Pre-cuspidal families and indexing of Weyl group representations.

W - Weyl group, S-simple reflections

R - C-vector space with basis Irr(W) - For E & Irr(W) let E(q) = corresp irr rep. of $G(F_q)$ with Weyl go W, dim E (9) = 1 9 = + higher 6 Q[9]. For ICS, WCW subgp. gener by I, Define JW: RW - RW (linear): $E_1 \longrightarrow \sum (E_1: E|_{W_*})E.$ ELINIW Irv(W,)

Define a subset Con C II by ma. on 1 Eon = { JW(9); I & S, S & Con wy (same) & sign. If E_(EInr W, E_CEIrr(W) we say E_N Ez if I E_3 EIrr(W) s,t.

E_1, E_3 appear in the same of Elony and E_2, E_3 appear in the same of Elony. This is an equivalence relation: Eq. classes = "families". Let $\phi(W)$ = set of families If $c \in \mathcal{P}(W)$ then $c \otimes sign \in \mathcal{P}(W)$. In type A, samilies are single our, neps If $\Gamma \subset S$, $C_1 \in P(W_1)$ there is a unique $C \in P(W)$ such that $V \in I \in C_1$ we set $C = J_{W_1}(C_1)$. $V \in I \in C_1$ we set $C = J_{W_1}(C_1)$.

For a finite group Γ' let $M(\Gamma) = \{(x, g)\}, (x \in \Gamma, g \in Int Z(X)\}/\Gamma$ -conj $= inred \cdot \Gamma$ -equivan, vietor bundles on Γ . (conj) For any $C \in \Phi(W)$ there is a finite group Γ_C and a natural imbedding $C \subset M(\Gamma_C)$. If W is irreducible Γ_C is in the following test

$$C \subset \mathcal{M}(\Gamma_c), \quad \text{if } W \text{ is irreducible } \Gamma_c \text{ is in the following list}$$

$$C \subset \mathcal{M}(\Gamma_c), \quad \text{if } W \text{ is irreducible } \Gamma_c \text{ is in the following list}$$

$$\sum_{2}^{n} \text{ with basis } e_1, e_2, -e_n$$

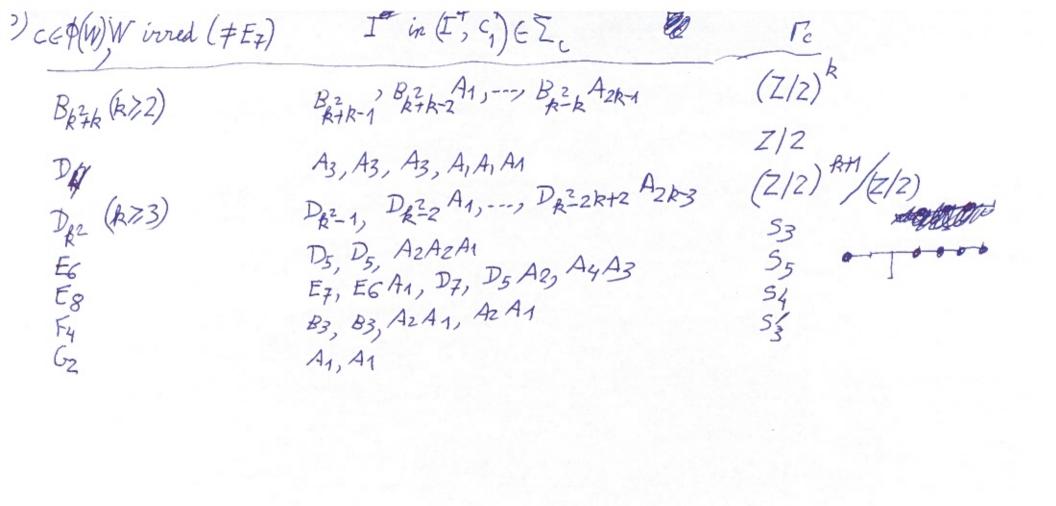
$$\sum_{3}^{n+1} \text{ with basis } e_1, e_2, -e_{n+1} \text{ modulo } \langle e_1 + e_{2} + ... + e_{n+1} \rangle$$

$$\sum_{3}^{n+1} \text{ with basis } e_1, e_2, -e_{n+1} \text{ modulo } \langle e_1 + e_{2} + ... + e_{n+1} \rangle$$

$$\sum_{3}^{n} \text{ if } n = 2, 3, 4, 5.$$

$$\sum_{3}^{n} \text{ if } s = 2, 3, 4, 5.$$

We say that CEP(W) is smooring induced from 1-r("x1), 17 y E1Eq=> JW(E1) = IrrW and E1 > JW(E1) is a signetion e1 ~ C. We say that c∈ \(\phi(W)\) is auspidal if neither c noz c\(\mathbb{Sign}\) \(\mathbb{E}\) is smoothly induced. Assume Wirred, c & P(W) cusp. (not anomalous i.e. W = E7). Set rk(c) $\sum_{c} = \left\{ (\bar{I}, c_1) \middle| I \subset S \right\}, c_1 \in \mathcal{P}(W_1), c = \mathcal{I}_{W_1}(c_1), \text{ any cusp, component of } c_1 \\ \text{has } rk = rk(c) \bmod 2 \right\}$ es is said to be a se pre-cuspidal family attached to a



2) Let Gbe a sweed go with connecentre with Weyl group W (i rred.) Set un(G) = set of unipotent classes of G, There is a canonical imbedding $J_G: \mathcal{P}(W) \subset un(G)$ such that for $c \in \mathcal{P}(W)$, $u_{G}(W) \in \mathcal{P}(W) = \mathcal{P}(W) = \mathcal{P}(W) = \mathcal{P}(W) = \mathcal{P}(W) = \mathcal{P}(W)$ Assume $c \in P(W)$ is cuspidal and $(I, c_1) \in \Sigma_c$. It is known that $f_G(c)$ is induced from $j_{L}(c_{4})$, in the serve of [2-579] and the where P is a parabolic of Grwith Levi quotient PT>L so that Wis the well group of L.

With the second By definition, $V = \widetilde{T_1}^{\prime} J_{L}(C_1) \cap J_{G}(C)$ is open deade in $T_1^{\prime\prime} J_{L}(C_1)$. Let $v \in V$. We can form $T_1^{\prime\prime} = \frac{Z_{L}(T_1(v))}{Z_{L}(T_1(v))} \stackrel{\frown}{\longleftarrow} \frac{Z_{L}(T_1(v))}{Z$

Let $\Gamma'' = Z_p(v)/Z_p(v)^\circ$, $\Gamma' = kw A$ We have $(\Gamma', \Gamma'') \in Z$, where for a finite group Γ , Z_m is the set of pairs $(\Gamma' \subset \Gamma'')$ of subgroups of Γ with Γ' normal in Γ'' . The pairs (['CT") obtained in this way from various (I,C1) & Ec for CGP(W) cuspidal form a subset x_{t} of \mathcal{X}_{t} Recall: $A = \text{collection of finite groups associated to various } c \in P(W)$ or equivalently to various cuspidal $c \in P(W)$ (W. Frred.) We define the a subset $X_{\Gamma} \subset \mathcal{Z}_{\Gamma}$ for $\Gamma \in A$ by induction on $|\Gamma|$. Ig 17={1} then X_= (11}, (13). Assume that 17 + 1. Let (1,1") & 20,1 we have star ([', ['] + (1, [') + (1, [']) Reuse [[']/[' | | |]] so that $X_{\Gamma''/\Gamma'}$ is known by ind 9) Set ([1, ["]) EX ["/[1. Yake inverse images unau 1 -> 1/1. The resulting pairs (for various (r', r") = 2, (r', r") = Xr"/r") set X_{Γ}° . Assuming that Γ is not S_3, S_4, S_5 we define X_= X_ U (1, 1)

In the so case where 17 is S3,54,55 we need to add more elements to X. We will consider only the case of S5.

5, + 5352 -> 55, 52+53527 55, 300 52+ Ding >>5, 1+54>5, 1+55= 10) Example (55) $(S_3 \subset S_3 S_2)$ $(S_2 S_2 \subset Dih_8)$ $(S_4 \subset S_4)$ $(S_5 \subset S_5)$ (S2C53S2) 255 : (S5 (S5), (S3 S2(S3 S2), (S4(S4), (Dilg (Dilg), (S2S2 (S2S2), (S3(S3), (S2(S2)) (53 < 5352), (52 < 5352) (5252 Pily), (52 < 5252) To this on has to add all (1, H) with (H, H) $\in X_{55}^{\circ}$, $H \in A$ (i.e. $H \neq Dih_8$). There are (165), (165352), (1654) (165252) (1653) (1652) (Total: 17) One obtains X5.

Minite group

White group

If finite group $E[M(\Gamma)] = C$ -vector sp. with boxis $M(\Gamma) = C_0 K_{\Gamma}(\Gamma)$ equiv. vector bundle

For $H \subset \Gamma$, define linear map $i_{H,\Gamma} : C[M(H)] \to C[M(\Gamma)]$ $(x, \sigma) \to E$ $(\sigma; z|_{ZK})^{(x, \tau)}$ For $H \subset \Gamma$, define linear map $T_{H,\Gamma} : C[M(\Gamma H)] \to C[M(\Gamma)]$ subgr. $C[M(\Gamma)]$ as inverse image in equiv. K-theory under $\Gamma \to \Gamma/H$ For $H \subset H' \subset \Gamma$, define linear map $S_{H,H'} : C[M(H'/H)] \to C[M(\Gamma)]$

For H CH'CT', degine linear map 5 HH'; C[M(H/H)] -> C[M(F)]

subgroups
H normal in H'

as

I H, H'

C[M(H')]

0

 \mathcal{R}_{c} has \mathcal{C} -basis c. We have $\mathcal{R}_{c} \subset \mathcal{C}[\mathcal{M}(\mathcal{T}_{c})]$ since $c \subset \mathcal{M}(\mathcal{T}_{c})$. Assume Wirr. $\neq E_{7}$. Define $c \in \Phi(W)$ $X_r \to \mathbb{C}[M(r)]$ (FEP") -> 5 p; +11 (1,1) - Thm. The image of this map is contained in \M[\(\Gamma'\Gamma'\)] and is a basis B. of Re. This basis is Per related to the standard basis of Rc by an upper triang matrix with entires in N and I on diagnal Cor. C ↔ B. ↔ X. canonically. Hence the reps in a are induced by the pairs (['<]") in Xr. The set i has a camprical partial order. There is a unique minimal

element: the special repres.