1], \quad d \theta_{x}=\theta_{\left(2^{n-2}, 1^{*}\right)}
\end{aligned}
$$

Rh: If n odd, $m=n$ is not elliptic regular, $L_{2-n}\left(D_{n}\right)$ is not quasi-lise

