On gamma factors and Bessel functions for representations of finite general linear groups

Elad Zelingher, University of Michigan

MIT Lie Groups Seminar March 1st 2023

Plan

- Generic representations
- Gamma factors
- Bessel functions
- Kloosterman sheaves

Generic representations

Let \mathbb{F} be a finite field with q elements. Let $\psi : \mathbb{F} \to \mathbb{C}^{\times}$ be a non-trivial character.

Let $U_n \leq \operatorname{GL}_n(\mathbb{F})$ be the subgroup of upper triangular unipotent matrices. We define a character $\psi : U_n \to \mathbb{C}^{\times}$ by

$$\psi \begin{pmatrix} 1 & a_1 & * & * \\ & 1 & a_2 & * \\ & & \ddots & \\ & & \ddots & a_{n-1} \\ & & & 1 \end{pmatrix} = \psi \left(\sum_{i=1}^{n-1} a_i \right).$$

Let π be a (finite dimensional) representation of $GL_n(\mathbb{F})$. A vector $0 \neq v \in \pi$ is called a *Whittaker vector* if $\pi(u) v = \psi(u) v$ for every $u \in U_n$.

- We say that π *is generic* if it admits a non-zero Whittaker vector.
- We say that π is of *Whittaker type* if π is generic and if it has a unique Whittaker vector, up to scalar multiplication.

By a well known result of Gelfand–Graev, irreducible generic representations are of Whittaker type. We also have the following well known results:

- Irreducible cuspidal representations are generic.
- If $\sigma_1, \ldots, \sigma_r$ are representations of Whittaker type of $\operatorname{GL}_{n_1}(\mathbb{F}), \ldots, \operatorname{GL}_{n_r}(\mathbb{F})$, respectively, then the parabolic induction $\sigma_1 \circ \cdots \circ \sigma_r$ is also a representation of Whittaker type.

As a corollary, for every irreducible generic representation π , there exist irreducible cuspidal representations $\sigma_1, \ldots, \sigma_r$ as above, such that π is the unique irreducible generic subrepresentation of $\sigma_1 \circ \cdots \circ \sigma_r$. The multiset $\{\sigma_1, \ldots, \sigma_r\}$ depends only on π , and we call it *the cuspidal support* of π .

Parabolic induction

Let π and σ be representations of Whittaker type of $GL_n(\mathbb{F})$ and $GL_m(\mathbb{F})$, respectively.

Suppose that π and σ are representations of Whittaker type, and let $v_{\pi,\psi}$ and $v_{\sigma,\psi}$ be ψ -Whittaker vectors. The representations $\pi \circ \sigma$ and $\sigma \circ \pi$ are also of Whittaker type. We may define a ψ -Whittaker vector $v_{\sigma,\pi,\psi}$ for $\sigma \circ \pi$ by the formula

$$v_{\sigma,\pi,\psi}\left(g\right) = \begin{cases} 0 & g \notin P_{m,n} \begin{pmatrix} I_m \\ I_n \end{pmatrix} U_{m+n}, \\ \psi\left(u\right) v_{\sigma,\psi} \otimes v_{\pi,\psi} & g = \begin{pmatrix} I_m \\ I_n \end{pmatrix} u, \text{ where } u \in U_{m+n}. \end{cases}$$

Similarly, we may define a ψ -Whittaker vector $v_{\pi,\sigma,\psi}$ for $\pi \circ \sigma$.

Intertwining operators and Shahidi's gamma factor

We have an intertwining operator $U_{\sigma,\pi}: \sigma \circ \pi \to \pi \circ \sigma$, defined by

$$(U_{\sigma,\pi}f)(g) = \sum_{X \in \operatorname{Mat}_{n \times m}(\mathbb{F})} \tilde{f} \left(\begin{pmatrix} I_m \\ I_n \end{pmatrix} \begin{pmatrix} I_n & X \\ & I_m \end{pmatrix} g \right),$$

where $v_{\sigma} \otimes v_{\pi} = v_{\pi} \otimes v_{\sigma}$. Since the representations $\sigma \circ \pi$ and $\pi \circ \sigma$ are of Whittaker type, and since $U_{\sigma,\pi}v_{\sigma,\pi,\psi}$ is a ψ -Whittaker vector, we have that there exists a contant $\Gamma(\pi \times \sigma, \psi) \in \mathbb{C}$, such that

$$U_{\sigma,\pi}v_{\sigma,\pi,\psi}=\Gamma\left(\pi\times\sigma,\psi\right)v_{\pi,\sigma,\psi}.$$

We call $\Gamma(\pi \times \sigma, \psi)$ the Shahidi gamma factor of π and σ with respect to ψ .

Shahidi's gamma factor

The Shahidi gamma factor enjoys the following properties:

Symmetry:

$$\Gamma(\pi \times \sigma, \psi) = \Gamma(\sigma^{\vee} \times \pi^{\vee}, \psi^{-1}).$$

• Multiplicativity:

$$\Gamma(\pi \times (\sigma_1 \circ \sigma_2), \psi) = \Gamma(\pi \times \sigma_1, \psi) \Gamma(\pi \times \sigma_2, \psi).$$

We show the following property regarding the absolute value of $\Gamma(\pi \times \sigma, \psi)$. It is analogous to the property of the order of the pole of $L(s, \pi \times \sigma^{\vee})$ in the local case.

Theorem (Soudry–Z. 2023): Suppose that π and σ are irreducible and that σ is cuspidal. Then

$$\left|q^{-\frac{nm}{2}}\Gamma\left(\pi\times\sigma,\psi\right)\right|=q^{-\frac{m}{2}d_{\pi}(\sigma)},$$

where $d_{\pi}(\sigma)$ is the number of times σ appears in the cuspidal support of π .

Jacquet–Piatetski-Shapiro–Shalika gamma factor

There exists another construction of gamma factors for irreducible generic representations of $GL_n(\mathbb{F})$ and $GL_m(\mathbb{F})$ representations due to Jacquet–Piatetski-Shapiro–Shalika. A finite field analog of this construction was studied in the master's thesis of Edva Roditty-Gershon, under the supervision of David Soudry. It is based on the notion of a Whittaker model: given an irreducible generic representation τ of $GL_k(\mathbb{F})$, choose a $GL_k(\mathbb{F})$ -invariant inner product $\langle \cdot, \cdot \rangle$ on τ and a ψ -Whittaker vector $v_{\tau,\psi}$. The Whittaker model $\mathcal{W}(\tau,\psi)$ is the space of all functions on $GL_k(\mathbb{F})$ of the form

$$\mathcal{W}(\tau,\psi) = \left\{ W_{\mathbf{v}_{\tau}}\left(g\right) = \left\langle \tau\left(g\right)\mathbf{v}_{\tau},\mathbf{v}_{\tau,\psi}\right\rangle \mid \mathbf{v}_{\tau} \in \tau \right\}.$$

We have a linear isomorphism $\mathcal{W}(\tau, \psi) \to \mathcal{W}(\tau^{\vee}, \psi^{-1})$ by the formula $\tilde{W}_{v_{\tau}}(g) = W_{v_{\tau}}(w_k({}^tg)^{-1})$, where $w_k = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Jacquet–Piatetski-Shapiro–Shalika gamma factor

The Whittaker model $\mathcal{W}(\tau, \psi)$ is the space of all functions on $\mathsf{GL}_k(\mathbb{F})$ of the form $\mathcal{W}(\tau, \psi) = \{W_{v_{\tau}}(g) = \langle \tau(g) v_{\tau}, v_{\tau,\psi} \rangle \mid v_{\tau} \in \tau \}$. If π and σ are irreducible generic representations of $\mathsf{GL}_n(\mathbb{F})$ and $\mathsf{GL}_m(\mathbb{F})$, respectively, with n > m, then one defines an "integral" $Z_j(W_{v_{\pi}}, W_{v_{\sigma}}; \psi)$ by the formula

$$\sum_{h \in U_m \setminus \operatorname{GL}_m(\mathbb{F})} \sum_{x \in \operatorname{Mat}_{(n-m-j-1) \times m}(\mathbb{F})} W_{\nu_{\pi}} \begin{pmatrix} h \\ x & I_{n-m-j-1} \\ & I_{j+1} \end{pmatrix} W_{\nu_{\sigma}}(h) \,.$$

Under mild assumptions (for example, π is cuspidal), there exists a constant $\gamma(\pi \times \sigma, \psi) \in \mathbb{C}^{\times}$, such that for any j and v_{π} and v_{σ} ,

$$Z_{n-j}\left(\pi^{\vee}\left(\begin{smallmatrix}I_{m}\\ W_{n-m}\end{smallmatrix}\right)\tilde{W}_{\nu_{\pi}},\tilde{W}_{\nu_{\sigma}};\psi^{-1}\right)=q^{mj}\gamma\left(\pi\times\sigma,\psi\right)Z_{j}\left(W_{\nu_{\pi}},W_{\nu_{\sigma}};\psi\right).$$

Comparsion between gamma factors

One can also define $\gamma(\pi \times \sigma, \psi)$ in the case that n = m. We show that if π and σ are irreducible generic representations such that $\gamma(\pi \times \sigma^{\vee}, \psi)$ is defined, then

$$\Gamma\left(\pi \times \sigma, \psi\right) = q^{\frac{m(2n-m-1)}{2}} \omega_{\sigma}\left(-1\right) \gamma\left(\pi \times \sigma^{\vee}, \psi\right).$$

The proof goes through the Bessel functions of π and σ . **Theorem (Soudry–Z 2023):** if n > m, then for any irreducible generic π and σ

$$\Gamma(\pi \times \sigma, \psi) = q^{\frac{m(2n-m-1)}{2}} \omega_{\sigma} (-1) \sum_{g \in U_m \setminus \operatorname{GL}_m(\mathbb{F})} J_{\pi,\psi} \begin{pmatrix} I_{n-m} \\ g \end{pmatrix} J_{\sigma^{\vee},\psi^{-1}}(g) .$$

By the work of Roditty-Gershon, this establishes the result above.

Expression in terms of Gauss sums

Together with Rongqing Ye, we computed $\gamma(\pi \times \sigma, \psi)$ for π and σ irreducible cuspidal representations. It follows that if π and σ are irreducible generic representations of $GL_n(\mathbb{F})$ and $GL_m(\mathbb{F})$, associated with the (Galois orbits of the) regular characters $\alpha : \mathbb{F}_{\lambda}^{\times} \to \mathbb{C}^{\times}$ and $\beta : \mathbb{F}_{\mu}^{\times} \to \mathbb{C}^{\times}$, respectively. Then

$$\begin{split} \mathsf{\Gamma}(\pi\times\sigma,\psi) &= (-1)^{\ell(\mu)n+\ell(\lambda)m}\beta(-1)^n \\ &\times \sum_{\xi\in(\mathbb{F}_\lambda\otimes_{\mathbb{F}}\mathbb{F}_\mu)^{\times}} \alpha^{-1}(\mathsf{N}_{/\mathbb{F}_\lambda}\left(\xi\right))\beta(\mathsf{N}_{/\mathbb{F}_\mu}\left(\xi\right))\psi(\mathsf{tr}_{/\mathbb{F}}\xi). \end{split}$$

Here, for a partition $\lambda = (n_1, \ldots, n_r) \vdash n$ we denote $\ell(\lambda) = r$ and $\mathbb{F}_{\lambda} = \mathbb{F}_{n_1} \times \cdots \times \mathbb{F}_{n_r}$, where $\mathbb{F}_k / \mathbb{F}$ is a finite field extension of \mathbb{F} of degree k.

Gel'fand-Graev Bessel function

We move to discuss the Bessel function. Let π be an irreducible generic representation of $GL_n(\mathbb{F})$. Let $0 \neq v \in \pi$ be a Whittaker vector. Choose a $GL_n(\mathbb{F})$ -invariant inner product $\langle \cdot, \cdot \rangle$ on π . The Bessel function $J_{\pi,\psi} : GL_n(\mathbb{F}) \to \mathbb{C}$ is defined as the following matrix coefficient

$$J_{\pi,\psi}(g) = rac{\langle \pi(g) \, v, v
angle}{\langle v, v
angle}.$$

It satisfies the following properties:

Gel'fand–Graev Bessel function

Recall that by the Bruhat decomposition, any $g \in GL_n(\mathbb{F})$ can be written as $g = u_1 dw u_2$, where $u_1, u_2 \in U_n$, d is a diagonal matrix and w is a permutation matrix. Thanks to the property $J_{\pi,\psi}(u_1gu_2) = \psi(u_1)\psi(u_2)J_{\pi,\psi}(g)$, it suffices to know the values of $J_{\pi,\psi}$ on matrices of the form dw. It turns out that $J_{\pi,\psi}(dw) = 0$ unless dw is of the form

$$dw = \begin{pmatrix} & & c_1 I_{n_1} \\ & c_2 I_{n_2} & \\ & \ddots & & \\ & & c_s I_{n_s} & & \end{pmatrix},$$

where $n_1 + \cdots + n_s = n$ and $c_1, \ldots, c_s \in \mathbb{F}^{\times}$.

Why is this function called the Bessel function? If π is an irreducible cuspidal representation of $GL_2(\mathbb{F})$, corresponding to the (Galois orbit of the) regular character $\theta : \mathbb{F}_2^{\times} \to \mathbb{C}^{\times}$, then we have for $a \in \mathbb{F}^{\times}$

$$J_{\pi,\psi}\left(\begin{smallmatrix}0&1\\a&0\end{smallmatrix}\right) = -q^{-1}\sum_{\substack{x\in\mathbb{F}_2^\times\\\mathsf{N}_{2:1}(x)=-a^{-1}}}\theta^{-1}(x)\psi(\mathsf{tr}_{\mathbb{F}_2/\mathbb{F}}x).$$

Compare with the classical Bessel function

$$J_n(x) = \frac{1}{2\pi i} \int_{|z|=1} z^{-n} \exp\left(\frac{ix}{2} \left(\operatorname{tr}_{\mathbb{C}/\mathbb{R}} \left(-iz \right) \right) \right) \frac{dz}{z}.$$

Exotic Kloosterman sums

Let $\alpha : \mathbb{F}_{\lambda}^{\times} \to \mathbb{C}^{\times}$. We denote

$$J(\alpha, \psi, \mathbf{a}) = \sum_{\substack{\mathbf{x} \in \mathbb{F}_{\lambda}^{\times} \\ \mathbb{N}_{/\mathbb{F}}(\mathbf{x}) = \mathbf{a}}} \alpha^{-1}(\mathbf{x}) \psi(\operatorname{tr}_{/\mathbb{F}} \mathbf{x}).$$

We call $J(\alpha, \psi, a)$ an exotic Kloosterman sum.

Curtis–Shinoda showed the following relation to the Bessel function. **Theorem (Curtis–Shinoda 2004):** If π is an irreducible generic representation of $GL_n(\mathbb{F})$ associated with the character $\alpha : \mathbb{F}_{\lambda}^{\times} \to \mathbb{C}^{\times}$ then for any $c \in \mathbb{F}^{\times}$,

$$J_{\pi,\psi}\begin{pmatrix}I_{n-1}\\c\end{pmatrix}=(-1)^{n+\ell(\lambda)}q^{-n+1}J\left((-1)^{n-1}c^{-1},\psi,a\right).$$

I generalized this result of Curtis-Shinoda.

Exotic Kloosterman sums

When $\lambda = (1, ..., 1) \vdash n$ and $\alpha = 1$, we have that π is the Steinberg representation St_n of $\operatorname{GL}_n(\mathbb{F})$ and that $J(1, \psi, a)$ is the usual Kloosterman sum

$$J(1,\psi,a) = \operatorname{Kl}(\psi,a) = \sum_{\substack{x_1,\ldots,x_n \in \mathbb{F}^\times\\x_1,\cdots,x_n = a}} \psi(x_1 + x_2 + \cdots + x_n).$$

Curtis-Shinoda's result reads

$$J_{\mathrm{St}_n,\psi}\begin{pmatrix} & I_{n-1} \\ c & \end{pmatrix} = q^{-n+1} \mathrm{Kl}\left(\psi, (-1)^{n-1} c^{-1}\right)$$

Exotic Kloosterman sheaves

Consider the exotic Kloosterman sheaf $\mathcal{K}^* = \mathbf{R} \operatorname{Norm}_{!}(\operatorname{Trace}^* AS_{\psi} \otimes \mathcal{L}_{\alpha^{-1}}) [n-1] (\frac{n-1}{2})$, where

For every m, we have

$$\operatorname{tr}\left(\operatorname{Fr}^{m}, \mathcal{K}^{*} \mid_{a}\right) = (-1)^{n-1} q^{-\frac{m(n-1)}{2}} \sum_{\substack{x \in \left(\mathbb{F}_{\lambda} \otimes_{\mathbb{F}} \mathbb{F}_{m}\right)^{\times} \\ \mathbb{N}_{/\mathbb{F}_{m}}(x) = a}} \alpha^{-1} \left(\mathsf{N}_{/\mathbb{F}_{\lambda}}\left(x\right)\right) \psi\left(\operatorname{tr}_{/\mathbb{F}} x\right).$$

Exotic Kloosterman sheaves

Theorem (Z. 2022): for any $c \in \mathbb{F}^{\times}$ we have

$$\operatorname{tr}\left(\operatorname{Fr},\wedge^{m}\mathcal{K}^{*}\mid_{(-1)^{n-1}c^{-1}}\right) = (-1)^{m(\ell(\lambda)-1)} q^{\frac{m(n-m)}{2}} J_{\pi,\psi}\begin{pmatrix}I_{n-m}\\cI_{m}\end{pmatrix}$$

As a corollary, we get that for the usual Kloosterman sheaf $\mathrm{Kl}(\psi)$, the characteristic polynomial of $\mathrm{Fr}, \mathrm{Kl}(\psi) \mid_{(-1)^{n-1}c^{-1}}$ is

$$\sum_{m=0}^{n} (-1)^{n(m-n)} q^{\frac{m(n-m)}{2}} J_{\mathrm{St}_n,\psi} \begin{pmatrix} I_m \\ cI_{n-m} \end{pmatrix} T^m.$$

This is a deep relation between the Steinberg representation and Kloosterman sheaves.

Relation to exotic Kloosterman sheaves

Using the formula

$$\operatorname{tr}\left(\operatorname{Fr},\wedge^{m}\mathcal{K}^{*}\mid_{(-1)^{n-1}c^{-1}}\right)=(-1)^{m(r-1)}q^{\frac{m(n-m)}{2}}J_{\pi,\psi}\begin{pmatrix}I_{n-m}\\cI_{m}\end{pmatrix},$$

the relation

$$J_{\pi,\psi}\begin{pmatrix}I_{n-m}\\cI_{m}\end{pmatrix} = \overline{J_{\pi,\psi}\begin{pmatrix}c^{-1}I_{m}\\I_{n-m}\end{pmatrix}} = \omega_{\pi}(c)\overline{J_{\pi,\psi}\begin{pmatrix}I_{m}\\cI_{n-m}\end{pmatrix}}$$

can be seen as a corollary of the isomorphism

$$\wedge^m(V) \cong \det V \otimes (\wedge^{n-m}(V))^{\vee},$$

where V is an *n*-dimensional complex representation of a group.

About the proof – Recursive formula for the Bessel function

As we explained before, $\gamma(\pi \times \sigma, \psi)$ can be expressed in terms of the Bessel functions of π and σ :

$$\gamma(\pi \times \sigma, \psi) = \sum_{g \in U_m \setminus \operatorname{GL}_m(\mathbb{F})} J_{\pi,\psi} \begin{pmatrix} I_{n-m} \\ g \end{pmatrix} J_{\sigma,\psi^{-1}}(g) \,.$$

On the other hand, we have that matrix coefficients of non-isomorphic representations are orthogonal. This allows us (by inverting a matrix) to find a formula for $J_{\pi,\psi}\begin{pmatrix}I_{n-m}\\g\end{pmatrix}$ in terms of $J_{\sigma,\psi}(g)$:

$$J_{\pi,\psi}\begin{pmatrix}I_{n-m}\\g\end{pmatrix} = \frac{1}{[\mathsf{GL}_m(\mathbb{F}):U_m]}\sum_{\sigma}\dim\sigma\cdot\gamma\left(\pi\times\sigma^{\vee},\psi\right)\cdot J_{\sigma,\psi}\left(g\right),$$

where σ runs over the irreducible generic representations of $GL_m(\mathbb{F})$.

About the proof – Recursive formula for the Bessel function

We are able to parameterize irreducible generic representations of $GL_m(\mathbb{F})$ by characters of multiplicative groups of étale algebras over \mathbb{F} of degree m. Using this parameterization, we have:

Theorem (Z. 2022)

$$J_{\pi,\psi}\begin{pmatrix}I_{n-m}\\g\end{pmatrix} = \sum_{\mu\vdash m} \frac{1}{Z_{\mu}} \frac{1}{\left|\widehat{\mathbb{F}}_{\mu}^{\times}\right|} \sum_{\beta \in \widehat{\mathbb{F}}_{\mu}^{\times}} \gamma\left(\pi \times \Pi_{\mu}(\beta)^{\vee}, \psi\right) J_{\Pi_{\mu}(\beta),\psi}(g)$$

Where, for a partition $\mu = (m_1, \ldots, m_t) \vdash m$, $\widehat{\mathbb{F}}_{\mu}^{\times}$ is the group of characters $\beta : \mathbb{F}_{\mu}^{\times} \to \mathbb{C}^{\times}$, and $Z_{\mu} = \prod_{k=1}^{\infty} k^{\mu(k)} \mu(k)!$, where $\mu(k)$ is the number of $1 \leq i \leq t$ for which m_i equals k.

This formula allows us to recursively compute $J_{\pi,\psi}$. Substituting $g = cI_m$ and the expression for the γ -factor yields the result. When g is not a scalar matrix, we get more complicated expressions.

Thank you for your attention!