On gamma factors and Bessel functions for representations of finite general linear groups

Elad Zelingher, University of Michigan

MIT Lie Groups Seminar
March 1st 2023

Plan

- Generic representations
- Gamma factors
- Bessel functions
- Kloosterman sheaves

Generic representations

Let \mathbb{F} be a finite field with q elements. Let $\psi: \mathbb{F} \rightarrow \mathbb{C}^{\times}$be a non-trivial character.
Let $U_{n} \leq \mathrm{GL}_{n}(\mathbb{F})$ be the subgroup of upper triangular unipotent matrices. We define a character $\psi: U_{n} \rightarrow \mathbb{C}^{\times}$by

$$
\psi\left(\begin{array}{cccc}
1 & a_{1} & * & * \\
& 1 & a_{2} & * \\
& & \ddots & a_{n-1} \\
& & & 1
\end{array}\right)=\psi\left(\sum_{i=1}^{n-1} a_{i}\right) .
$$

Let π be a (finite dimensional) representation of $\mathrm{GL}_{n}(\mathbb{F})$. A vector $0 \neq v \in \pi$ is called a Whittaker vector if $\pi(u) v=\psi(u) v$ for every $u \in U_{n}$.

- We say that π is generic if it admits a non-zero Whittaker vector.
- We say that π is of Whittaker type if π is generic and if it has a unique Whittaker vector, up to scalar multiplication.

Generic representations

By a well known result of Gelfand-Graev, irreducible generic representations are of Whittaker type. We also have the following well known results:

- Irreducible cuspidal representations are generic.
- If $\sigma_{1}, \ldots, \sigma_{r}$ are representations of Whittaker type of $\mathrm{GL}_{n_{1}}(\mathbb{F}), \ldots, \mathrm{GL}_{n_{r}}(\mathbb{F})$, respectively, then the parabolic induction $\sigma_{1} \circ \cdots \circ \sigma_{r}$ is also a representation of Whittaker type.
As a corollary, for every irreducible generic representation π, there exist irreducible cuspidal representations $\sigma_{1}, \ldots, \sigma_{r}$ as above, such that π is the unique irreducible generic subrepresentation of $\sigma_{1} \circ \cdots \circ \sigma_{r}$. The multiset $\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$ depends only on π, and we call it the cuspidal support of π.

Parabolic induction

Let π and σ be representations of Whittaker type of $\mathrm{GL}_{n}(\mathbb{F})$ and $\mathrm{GL}_{m}(\mathbb{F})$, respectively.
Suppose that π and σ are representations of Whittaker type, and let $v_{\pi, \psi}$ and $v_{\sigma, \psi}$ be ψ-Whittaker vectors. The representations $\pi \circ \sigma$ and $\sigma \circ \pi$ are also of Whittaker type. We may define a ψ-Whittaker vector $v_{\sigma, \pi, \psi}$ for $\sigma \circ \pi$ by the formula

$$
v_{\sigma, \pi, \psi}(g)= \begin{cases}0 & g \notin P_{m, n}\binom{I_{m}}{I_{n}} U_{m+n} \\ \psi(u) v_{\sigma, \psi} \otimes v_{\pi, \psi} & g=\binom{I_{m}}{I_{n}} u, \text { where } u \in U_{m+n}\end{cases}
$$

Similarly, we may define a ψ-Whittaker vector $v_{\pi, \sigma, \psi}$ for $\pi \circ \sigma$.

Intertwining operators and Shahidi's gamma factor

We have an intertwining operator $U_{\sigma, \pi}: \sigma \circ \pi \rightarrow \pi \circ \sigma$, defined by

$$
\left(U_{\sigma, \pi} f\right)(g)=\sum_{x \in \operatorname{Mat}_{n \times m}(\mathbb{F})} \tilde{f}\left(\left(\begin{array}{ll}
& I_{m} \\
I_{n} &
\end{array}\right)\left(\begin{array}{ll}
I_{n} & X \\
& I_{m}
\end{array}\right) g\right)
$$

where $\widetilde{v_{\sigma} \otimes v_{\pi}}=v_{\pi} \otimes v_{\sigma}$. Since the representations $\sigma \circ \pi$ and $\pi \circ \sigma$ are of Whittaker type, and since $U_{\sigma, \pi} v_{\sigma, \pi, \psi}$ is a ψ-Whittaker vector, we have that there exists a contant $\Gamma(\pi \times \sigma, \psi) \in \mathbb{C}$, such that

$$
U_{\sigma, \pi} v_{\sigma, \pi, \psi}=\Gamma(\pi \times \sigma, \psi) v_{\pi, \sigma, \psi}
$$

We call $\Gamma(\pi \times \sigma, \psi)$ the Shahidi gamma factor of π and σ with respect to ψ.

Shahidi's gamma factor

The Shahidi gamma factor enjoys the following properties:

- Symmetry:

$$
\Gamma(\pi \times \sigma, \psi)=\Gamma\left(\sigma^{\vee} \times \pi^{\vee}, \psi^{-1}\right)
$$

- Multiplicativity:

$$
\Gamma\left(\pi \times\left(\sigma_{1} \circ \sigma_{2}\right), \psi\right)=\Gamma\left(\pi \times \sigma_{1}, \psi\right) \Gamma\left(\pi \times \sigma_{2}, \psi\right)
$$

We show the following property regarding the absolute value of $\Gamma(\pi \times \sigma, \psi)$. It is analogous to the property of the order of the pole of $L\left(s, \pi \times \sigma^{\vee}\right)$ in the local case.
Theorem (Soudry-Z. 2023): Suppose that π and σ are irreducible and that σ is cuspidal. Then

$$
\left|q^{-\frac{n m}{2}} \Gamma(\pi \times \sigma, \psi)\right|=q^{-\frac{m}{2} d_{\pi}(\sigma)}
$$

where $d_{\pi}(\sigma)$ is the number of times σ appears in the cuspidal support of π.

Jacquet-Piatetski-Shapiro-Shalika gamma factor

There exists another construction of gamma factors for irreducible generic representations of $\mathrm{GL}_{n}(\mathbb{F})$ and $\mathrm{GL}_{m}(\mathbb{F})$ representations due to Jacquet-Piatetski-Shapiro-Shalika. A finite field analog of this construction was studied in the master's thesis of Edva Roditty-Gershon, under the supervision of David Soudry. It is based on the notion of a Whittaker model: given an irreducible generic representation τ of $\mathrm{GL}_{k}(\mathbb{F})$, choose a $\mathrm{GL}_{k}(\mathbb{F})$-invariant inner product $\langle\cdot, \cdot\rangle$ on τ and a ψ-Whittaker vector $v_{\tau, \psi}$. The Whittaker model $\mathcal{W}(\tau, \psi)$ is the space of all functions on $\mathrm{GL}_{k}(\mathbb{F})$ of the form

$$
\mathcal{W}(\tau, \psi)=\left\{W_{v_{\tau}}(g)=\left\langle\tau(g) v_{\tau}, v_{\tau, \psi}\right\rangle \mid v_{\tau} \in \tau\right\}
$$

We have a linear isomorphism $\mathcal{W}(\tau, \psi) \rightarrow \mathcal{W}\left(\tau^{\vee}, \psi^{-1}\right)$ by the formula
$\tilde{W}_{v_{\tau}}(g)=W_{v_{\tau}}\left(w_{k}\left({ }^{t} g\right)^{-1}\right)$, where $w_{k}=\left({ }_{1} .{ }^{1}\right)$.

Jacquet-Piatetski-Shapiro-Shalika gamma factor

The Whittaker model $\mathcal{W}(\tau, \psi)$ is the space of all functions on $\mathrm{GL}_{k}(\mathbb{F})$ of the form $\mathcal{W}(\tau, \psi)=\left\{W_{v_{\tau}}(g)=\left\langle\tau(g) v_{\tau}, v_{\tau, \psi}\right\rangle \mid v_{\tau} \in \tau\right\}$. If π and σ are irreducible generic representations of $\mathrm{GL}_{n}(\mathbb{F})$ and $\mathrm{GL}_{m}(\mathbb{F})$, respectively, with $n>m$, then one defines an "integral" $Z_{j}\left(W_{v_{\pi}}, W_{v_{\sigma}} ; \psi\right)$ by the formula

$$
\sum_{h \in U_{m} \backslash G L_{m}(\mathbb{F})} \sum_{x \in \operatorname{Mat}_{(n-m-j-1) \times m}(\mathbb{F})} W_{v_{\pi}}\left(\begin{array}{ccc}
h & & \\
x & I_{n-m-j-1} & \\
& & I_{j+1}
\end{array}\right) W_{v_{\sigma}}(h) .
$$

Under mild assumptions (for example, π is cuspidal), there exists a constant $\gamma(\pi \times \sigma, \psi) \in \mathbb{C}^{\times}$, such that for any j and v_{π} and v_{σ},

$$
Z_{n-j}\left(\pi^{\vee}\left(I_{m}{ }_{w_{n-m}}\right) \tilde{W}_{v_{\pi}}, \tilde{W}_{v_{\sigma}} ; \psi^{-1}\right)=q^{m j} \gamma(\pi \times \sigma, \psi) Z_{j}\left(W_{v_{\pi}}, W_{v_{\sigma}} ; \psi\right)
$$

Comparsion between gamma factors

One can also define $\gamma(\pi \times \sigma, \psi)$ in the case that $n=m$. We show that if π and σ are irreducible generic representations such that $\gamma\left(\pi \times \sigma^{\vee}, \psi\right)$ is defined, then

$$
\Gamma(\pi \times \sigma, \psi)=q^{\frac{m(2 n-m-1)}{2}} \omega_{\sigma}(-1) \gamma\left(\pi \times \sigma^{\vee}, \psi\right)
$$

The proof goes through the Bessel functions of π and σ.
Theorem (Soudry-Z 2023): if $n>m$, then for any irreducible generic π and σ
$\Gamma(\pi \times \sigma, \psi)=q^{\frac{m(2 n-m-1)}{2}} \omega_{\sigma}(-1) \sum_{g \in U_{m} \backslash \mathrm{GL}_{m}(\mathbb{F})} J_{\pi, \psi}\left(g^{I_{n-m}}\right) J_{\sigma^{\vee}, \psi^{-1}}(g)$.
By the work of Roditty-Gershon, this establishes the result above.

Expression in terms of Gauss sums

Together with Rongqing Ye, we computed $\gamma(\pi \times \sigma, \psi)$ for π and σ irreducible cuspidal representations. It follows that if π and σ are irreducible generic representations of $\mathrm{GL}_{n}(\mathbb{F})$ and $\mathrm{GL}_{m}(\mathbb{F})$, associated with the (Galois orbits of the) regular characters $\alpha: \mathbb{F}_{\lambda}^{\times} \rightarrow \mathbb{C}^{\times}$and $\beta: \mathbb{F}_{\mu}^{\times} \rightarrow \mathbb{C}^{\times}$, respectively. Then

$$
\begin{aligned}
\Gamma(\pi \times \sigma, \psi) & =(-1)^{\ell(\mu) n+\ell(\lambda) m} \beta(-1)^{n} \\
& \times \sum_{\xi \in\left(\mathbb{F}_{\lambda} \otimes_{\mathbb{F}} \mathbb{F}_{\mu}\right)^{\times}} \alpha^{-1}\left(\mathrm{~N}_{/ \mathbb{F}_{\lambda}}(\xi)\right) \beta\left(\mathrm{N}_{/ \mathbb{F}_{\mu}}(\xi)\right) \psi\left(\operatorname{tr}_{/ \mathbb{F}} \xi\right) .
\end{aligned}
$$

Here, for a partition $\lambda=\left(n_{1}, \ldots, n_{r}\right) \vdash n$ we denote $\ell(\lambda)=r$ and $\mathbb{F}_{\lambda}=\mathbb{F}_{n_{1}} \times \cdots \times \mathbb{F}_{n_{r}}$, where $\mathbb{F}_{k} / \mathbb{F}$ is a finite field extension of \mathbb{F} of degree k.

Gel'fand-Graev Bessel function

We move to discuss the Bessel function. Let π be an irreducible generic representation of $\mathrm{GL}_{n}(\mathbb{F})$. Let $0 \neq v \in \pi$ be a Whittaker vector. Choose a $\mathrm{GL}_{n}(\mathbb{F})$-invariant inner product $\langle\cdot, \cdot\rangle$ on π. The Bessel function $J_{\pi, \psi}: G L_{n}(\mathbb{F}) \rightarrow \mathbb{C}$ is defined as the following matrix coefficient

$$
J_{\pi, \psi}(g)=\frac{\langle\pi(g) v, v\rangle}{\langle v, v\rangle}
$$

It satisfies the following properties:
(1) $J_{\pi, \psi}\left(I_{n}\right)=1$.
(2) $J_{\pi, \psi}\left(u_{1} g u_{2}\right)=\psi\left(u_{1}\right) \psi\left(u_{2}\right) J_{\pi, \psi}(g)$ for $u_{1}, u_{2} \in U_{n}$.
(3) $J_{\pi, \psi}\left(g^{-1}\right)=\overline{J_{\pi, \psi}(g)}=J_{\pi^{\vee}, \psi^{-1}}(g)$.
(9) $J_{\pi, \psi}(z g)=J_{\pi, \psi}(g z)=\omega_{\pi}(z) J_{\pi, \psi}(g)$, where $z \in \mathbb{F}^{\times}$and $\omega_{\pi}: \mathbb{F}^{\times} \rightarrow \mathbb{C}^{\times}$is the central character of π.

Gel'fand-Graev Bessel function

Recall that by the Bruhat decomposition, any $g \in G L_{n}(\mathbb{F})$ can be written as $g=u_{1} d w u_{2}$, where $u_{1}, u_{2} \in U_{n}, d$ is a diagonal matrix and w is a permutation matrix. Thanks to the property $J_{\pi, \psi}\left(u_{1} g u_{2}\right)=\psi\left(u_{1}\right) \psi\left(u_{2}\right) J_{\pi, \psi}(g)$, it suffices to know the values of $J_{\pi, \psi}$ on matrices of the form $d w$. It turns out that $J_{\pi, \psi}(d w)=0$ unless $d w$ is of the form

$$
d w=\left(\begin{array}{llll}
& & c_{1} I_{n_{1}} \\
& & c_{2} I_{n_{2}} & \\
& . & & \\
c_{s} I_{n_{s}} & & &
\end{array}\right)
$$

where $n_{1}+\cdots+n_{s}=n$ and $c_{1}, \ldots, c_{s} \in \mathbb{F}^{\times}$.

Gel'fand-Graev Bessel function

Why is this function called the Bessel function? If π is an irreducible cuspidal representation of $G L_{2}(\mathbb{F})$, corresponding to the (Galois orbit of the) regular character $\theta: \mathbb{F}_{2}^{\times} \rightarrow \mathbb{C}^{\times}$, then we have for $a \in \mathbb{F}^{\times}$

$$
J_{\pi, \psi}\left(\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right)=-q^{-1} \sum_{\substack{x \in \mathbb{F}_{2}^{\times} \\
N_{2: 1}(x)=-a^{-1}}} \theta^{-1}(x) \psi\left(\operatorname{tr}_{\mathbb{F}_{2} / \mathbb{F}} x\right)
$$

Compare with the classical Bessel function

$$
J_{n}(x)=\frac{1}{2 \pi i} \int_{|z|=1} z^{-n} \exp \left(\frac{i x}{2}\left(\operatorname{tr}_{\mathbb{C} / \mathbb{R}}(-i z)\right)\right) \frac{d z}{z}
$$

Exotic Kloosterman sums

Let $\alpha: \mathbb{F}_{\lambda}^{\times} \rightarrow \mathbb{C}^{\times}$. We denote

$$
J(\alpha, \psi, a)=\sum_{\substack{x \in \mathbb{F}_{\lambda}^{\times} \\ \mathrm{N}_{/ \mathbb{F}}(x)=a}} \alpha^{-1}(x) \psi\left(\operatorname{tr}_{/ \mathbb{F}} x\right) .
$$

We call $J(\alpha, \psi, a)$ an exotic Kloosterman sum.
Curtis-Shinoda showed the following relation to the Bessel function.
Theorem (Curtis-Shinoda 2004): If π is an irreducible generic representation of $\mathrm{GL}_{n}(\mathbb{F})$ associated with the character $\alpha: \mathbb{F}_{\lambda}^{\times} \rightarrow \mathbb{C}^{\times}$then for any $c \in \mathbb{F}^{\times}$,

$$
J_{\pi, \psi}\left(l \begin{array}{l}
I_{n-1} \\
\end{array}\right)=(-1)^{n+\ell(\lambda)} q^{-n+1} J\left((-1)^{n-1} c^{-1}, \psi, a\right) .
$$

I generalized this result of Curtis-Shinoda.

Exotic Kloosterman sums

When $\lambda=(1, \ldots, 1) \vdash n$ and $\alpha=1$, we have that π is the Steinberg representation St_{n} of $\mathrm{GL}_{n}(\mathbb{F})$ and that $J(1, \psi, a)$ is the usual Kloosterman sum

$$
J(1, \psi, a)=\operatorname{Kl}(\psi, a)=\sum_{\substack{x_{1}, \ldots, x_{n} \in \mathbb{F}^{\times} \\ x_{1} \cdots \cdots, x_{n}=a}} \psi\left(x_{1}+x_{2}+\cdots+x_{n}\right) .
$$

Curtis-Shinoda's result reads

$$
J_{\mathrm{St}_{n}, \psi}\left(c \begin{array}{l}
I_{n-1}
\end{array}\right)=q^{-n+1} \mathrm{Kl}\left(\psi,(-1)^{n-1} c^{-1}\right) .
$$

Exotic Kloosterman sheaves

Consider the exotic Kloosterman sheaf $\mathcal{K}^{*}=\mathbf{R} \operatorname{Norm}_{!}\left(\right.$Trace $\left.^{*} \mathrm{AS}_{\psi} \otimes \mathcal{L}_{\alpha^{-1}}\right)[n-1]\left(\frac{n-1}{2}\right)$, where

For every m, we have

$$
\operatorname{tr}\left(\mathrm{Fr}^{m},\left.\mathcal{K}^{*}\right|_{a}\right)=(-1)^{n-1} q^{-\frac{m(n-1)}{2}} \sum_{\substack{x \in\left(\mathbb{F}_{\lambda} \otimes \mathbb{F}_{\mathbb{F}_{m}}\right)^{x} \\ \mathrm{~N}_{/ \mathbb{F}_{m}}(x)=a}} \alpha^{-1}\left(\mathrm{~N}_{/ \mathbb{F}_{\lambda}}(x)\right) \psi\left(\operatorname{tr}_{/ \mathbb{F}} x\right)
$$

Exotic Kloosterman sheaves

Theorem (Z. 2022): for any $c \in \mathbb{F}^{\times}$we have

$$
\operatorname{tr}\left(\operatorname{Fr},\left.\wedge^{m} \mathcal{K}^{*}\right|_{(-1)^{n-1} c^{-1}}\right)=(-1)^{m(\ell(\lambda)-1)} q^{\frac{m(n-m)}{2}} J_{\pi, \psi}\left(c_{m} I_{n-m}\right) .
$$

As a corollary, we get that for the usual Kloosterman sheaf $\mathrm{Kl}(\psi)$, the characteristic polynomial of $\operatorname{Fr},\left.\mathrm{Kl}(\psi)\right|_{(-1)^{n-1} c^{-1}}$ is

$$
\sum_{m=0}^{n}(-1)^{n(m-n)} q^{\frac{m(n-m)}{2}} J_{\mathrm{St}_{n}, \psi}\left(c_{n-m} I_{m}\right) T^{m}
$$

This is a deep relation between the Steinberg representation and Kloosterman sheaves.

Relation to exotic Kloosterman sheaves

Using the formula

$$
\operatorname{tr}\left(\operatorname{Fr},\left.\wedge^{m} \mathcal{K}^{*}\right|_{(-1)^{n-1} c^{-1}}\right)=(-1)^{m(r-1)} q^{\frac{m(n-m)}{2}} J_{\pi, \psi}\left(c_{m} I_{n-m}\right)
$$

the relation

$$
\left.J_{\pi, \psi}\left(\begin{array}{cc}
& I_{n-m} \\
c I_{m} &
\end{array}\right)=\overline{J_{\pi, \psi}\left(I_{n-m}\right.} \begin{array}{c}
\\
I^{-1} I_{m}
\end{array}\right)=\omega_{\pi}(c) \overline{J_{\pi, \psi}\left(c I_{n-m}\right.} \begin{array}{ll}
& I_{m}
\end{array}
$$

can be seen as a corollary of the isomorphism

$$
\wedge^{m}(V) \cong \operatorname{det} V \otimes\left(\wedge^{n-m}(V)\right)^{\vee}
$$

where V is an n-dimensional complex representation of a group.

About the proof - Recursive formula for the Bessel function

As we explained before, $\gamma(\pi \times \sigma, \psi)$ can be expressed in terms of the Bessel functions of π and σ :

$$
\gamma(\pi \times \sigma, \psi)=\sum_{g \in U_{m} \backslash \mathrm{GL}_{m}(\mathbb{F})} J_{\pi, \psi}\left(g^{I_{n-m}}\right) J_{\sigma, \psi^{-1}}(g) .
$$

On the other hand, we have that matrix coefficients of non-isomorphic representations are orthogonal. This allows us (by inverting a matrix) to find a formula for $J_{\pi, \psi}\left(g^{I_{n-m}}\right)$ in terms of $J_{\sigma, \psi}(g)$:

$$
J_{\pi, \psi}\left(g^{I_{n-m}}\right)=\frac{1}{\left[G \mathrm{~L}_{m}(\mathbb{F}): U_{m}\right]} \sum_{\sigma} \operatorname{dim} \sigma \cdot \gamma\left(\pi \times \sigma^{\vee}, \psi\right) \cdot J_{\sigma, \psi}(g)
$$

where σ runs over the irreducible generic representations of $\mathrm{GL}_{m}(\mathbb{F})$.

About the proof - Recursive formula for the Bessel function

We are able to parameterize irreducible generic representations of $\mathrm{GL}_{m}(\mathbb{F})$ by characters of multiplicative groups of étale algebras over \mathbb{F} of degree m. Using this parameterization, we have:

Theorem (Z. 2022)

$$
J_{\pi, \psi}\left(g^{I_{n-m}}\right)=\sum_{\mu \vdash m} \frac{1}{Z_{\mu}} \frac{1}{\left|\widehat{\mathbb{F}}_{\mu}^{\times}\right|} \sum_{\beta \in \widehat{\mathbb{F}}_{\mu}^{\times}} \gamma\left(\pi \times \Pi_{\mu}(\beta)^{\vee}, \psi\right) J_{\Pi_{\mu}(\beta), \psi}(g)
$$

Where, for a partition $\mu=\left(m_{1}, \ldots, m_{t}\right) \vdash m, \widehat{\mathbb{F}}_{\mu}^{\times}$is the group of characters $\beta: \mathbb{F}_{\mu}^{\times} \rightarrow \mathbb{C}^{\times}$, and $Z_{\mu}=\prod_{k=1}^{\infty} k^{\mu(k)} \mu(k)!$, where $\mu(k)$ is the number of $1 \leq i \leq t$ for which m_{i} equals k.
This formula allows us to recursively compute $J_{\pi, \psi}$. Substituting $g=c l_{m}$ and the expression for the γ-factor yields the result. When g is not a scalar matrix, we get more complicated expressions.

Thank you for your attention!

