Kazhdan-Lusztig Equivalence at the Iwahori Level

Charles Fu
Harvard University

February 22, 2022

Overview

(1) Statement of Result
(2) Proof Strategy: Factorization
(3) Quantum Side
(4) Affine Side
(5) Global Methods

Notations

G Reductive group over \mathbb{C} (for this talk, assumed simple) $G(O), G(K)$ Arc (resp. loop) group of G
\mathfrak{g} Lie algebra of G
h^{\vee} Dual Coxeter number
$\check{\Lambda}, \Lambda$ Weight lattice / coweight lattice
W Weyl group for G
κ Non-degenerate W-invariant symmetric bilinear form on Λ
$\check{\kappa}$ Corresponding bilinear form on $\check{\Lambda}$
$c \check{\kappa}=\frac{c-h^{\vee}}{2 h^{\vee}} \check{\kappa}_{\text {min }}$, where $\check{\kappa}_{\text {min }}\left(\check{\alpha}_{i}, \check{\alpha}_{i}\right)=2$ for long roots $\check{\alpha}_{i}$

Kazhdan-Lusztig Equivalence

Theorem ([KL94])
If $c \in \mathbb{C} \backslash \mathbb{Q}$, or $c \in \frac{m}{n} \in \mathbb{Q}^{<0}$ for $(m, n)=1$ and m not too small, then there exists a braided monoidal equivalence $\mathrm{KL}_{\kappa}(G)^{\ominus} \simeq \operatorname{Rep}_{q}(G)^{\ominus}$.
$\hat{\mathfrak{g}}_{\kappa}$ Central extension of $\mathfrak{g}((t))$ given by the 2-cocycle κ
$K L_{\kappa}(G)^{\varrho}$ Abelian category of finitely generated, smooth, $G(O)$-integrable $\hat{\mathfrak{g}}_{\kappa}$-modules at level κ
$U_{q}^{\text {Lus }}(\mathfrak{g})$ Lusztig's quantum group specialized at $q:=e^{\frac{\pi i}{r c}}$, where r is the lacing number of \mathfrak{g}
$\operatorname{Rep}_{q}(G)^{\complement}$ Abelian category of finite dimensional $\check{\Lambda}$-graded $U_{q}^{\text {Lus }}(\mathfrak{g})$-modules, where $K_{\check{\alpha}_{i}} \in U_{q}^{\text {Lus }}(\mathfrak{g})$ acts via grading

The K-L equivalence compares between two different ways to quantize the classical category $\operatorname{Rep}(G)^{\ominus}$. At rational levels, the behavior becomes much more complicated.

The K-L equivalence compares between two different ways to quantize the classical category $\operatorname{Rep}(G)^{\rho}$. At rational levels, the behavior becomes much more complicated.

What about the BGG category \mathcal{O} ?

The K-L equivalence compares between two different ways to quantize the classical category $\operatorname{Rep}(G)^{\ominus}$. At rational levels, the behavior becomes much more complicated.

What about the BGG category \mathcal{O} ?

Let $\mathfrak{g}-$ mod B denote the (unbounded) derived category of (\mathfrak{g}, B)-Harish-Chandra modules. Two ways to quantize:

The K-L equivalence compares between two different ways to quantize the classical category $\operatorname{Rep}(G)^{\rho}$. At rational levels, the behavior becomes much more complicated.

What about the BGG category \mathcal{O} ?

Let $\mathfrak{g}-\bmod ^{B}$ denote the (unbounded) derived category of
(\mathfrak{g}, B)-Harish-Chandra modules. Two ways to quantize:

- $\hat{\mathfrak{g}}_{\kappa}$-mod ${ }^{\prime}$, the derived category of $\left(\hat{\mathfrak{g}}_{\kappa}, l\right)$-Harish-Chandra modules, where I is the Iwahori subgroup;

The K-L equivalence compares between two different ways to quantize the classical category $\operatorname{Rep}(G)^{\rho}$. At rational levels, the behavior becomes much more complicated.

What about the BGG category \mathcal{O} ?
Let $\mathfrak{g}-\bmod ^{B}$ denote the (unbounded) derived category of (\mathfrak{g}, B)-Harish-Chandra modules. Two ways to quantize:

- $\hat{\mathfrak{g}}_{\kappa}$-mod ${ }^{\prime}$, the derived category of $\left(\hat{\mathfrak{g}}_{\kappa}, l\right)$-Harish-Chandra modules, where I is the Iwahori subgroup;
- $\operatorname{Rep}_{q}^{m \times d}(G)$, the derived category of "mixed" quantum group representations (coming up!)

The K-L equivalence compares between two different ways to quantize the classical category $\operatorname{Rep}(G)^{\ominus}$. At rational levels, the behavior becomes much more complicated.

What about the BGG category \mathcal{O} ?

Let $\mathfrak{g}-\bmod ^{B}$ denote the (unbounded) derived category of (\mathfrak{g}, B)-Harish-Chandra modules. Two ways to quantize:

- $\hat{\mathfrak{g}}_{\kappa}$-mod ${ }^{\prime}$, the derived category of $\left(\hat{\mathfrak{g}}_{\kappa}, l\right)$-Harish-Chandra modules, where I is the Iwahori subgroup;
- $\operatorname{Rep}_{q}^{m \times d}(G)$, the derived category of "mixed" quantum group representations (coming up!)

At generic levels, both are equivalent to $\mathfrak{g}-\bmod ^{B}$. Rational levels are more interesting.

Main Result

Theorem (Lin Chen and C.F.; Conjectured by D. Gaitsgory)
If $c \in \mathbb{C} \backslash \mathbb{Q}$, or $c \in \frac{m}{n} \in \mathbb{Q}$ for $(m, n)=1$ and m not too small, then there exists an equivalence of $(D G)$ categories

$$
\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime} \simeq \operatorname{Rep}_{q}^{\mathrm{m} \times \mathrm{d}}(G)_{\mathrm{ren}} .
$$

Main Result

Theorem (Lin Chen and C.F.; Conjectured by D. Gaitsgory)
If $c \in \mathbb{C} \backslash \mathbb{Q}$, or $c \in \frac{m}{n} \in \mathbb{Q}$ for $(m, n)=1$ and m not too small, then there exists an equivalence of $(D G)$ categories

$$
\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime} \simeq \operatorname{Rep}_{q}^{\mathrm{mxd}}(G)_{\mathrm{ren}} .
$$

- Renormalization is necessary for both sides; after doing so, neither side is the derived category of its heart. The equivalence is not t-exact;

Main Result

Theorem (Lin Chen and C.F.; Conjectured by D. Gaitsgory)
If $c \in \mathbb{C} \backslash \mathbb{Q}$, or $c \in \frac{m}{n} \in \mathbb{Q}$ for $(m, n)=1$ and m not too small, then there exists an equivalence of $(D G)$ categories

$$
\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime} \simeq \operatorname{Rep}_{q}^{\mathrm{mxd}}(G)_{\mathrm{ren}} .
$$

- Renormalization is necessary for both sides; after doing so, neither side is the derived category of its heart. The equivalence is not t-exact;
- The proof is independent from the original one by K-L. Comparison with $\mathrm{K}-\mathrm{L}$ is ongoing work;

Main Result

Theorem (Lin Chen and C.F.; Conjectured by D. Gaitsgory)
If $c \in \mathbb{C} \backslash \mathbb{Q}$, or $c \in \frac{m}{n} \in \mathbb{Q}$ for $(m, n)=1$ and m not too small, then there exists an equivalence of $(D G)$ categories

$$
\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime} \simeq \operatorname{Rep}_{q}^{\mathrm{mxd}}(G)_{\mathrm{ren}} .
$$

- Renormalization is necessary for both sides; after doing so, neither side is the derived category of its heart. The equivalence is not t-exact;
- The proof is independent from the original one by K-L. Comparison with K-L is ongoing work;
- The RHS carries a braided monoidal structure (compatible with $\operatorname{Rep}_{q}(G)^{\ominus}$); consequently it equips LHS with a (previously unknown) braided monoidal structure. We do not yet know how to describe it explicitly.

(1) Statement of Result

(2) Proof Strategy: Factorization
(3) Quantum Side
4. Affine Side
(5) Global Methods

Proof Strategy

The following strategy works (only) for $c>0$. The $c<0$ case follows formally via categorical duality.

$$
\begin{aligned}
& \hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime}-\cdots-\cdots \operatorname{Rep}_{q}^{\mathrm{mxd}}(G)_{\text {ren }} \\
& J_{*}^{K M} \mid \simeq \quad \simeq J_{*}^{\text {Quant }} \\
& \Omega^{\text {KM }} \text {-FactMod }{ }_{\text {alg }} \xrightarrow[\text { Riemann-Hilbert }]{\simeq} \Omega^{\text {Quant }} \text {-FactMod }{ }_{\text {top }}
\end{aligned}
$$

Proof Strategy

The following strategy works (only) for $c>0$. The $c<0$ case follows formally via categorical duality.

$$
\begin{aligned}
& \hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime}-\cdots-\cdots \operatorname{Rep}_{q}^{\mathrm{mxd}}(G)_{\text {ren }} \\
& J_{*}^{K M} \downarrow \simeq \quad \simeq \downarrow J_{*}^{\text {Quant }} \\
& \Omega^{\text {KM }} \text {-FactMod }{ }_{\text {alg }} \xrightarrow[\text { Riemann-Hilbert }]{\simeq} \Omega^{\text {Quant }} \text {-FactMod }{ }_{\text {top }}
\end{aligned}
$$

In general, given a lax monoidal functor $F: C \rightarrow D$ between monoidal categories, it automatically factors as

$$
C \xrightarrow{F_{\text {enh }}} F\left(\mathbf{1}_{C}\right)-\bmod (D) \xrightarrow{\text { oblv }} D ;
$$

$F_{\text {enh }}$ usually has a better chance to be an equivalence than F itself.

Proof Strategy

The following strategy works (only) for $c>0$. The $c<0$ case follows formally via categorical duality.

$$
\begin{aligned}
& \hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime}-\cdots-\cdots-\cdots \operatorname{Rep}_{q}^{\mathrm{mxd}}(G)_{\text {ren }} \\
& J_{*}^{K M} \downarrow \simeq \quad \simeq \downarrow_{*}^{\text {Quant }} \\
& \Omega^{\mathrm{KM}} \text {-FactMod }{ }_{\text {alg }} \xrightarrow[\text { Riemann-Hilbert }]{\simeq} \Omega^{\text {Quant }} \text {-FactMod }{ }_{\text {top }}
\end{aligned}
$$

In general, given a lax monoidal functor $F: C \rightarrow D$ between monoidal categories, it automatically factors as

$$
C \xrightarrow{F_{\text {enh }}} F\left(\mathbf{1}_{C}\right)-\bmod (D) \xrightarrow{\text { oblv }} D ;
$$

$F_{\text {enh }}$ usually has a better chance to be an equivalence than F itself. Our J_{*}^{KM} and $J_{*}^{\text {Quant }}$ will follow the factorizable version of this pattern.

Factorization Objects

By a sheaf we mean either a regular holonomic D-module or a constructible sheaf, depending on the context.

Factorization Objects

By a sheaf we mean either a regular holonomic D-module or a constructible sheaf, depending on the context.

A $\check{\Lambda}<0$-graded factorization algebra A is formally a sheaf on the moduli space $\mathfrak{C o n f}$ of $\check{\Lambda}<0$-colored divisors on \mathbb{A}^{1}, with some more data.

Factorization Objects

By a sheaf we mean either a regular holonomic D-module or a constructible sheaf, depending on the context.

A $\check{\Lambda}<0$-graded factorization algebra A is formally a sheaf on the moduli space $\mathfrak{C o n f}$ of $\check{\Lambda}<0$-colored divisors on \mathbb{A}^{1}, with some more data.

At the level of !-fibers, such an object gives, among other things, a vector space $\iota_{\check{\lambda} \cdot x}^{!}(A)$ for every $\check{\lambda} \in \check{\Lambda}^{<0}, x \in \mathbb{A}^{1}(\mathbb{C})$.

Factorization Objects

By a sheaf we mean either a regular holonomic D-module or a constructible sheaf, depending on the context.

A $\check{\Lambda}<0$-graded factorization algebra A is formally a sheaf on the moduli space $\mathfrak{C o n f}$ of $\check{\Lambda}<0$-colored divisors on \mathbb{A}^{1}, with some more data.

At the level of !-fibers, such an object gives, among other things, a vector space $\iota_{\check{\lambda} \cdot x}^{!}(A)$ for every $\check{\lambda} \in \check{\Lambda}^{<0}, x \in \mathbb{A}^{1}(\mathbb{C})$.

Assume A is locally constant. The behavior as two distinct points x and y collide into one then encode a certain (dg) algebra structure on $A_{\text {alg }}:=\bigoplus_{\check{\lambda} \in \tilde{\Lambda}<0} i_{\check{\grave{\lambda}} \cdot x}^{!}(A)$.

Factorization Objects

By a sheaf we mean either a regular holonomic D-module or a constructible sheaf, depending on the context.

A $\check{\Lambda}<0$-graded factorization algebra A is formally a sheaf on the moduli space $\mathfrak{C o n f}$ of $\check{\Lambda}<0$-colored divisors on \mathbb{A}^{1}, with some more data.

At the level of !-fibers, such an object gives, among other things, a vector space $\iota_{\check{\lambda} \cdot x}^{!}(A)$ for every $\check{\lambda} \in \check{\Lambda}<0, x \in \mathbb{A}^{1}(\mathbb{C})$.

Assume A is locally constant. The behavior as two distinct points x and y collide into one then encode a certain (dg) algebra structure on $A_{\text {alg }}:=\bigoplus_{\check{\lambda} \in \tilde{\Lambda}<0} i_{\check{\lambda} \cdot x}^{!}(A)$.
-fibers encode a coalgebra structure on $A_{\text {coalg }}:=\bigoplus_{\check{\lambda} \in \check{\Lambda}<0} \iota_{\tilde{\lambda} \cdot x}^{}(A)$.

Similarly, a $\check{\Lambda}$-graded factorization module M (supported at $0 \in \mathbb{A}^{1}$) over A is (among other data) a sheaf on the moduli space

$$
\mathfrak{C o n f}_{0}:=\left\{\check{\lambda}_{0} \cdot 0+\sum_{i \in I,|| |<\infty} \check{\lambda}_{i} \cdot x_{i} \mid \check{\lambda}_{0} \in \check{\Lambda}, \check{\lambda}_{i} \in \check{\Lambda}^{<0}, x_{i} \text { disjoint, } x_{i} \neq 0\right\} ;
$$

Similarly, a $\check{\Lambda}$-graded factorization module M (supported at $0 \in \mathbb{A}^{1}$) over A is (among other data) a sheaf on the moduli space

$$
\mathfrak{C o n f}_{0}:=\left\{\check{\lambda}_{0} \cdot 0+\sum_{i \in I,|| |<\infty} \check{\lambda}_{i} \cdot x_{i} \mid \check{\lambda}_{0} \in \check{\Lambda}, \check{\lambda}_{i} \in \check{\Lambda}^{<0}, x_{i} \text { disjoint, } x_{i} \neq 0\right\} ;
$$

As above, this encodes an $A_{\text {alg }}$-module structure on $\bigoplus_{\check{\lambda}_{0} \in \check{\Lambda}} i_{\check{\check{\lambda}}_{0} \cdot 0}^{!}(M)$ and an $A_{\text {coalg }}$-comodule structure on $\bigoplus_{\check{\lambda}_{0} \in \check{\Lambda}} \iota_{\tilde{\lambda}_{0} \cdot 0}^{*}(M)$.

Similarly, a $\check{\Lambda}$-graded factorization module M (supported at $0 \in \mathbb{A}^{1}$) over A is (among other data) a sheaf on the moduli space

$$
\mathfrak{C o n f}_{0}:=\left\{\check{\lambda}_{0} \cdot 0+\sum_{i \in I,|| |<\infty} \check{\lambda}_{i} \cdot x_{i} \mid \check{\lambda}_{0} \in \check{\Lambda}, \check{\lambda}_{i} \in \check{\Lambda}^{<0}, x_{i} \text { disjoint, } x_{i} \neq 0\right\} ;
$$

As above, this encodes an $A_{\text {alg }}$-module structure on $\bigoplus_{\check{\lambda}_{0} \in \check{\Lambda}} i_{\check{\grave{\lambda}_{0}} \cdot 0}^{!}(M)$ and an $A_{\text {coalg-comodule structure on }} \bigoplus_{\check{\lambda}_{0} \in \check{\Lambda}} \iota_{\grave{\lambda}_{0} \cdot 0}^{*}(M)$.

To incorporate quantum levels, use twisted sheaves instead.

Similarly, a $\check{\Lambda}$-graded factorization module M (supported at $0 \in \mathbb{A}^{1}$) over A is (among other data) a sheaf on the moduli space

$$
\mathfrak{C o n f}_{0}:=\left\{\check{\lambda}_{0} \cdot 0+\sum_{i \in I,|I|<\infty} \check{\lambda}_{i} \cdot x_{i} \mid \check{\lambda}_{0} \in \check{\Lambda}, \check{\lambda}_{i} \in \check{\Lambda}^{<0}, x_{i} \text { disjoint, } x_{i} \neq 0\right\} ;
$$

As above, this encodes an $A_{\text {alg }}$-module structure on $\bigoplus \iota_{\tilde{\lambda}_{0} \cdot 0}^{!}(M)$ and an $A_{\text {coalg-comodule structure on }} \bigoplus_{\check{\lambda}_{0} \in \check{\Lambda}} \iota_{\tilde{\lambda}_{0} \cdot 0}^{*}(M)$.

To incorporate quantum levels, use twisted sheaves instead.
Riemann-Hilbert allows the comparison between algebraic factorization modules (using D-modules) and topological ones (using constructible sheaves).

(1) Statement of Result

(2) Proof Strategy: Factorization

(3) Quantum Side

4. Affine Side

(5) Global Methods

Mixed Quantum Groups

Recall that both the Lusztig algebra $U_{q}^{\text {Lus }}(\mathfrak{n})$ and the Kac-De Concini algebra $U_{q}^{\mathrm{KD}}(\mathfrak{n})$ can be realized as Hopf algebras internal to $\operatorname{Rep}_{q}(T)^{\ominus}$.

Mixed Quantum Groups

Recall that both the Lusztig algebra $U_{q}^{\text {Lus }}(\mathfrak{n})$ and the Kac-De Concini algebra $U_{q}^{\mathrm{KD}}(\mathfrak{n})$ can be realized as Hopf algebras internal to $\operatorname{Rep}_{q}(T)^{\ominus}$. This has the effect of "hiding" $K_{\check{\alpha}_{i}}$ into the background; e.g. we have

$$
\Delta\left(E_{\check{\alpha}_{i}}\right)=E_{\check{\alpha}_{i}} \otimes 1+1 \otimes E_{\check{\alpha}_{i}} \quad E_{\check{\alpha}_{i}} \in U_{q}^{\text {Lus }}(\mathfrak{n}) .
$$

Mixed Quantum Groups

Recall that both the Lusztig algebra $U_{q}^{\text {Lus }}(\mathfrak{n})$ and the Kac-De Concini algebra $U_{q}^{\mathrm{KD}}(\mathfrak{n})$ can be realized as Hopf algebras internal to $\operatorname{Rep}_{q}(T)^{\ominus}$. This has the effect of "hiding" $K_{\check{\alpha}_{i}}$ into the background; e.g. we have

$$
\Delta\left(E_{\check{\alpha}_{i}}\right)=E_{\check{\alpha}_{i}} \otimes 1+1 \otimes E_{\check{\alpha}_{i}} \quad E_{\check{\alpha}_{i}} \in U_{q}^{\text {Lus }}(\mathfrak{n}) .
$$

The abelian category $\operatorname{Rep}_{q}^{m \times d}(G)^{\ominus}$ consists of $V \in \operatorname{Rep}_{q}(T)^{\ominus}$ with a locally nilpotent $U_{q}^{\text {Lus }}(\mathfrak{n})$ action and a compatible (arbitrary) $U_{q}^{\mathrm{KD}}\left(\mathfrak{n}^{-}\right)$ action.

Mixed Quantum Groups

Recall that both the Lusztig algebra $U_{q}^{\text {Lus }}(\mathfrak{n})$ and the Kac-De Concini algebra $U_{q}^{\mathrm{KD}}(\mathfrak{n})$ can be realized as Hopf algebras internal to $\operatorname{Rep}_{q}(T)^{\rho}$. This has the effect of "hiding" $K_{\check{\alpha}_{i}}$ into the background; e.g. we have

$$
\Delta\left(E_{\check{\alpha}_{i}}\right)=E_{\check{\alpha}_{i}} \otimes 1+1 \otimes E_{\check{\alpha}_{i}} \quad E_{\check{\alpha}_{i}} \in U_{q}^{\text {Lus }}(\mathfrak{n})
$$

The abelian category $\operatorname{Rep}_{q}^{m \times d}(G)^{\varrho}$ consists of $V \in \operatorname{Rep}_{q}(T)^{\varrho}$ with a locally nilpotent $U_{q}^{\text {Lus }}(\mathfrak{n})$ action and a compatible (arbitrary) $U_{q}^{\text {KD }}\left(\mathfrak{n}^{-}\right)$ action.
$\operatorname{Rep}_{q}^{m \times d}(G)_{\text {ren }}$ is the ind-completion of

$$
\left\{V \in D^{b}\left(\operatorname{Rep}_{q}^{m \times d}(G)^{\ominus}\right)\right. \text { s.t. }
$$

$$
\left.\operatorname{oblv}(V) \in U_{q}^{\mathrm{KD}}\left(\mathfrak{n}^{-}\right)-\bmod \left(D\left(\operatorname{Rep}_{q}(T)^{\ominus}\right)\right) \text { is compact }\right\} .
$$

Proposition

There exists a topological factorization algebra $\Omega^{\text {Quant }}$ and an equivalence of $D G$ categories $J_{*}^{\text {Quant }}: \operatorname{Rep}_{q}^{m \times d}(G)_{\text {ren }} \simeq \Omega^{\text {Quant }}$-FactMod ${ }_{\text {top }}$.

Proposition

There exists a topological factorization algebra $\Omega^{\text {Quant }}$ and an equivalence of $D G$ categories $J_{*}^{\text {Quant }}: \operatorname{Rep}_{q}^{m \times d}(G)_{\text {ren }} \simeq \Omega^{\text {Quant }}$-FactMod ${ }_{\text {top }}$.

At abelian level, this is analogous to the main result of [BFS06].

Proposition

There exists a topological factorization algebra $\Omega^{\text {Quant }}$ and an equivalence of $D G$ categories $J_{*}^{\text {Quant }}: \operatorname{Rep}_{q}^{m \times d}(G)_{\text {ren }} \simeq \Omega^{\text {Quant }}$-FactMod ${ }_{\text {top }}$.

At abelian level, this is analogous to the main result of [BFS06].
Due to the need of working derivedly, we go down an entirely different path, using (homotopical) Koszul duality and the language of \mathbb{E}_{2}-algebras, building upon the foundational work of Lurie in [Lur].

Proposition

There exists a topological factorization algebra $\Omega^{\text {Quant }}$ and an equivalence of $D G$ categories $J_{*}^{\text {Quant }}: \operatorname{Rep}_{q}^{m \times d}(G)_{\text {ren }} \simeq \Omega^{\text {Quant }}$-FactMod ${ }_{\text {top }}$.

At abelian level, this is analogous to the main result of [BFS06].
Due to the need of working derivedly, we go down an entirely different path, using (homotopical) Koszul duality and the language of \mathbb{E}_{2}-algebras, building upon the foundational work of Lurie in [Lur].

This idea has been folklore for around a decade, but (to the best of our knowledge) the present work is its first formal implementation.

Proposition

There exists a topological factorization algebra $\Omega^{\text {Quant }}$ and an equivalence of $D G$ categories $J_{*}^{\text {Quant }}: \operatorname{Rep}_{q}^{m \times d}(G)_{\text {ren }} \simeq \Omega^{\text {Quant }}$-FactMod ${ }_{\text {top }}$.

At abelian level, this is analogous to the main result of [BFS06].
Due to the need of working derivedly, we go down an entirely different path, using (homotopical) Koszul duality and the language of \mathbb{E}_{2}-algebras, building upon the foundational work of Lurie in [Lur].

This idea has been folklore for around a decade, but (to the best of our knowledge) the present work is its first formal implementation.

Remark

$\iota_{\check{\lambda} \cdot 0}^{!}\left(J_{*}^{\text {Quant }}(M)\right)$ is the $\check{\lambda}$-component of $\operatorname{Ext}_{U_{q}^{\bullet} \text { Lus }(\mathfrak{n})}(\mathbb{C}, M)$, and $\iota_{\grave{\lambda} \cdot 0}^{*}\left(J_{*}^{\text {Quant }}(M)\right)$ is the $\check{\lambda}$-component of $\operatorname{Tor}_{U_{q}^{K D}\left(\mathfrak{n}^{-}\right)}^{\bullet}(\mathbb{C}, M)$.

(1) Statement of Result

(2) Proof Strategy: Factorization

(3) Quantum Side
4. Affine Side
(5) Global Methods

Lie Algebra Representation via Coherent Sheaves

Let G_{1}^{\wedge} denote the formal completion of G at the identity, and $\mathbb{B} G_{1}^{\wedge}$ its classifying prestack.

Lie Algebra Representation via Coherent Sheaves

Let G_{1}^{\wedge} denote the formal completion of G at the identity, and $\mathbb{B} G_{1}^{\wedge}$ its classifying prestack. We have an equivalence of DG categories

$$
\mathfrak{g}-\bmod \simeq \operatorname{IndCoh}\left(\mathbb{B} G_{1}^{\wedge}\right)
$$

where IndCoh denotes ind-coherent sheaves developed in [GR20].

Lie Algebra Representation via Coherent Sheaves

Let G_{1}^{\wedge} denote the formal completion of G at the identity, and $\mathbb{B} G_{1}^{\wedge}$ its classifying prestack. We have an equivalence of DG categories

$$
\mathfrak{g}-\bmod \simeq \operatorname{Ind} \operatorname{Coh}\left(\mathbb{B} G_{1}^{\wedge}\right)
$$

where IndCoh denotes ind-coherent sheaves developed in [GR20].
In [Ras20], S. Raskin extended this to the affine setting by developing the theory of renormalized ind-coherent sheaves. It yields

$$
\mathfrak{g}((t))-\bmod _{\mathrm{ren}}^{G(O)} \simeq \operatorname{IndCoh} \underset{\mathrm{ren}}{!}\left(\mathbb{B} G(K)_{G(O)}^{\wedge}\right)
$$

Lie Algebra Representation via Coherent Sheaves

Let G_{1}^{\wedge} denote the formal completion of G at the identity, and $\mathbb{B} G_{1}^{\wedge}$ its classifying prestack. We have an equivalence of DG categories

$$
\mathfrak{g}-\bmod \simeq \operatorname{Ind} \operatorname{Coh}\left(\mathbb{B} G_{1}^{\wedge}\right)
$$

where IndCoh denotes ind-coherent sheaves developed in [GR20].
In [Ras20], S. Raskin extended this to the affine setting by developing the theory of renormalized ind-coherent sheaves. It yields

$$
\mathfrak{g}((t))-\bmod _{\mathrm{ren}}^{G(O)} \simeq \operatorname{IndCoh} \underset{\mathrm{ren}}{!}\left(\mathbb{B} G(K)_{G(O)}^{\wedge}\right),
$$

where renormalization on both sides mean taking the ind-completion of the category of objects induced from finite dimensional smooth representations of $G(O)$.

Lie Algebra Representation via Coherent Sheaves

Let G_{1}^{\wedge} denote the formal completion of G at the identity, and $\mathbb{B} G_{1}^{\wedge}$ its classifying prestack. We have an equivalence of DG categories

$$
\mathfrak{g}-\bmod \simeq \operatorname{IndCoh}\left(\mathbb{B} G_{1}^{\wedge}\right)
$$

where IndCoh denotes ind-coherent sheaves developed in [GR20].
In [Ras20], S. Raskin extended this to the affine setting by developing the theory of renormalized ind-coherent sheaves. It yields

$$
\mathfrak{g}((t))-\bmod _{\mathrm{ren}}^{G(O)} \simeq \operatorname{IndCoh} \underset{\mathrm{ren}}{!}\left(\mathbb{B} G(K)_{G(O)}^{\wedge}\right)
$$

where renormalization on both sides mean taking the ind-completion of the category of objects induced from finite dimensional smooth representations of $G(O)$.

The infinite-dimensional theory bifurcates into the !-and the *-versions; here !-version is considered.

To each κ one can assign a twisting (an infinitesimal gerbe) on $\mathbb{B} G(K)_{G(O)}^{\wedge}$ and use it to twist the IndCoh category. A slight variant of above is

$$
\mathrm{KL}_{\kappa}(G)_{\mathrm{ren}}:=\operatorname{IndCoh} \mathrm{ren}, \kappa_{!}\left(\mathbb{B} G(K)_{G(O)}^{\wedge}\right)
$$

To each κ one can assign a twisting (an infinitesimal gerbe) on $\mathbb{B} G(K)_{G(O)}^{\wedge}$ and use it to twist the IndCoh category. A slight variant of above is

$$
\mathrm{KL}_{\kappa}(G)_{\mathrm{ren}}:=\operatorname{IndCoh} \mathrm{r}_{\mathrm{ren}, \kappa}^{!}\left(\mathbb{B} G(K)_{G(O)}^{\wedge}\right)
$$

Proposition ([Ras20])

When restricted to bounded-below objects, the functor

$$
\begin{aligned}
& \mathrm{KL}_{\kappa}(B)_{\text {ren }} \simeq \operatorname{IndCoh} \underset{\text { ren }, \kappa}{!}\left(\mathbb{B} B(K)_{B(O)}^{\wedge}\right) \xrightarrow[\simeq]{\stackrel{\oplus}{\simeq}} \operatorname{IndCoh}_{\text {ren }, \kappa-\kappa_{\text {crit }}}^{*}\left(\mathbb{B} B(K)_{B(O)}^{\wedge}\right) \\
& \xrightarrow{* \text {-push }} \operatorname{IndCoh}{\text { ren }, \kappa-\kappa_{\text {crit }}}_{*}\left(\mathbb{B} T(K)_{T(O)}^{\wedge}\right) \simeq \mathrm{KL}_{\kappa-\kappa_{\text {crit }}}(T)_{\text {ren }}
\end{aligned}
$$

coincides with Feigin's semi-infinite cohomology $C_{*}^{\frac{\infty}{2}}(\mathfrak{n}((t)), N(O),-)$.

Here $\kappa_{\text {crit }}$ is the critical (a.k.a. Tate) shift, corresponding to $c=0$. Existence of (\boldsymbol{Q}) is a distinguished feature of the renormalized theory.

Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.

Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.
Proposition
There exists an unital factorizable crystal of categories $\mathcal{K} \mathcal{L}_{\kappa}(G)_{\text {ren }}$ whose 1-point fiber is $\mathrm{KL}_{\kappa}(G)_{\text {ren }}$.

Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting. Proposition
There exists an unital factorizable crystal of categories $\mathcal{K} \mathcal{L}_{\kappa}(G)_{\text {ren }}$ whose 1-point fiber is $\mathrm{KL}_{\kappa}(G)_{\text {ren }}$.

Among other things, this means that we have a $\operatorname{DMod}\left(\mathbb{A}^{2}\right)$-module $\mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]}$ such that

Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.

Proposition

There exists an unital factorizable crystal of categories $\mathcal{K} \mathcal{L}_{\kappa}(G)_{\text {ren }}$ whose 1-point fiber is $\mathrm{KL}_{\kappa}(G)_{\text {ren }}$.

Among other things, this means that we have a $\operatorname{DMod}\left(\mathbb{A}^{2}\right)$-module $\mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]}$ such that

- For every $x \in \mathbb{A}^{1}(\mathbb{C})$ on the diagonal, the corresponding base change gives $\operatorname{Vect} \otimes_{\operatorname{DMod}\left(\mathbb{A}^{2}\right)} \mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]} \simeq \mathrm{KL}_{\kappa}(G)_{\text {ren }}$;

Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.

Proposition

There exists an unital factorizable crystal of categories $\mathcal{K} \mathcal{L}_{\kappa}(G)_{\text {ren }}$ whose 1-point fiber is $\mathrm{KL}_{\kappa}(G)_{\text {ren }}$.

Among other things, this means that we have a $\operatorname{DMod}\left(\mathbb{A}^{2}\right)$-module $\mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]}$ such that

- For every $x \in \mathbb{A}^{1}(\mathbb{C})$ on the diagonal, the corresponding base change gives Vect $\otimes_{\operatorname{DMod}\left(\mathbb{A}^{2}\right)} \mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]} \simeq \mathrm{KL}_{\kappa}(G)_{\text {ren }}$;
- For every $(x, y) \in \mathbb{A}^{2}(\mathbb{C})$ where $x \neq y$, the corresponding base change gives Vect $\otimes_{\operatorname{DMod}\left(\mathbb{A}^{2}\right)} \mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]} \simeq \mathrm{KL}_{\kappa}(G)_{\text {ren }} \otimes \mathrm{KL}_{\kappa}(G)_{\text {ren }}$;

Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.

Proposition

There exists an unital factorizable crystal of categories $\mathcal{K} \mathcal{L}_{\kappa}(G)_{\text {ren }}$ whose 1-point fiber is $\mathrm{KL}_{\kappa}(G)_{\text {ren }}$.

Among other things, this means that we have a $\operatorname{DMod}\left(\mathbb{A}^{2}\right)$-module $\mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]}$ such that

- For every $x \in \mathbb{A}^{1}(\mathbb{C})$ on the diagonal, the corresponding base change gives $\operatorname{Vect} \otimes_{\operatorname{DMod}\left(\mathbb{A}^{2}\right)} \mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]} \simeq \mathrm{KL}_{\kappa}(G)_{\text {ren }}$;
- For every $(x, y) \in \mathbb{A}^{2}(\mathbb{C})$ where $x \neq y$, the corresponding base change gives Vect $\otimes_{\operatorname{DMod}\left(\mathbb{A}^{2}\right)} \mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]} \simeq \mathrm{KL}_{\kappa}(G)_{\text {ren }} \otimes \mathrm{KL}_{\kappa}(G)_{\text {ren }}$;

The behavior as we approach the diagonal encodes the fusion structure of $K_{\kappa}(G)$.

Unitality means, for instance, that $\{x\} \hookrightarrow\{x, y\}$ yields a map

$$
\operatorname{ins}_{x \rightsquigarrow(x, y)}: \mathrm{KL}_{\kappa}(G)_{\text {ren }} \rightarrow \mathrm{KL}_{\kappa}(G)_{\mathrm{ren}} \otimes \mathrm{KL}_{\kappa}(G)_{\mathrm{ren}}
$$

given by $M \mapsto \mathbb{V}_{\kappa}^{0} \boxtimes M$, where

$$
\mathbb{V}_{\kappa}^{0}:=\operatorname{Ind}_{\operatorname{Rep}(G(O))^{\varrho}}^{\left.\mathrm{KL}(G)^{\varrho}\right)}(\mathbb{C})
$$

is the vacuum representation.

Unitality means, for instance, that $\{x\} \hookrightarrow\{x, y\}$ yields a map

$$
\operatorname{ins}_{x \rightsquigarrow(x, y)}: \mathrm{KL}_{\kappa}(G)_{\text {ren }} \rightarrow \mathrm{KL}_{\kappa}(G)_{\mathrm{ren}} \otimes \mathrm{KL}_{\kappa}(G)_{\mathrm{ren}}
$$

given by $M \mapsto \mathbb{V}_{\kappa}^{0} \boxtimes M$, where

$$
\mathbb{V}_{\kappa}^{0}:=\operatorname{Ind}_{\operatorname{Rep}(G(O))^{\varrho}}^{\mathrm{KL}(G)^{\varrho}}(\mathbb{C})
$$

is the vacuum representation.
Similarly, to $\hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{\prime}$ we attach a factorizable module category $\mathcal{I K} \mathcal{L}_{\kappa}(G)$. Over \mathbb{A}^{2}, its diagonal fiber is $\hat{\mathfrak{g}}_{\kappa}$ - mod ren $_{\text {ren }}^{\prime}$, and off-diagonal fiber is $\mathrm{KL}_{\kappa}(G)_{\text {ren }} \otimes \hat{\mathfrak{g}}_{\kappa}-$ mod $_{\text {ren }}^{\prime}$.

Unitality means, for instance, that $\{x\} \hookrightarrow\{x, y\}$ yields a map

$$
\operatorname{ins}_{x \rightsquigarrow(x, y)}: \mathrm{KL}_{\kappa}(G)_{\text {ren }} \rightarrow \mathrm{KL}_{\kappa}(G)_{\text {ren }} \otimes \mathrm{KL}_{\kappa}(G)_{\text {ren }}
$$

given by $M \mapsto \mathbb{V}_{\kappa}^{0} \boxtimes M$, where

$$
\mathbb{V}_{\kappa}^{0}:=\operatorname{Ind}_{\operatorname{Rep}(G(O))^{\varrho}}^{K L_{\kappa}(G)^{\varrho}}(\mathbb{C})
$$

is the vacuum representation.
Similarly, to $\hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{\prime}$ we attach a factorizable module category $\mathcal{I K} \mathcal{L}_{\kappa}(G)$. Over \mathbb{A}^{2}, its diagonal fiber is $\hat{\mathfrak{g}}_{\kappa}$ - mod ren $_{\text {ren }}^{\prime}$, and off-diagonal fiber is $K L_{\kappa}(G)_{\text {ren }} \otimes \hat{\mathfrak{g}}_{\kappa}-$ mod $_{\text {ren }}^{\prime}$.

It encodes the fusion action of $\mathrm{KL}_{\kappa}(G)$ on $\hat{\mathfrak{g}}_{\kappa}-\bmod ^{\prime}$.

Further, one has the notion of factorization algebras internal to $\mathcal{K} \mathcal{L}_{\kappa}(G)$.

Further, one has the notion of factorization algebras internal to $\mathcal{K} \mathcal{L}_{\kappa}(G)$. Over \mathbb{A}^{2}, this is an element $\widetilde{A} \in \mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]}$ whose diagonal fiber is some $A \in \mathrm{KL}_{\kappa}(G)_{\text {ren }}$ and whose off-diagonal fiber is $A \boxtimes A$.

Further, one has the notion of factorization algebras internal to $\mathcal{K} \mathcal{L}_{\kappa}(G)$. Over \mathbb{A}^{2}, this is an element $\widetilde{A} \in \mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]}$ whose diagonal fiber is some $A \in \mathrm{KL}_{\kappa}(G)_{\text {ren }}$ and whose off-diagonal fiber is $A \boxtimes A$.

Factorization modules internal to $\mathcal{I K} \mathcal{L}_{\kappa}(G)$ are similarly defined (diagonal: M; off-diagonal: $A \boxtimes M$), and unitality gives

$$
\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime} \simeq \mathbb{V}_{\kappa}^{0}-\operatorname{Fact} \operatorname{Mod}\left(\mathcal{I} \mathcal{K} \mathcal{L}_{\kappa}(G)\right) .
$$

Further, one has the notion of factorization algebras internal to $\mathcal{K} \mathcal{L}_{\kappa}(G)$. Over \mathbb{A}^{2}, this is an element $\widetilde{A} \in \mathcal{K} \mathcal{L}_{\kappa}(G)_{[2]}$ whose diagonal fiber is some $A \in \mathrm{KL}_{\kappa}(G)_{\text {ren }}$ and whose off-diagonal fiber is $A \boxtimes A$.

Factorization modules internal to $\mathcal{I K} \mathcal{L}_{\kappa}(G)$ are similarly defined (diagonal: M; off-diagonal: $A \boxtimes M$), and unitality gives

$$
\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime} \simeq \mathbb{V}_{\kappa}^{0}-\operatorname{FactMod}\left(\mathcal{I} \mathcal{K} \mathcal{L}_{\kappa}(G)\right)
$$

For simplicity we write $C^{\frac{\infty}{2}}:=C_{*}^{\frac{\infty}{2}}(\mathfrak{n}((t)), N(O),-)$. The map $\hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{\prime} \xrightarrow{\text { Res }} \mathrm{KL}_{\kappa}(B)_{\text {ren }} \xrightarrow{C^{\frac{\infty}{2}}} \mathrm{KL}_{\kappa-\kappa_{\text {crit }}}(T)_{\text {ren }}$ is a lax-unital factorizable functor, and thus factors through an "enhanced" map

$$
C_{\mathrm{enh}}^{\frac{\infty}{2}}: \hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime} \rightarrow C^{\frac{\infty}{2}}\left(\mathbb{V}_{\kappa}^{0}\right)-\operatorname{Fact} \operatorname{Mod}\left(\mathcal{K} \mathcal{L}_{\kappa}(T)\right)
$$

Proposition ("Torus FLE")

There exists an equivalence of factorizable crystals of categories

$$
\operatorname{FLE}_{T}: \mathcal{K} \mathcal{L}_{\kappa}(T)_{\text {ren }} \simeq \operatorname{DMod}_{\check{\kappa}}\left(\operatorname{Gr}_{\check{T}}\right) ;
$$

where $\mathrm{Gr}_{\check{T}}$ is the affine Grassmannian for the dual torus \check{T}.

Proposition ("Torus FLE")

There exists an equivalence of factorizable crystals of categories

$$
\operatorname{FLE}_{T}: \mathcal{K} \mathcal{L}_{\kappa}(T)_{\text {ren }} \simeq \operatorname{DMod}_{\check{\kappa}}\left(\operatorname{Gr}_{\check{T}}\right) ;
$$

where $\mathrm{Gr}_{\check{T}}$ is the affine Grassmannian for the dual torus \check{T}.

This is again a folklore which we prove for the first time.

Proposition ("Torus FLE")

There exists an equivalence of factorizable crystals of categories

$$
\operatorname{FLE}_{T}: \mathcal{K} \mathcal{L}_{\kappa}(T)_{\text {ren }} \simeq \operatorname{DMod}_{\check{\kappa}}\left(\operatorname{Gr}_{\check{T}}\right) ;
$$

where $\mathrm{Gr}_{\check{T}}$ is the affine Grassmannian for the dual torus \check{T}.

This is again a folklore which we prove for the first time.
We define $\Omega^{\mathrm{KM}}:=\mathrm{FLE}_{T} \circ C^{\frac{\infty}{2}}\left(\mathbb{V}_{\kappa}^{0}\right)$.

Proposition ("Torus FLE")

There exists an equivalence of factorizable crystals of categories

$$
\operatorname{FLE}_{T}: \mathcal{K} \mathcal{L}_{\kappa}(T)_{\text {ren }} \simeq \operatorname{DMod}_{\check{\kappa}}\left(\operatorname{Gr}_{\check{T}}\right) ;
$$

where $\mathrm{Gr}_{\check{T}}$ is the affine Grassmannian for the dual torus \check{T}.

This is again a folklore which we prove for the first time.
We define $\Omega^{\mathrm{KM}}:=\mathrm{FLE}_{T} \circ C^{\frac{\infty}{2}}\left(\mathbb{V}_{\kappa}^{0}\right)$. The resulting functor

$$
\mathrm{FLE}_{T} \circ C_{\mathrm{enh}}^{\frac{\infty}{2}}: \hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime} \rightarrow \Omega^{\mathrm{KM}}-\mathrm{FactMod}\left(\operatorname{DMod}_{\check{\kappa}}\left(\operatorname{Gr}_{\check{T}}\right)\right)
$$

factors through a map

$$
J_{*}^{\mathrm{KM}}:=\mathrm{FLE}_{T} \circ C_{\mathrm{enh}}^{\frac{\infty}{2}}: \hat{\mathfrak{g}}_{\kappa}-\text { mod }_{\mathrm{ren}}^{l} \rightarrow \Omega^{\mathrm{KM}} \text {-FactModalg } .
$$

Recall our strategy:

$$
\begin{aligned}
& \hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{\prime}-------\rightarrow \operatorname{Rep}_{q}^{m \times d}(G)_{\text {ren }} \\
& J_{*}^{K M} \downarrow \simeq \quad \simeq J_{*}^{\text {Quant }} \\
& \Omega^{\text {KM }_{\text {-FactMod }}^{\text {alg }}} \underset{\text { Riemann-Hilbert }}{\simeq} \Omega_{\text {Quant }}^{\text {-FactMod }} \text { top }
\end{aligned}
$$

Recall our strategy:

$$
\begin{aligned}
& \hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{\prime}-------\rightarrow \operatorname{Rep}_{q}^{m \times d}(G)_{\text {ren }} \\
& J_{*}^{K M} \downarrow \simeq \quad \simeq J_{*}^{\text {Quant }} \\
& \Omega^{\mathrm{KM}} \text {-FactMod }{ }_{\text {alg }} \xrightarrow[\text { Riemann-Hilbert }]{\simeq} \Omega^{\text {Quant_FactMod }} \text { top }
\end{aligned}
$$

We have argued that $J_{*}^{\text {Quant }}$ is an equivalence. The remaining tasks are:

Recall our strategy:

$$
\begin{aligned}
& \hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{\prime}-------\rightarrow \operatorname{Rep}_{q}^{m \times d}(G)_{\text {ren }} \\
& J_{*}^{K M} \downarrow \simeq \quad \simeq J_{*}^{\text {Quant }} \\
& \Omega^{\mathrm{KM}} \text {-FactMod }{ }_{\text {alg }} \xrightarrow[\text { Riemann-Hilbert }]{\simeq} \Omega^{\text {Quant_FactMod }} \text { top }
\end{aligned}
$$

We have argued that $J_{*}^{\text {Quant }}$ is an equivalence. The remaining tasks are:

- Showing that Ω^{KM} and $\Omega^{\text {Quant }}$ match up under Riemann-Hilbert; and

Recall our strategy:

$$
\begin{aligned}
& \hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{\prime}-------\rightarrow \operatorname{Rep}_{q}^{m \times d}(G)_{\text {ren }} \\
& J_{*}^{K M} \mid \simeq \quad \simeq \downarrow_{*}^{\text {Quant }} \\
& \Omega^{\text {KM }} \text {-FactMod }{ }_{\text {alg }} \xrightarrow[\text { Riemann-Hilbert }]{\simeq} \Omega^{\text {Quant_FactMod }} \text { top }
\end{aligned}
$$

We have argued that $J_{*}^{\text {Quant }}$ is an equivalence. The remaining tasks are:

- Showing that Ω^{KM} and $\Omega^{\text {Quant }}$ match up under Riemann-Hilbert; and
- Showing that $J_{*}^{K M}$ is an equivalence for $c>0$.

Recall our strategy:

$$
\begin{aligned}
& \hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{\prime}-------\rightarrow \operatorname{Rep}_{q}^{m \times d}(G)_{\text {ren }} \\
& J_{*}^{K M} \mid \simeq \quad \simeq \downarrow_{*}^{\text {Quant }} \\
& \Omega^{\text {KM }} \text {-FactMod }{ }_{\text {alg }} \xrightarrow[\text { Riemann-Hilbert }]{\simeq} \Omega^{\text {Quant_FactMod }} \text { top }
\end{aligned}
$$

We have argued that $J_{*}^{\text {Quant }}$ is an equivalence. The remaining tasks are:

- Showing that Ω^{KM} and $\Omega^{\text {Quant }}$ match up under Riemann-Hilbert; and
- Showing that $J_{*}^{K M}$ is an equivalence for $c>0$.

Let us do the first part.

Recall our strategy:

$$
\begin{aligned}
& \hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime}-------\rightarrow \operatorname{Rep}_{q}^{\mathrm{mxd}}(G)_{\text {ren }} \\
& J_{*}^{K M} \downarrow \simeq \quad \simeq \downarrow J_{*}^{\text {Quant }} \\
& \Omega^{\mathrm{KM}} \text {-FactMod }{ }_{\text {alg }} \xrightarrow[\text { Riemann-Hilbert }]{\simeq} \Omega^{\text {Quant_FactMod }} \text { top }
\end{aligned}
$$

We have argued that $J_{*}^{\text {Quant }}$ is an equivalence. The remaining tasks are:

- Showing that Ω^{KM} and $\Omega^{\text {Quant }}$ match up under Riemann-Hilbert; and
- Showing that $J_{*}^{K M}$ is an equivalence for $c>0$.

Let us do the first part. Recall that, !-fiber of $\Omega^{\text {Quant }}$ are components of $\operatorname{Ext}_{U \text { Lus }(\mathfrak{n})}^{\bullet}(\mathbb{C}, \mathbb{C})$, and that of Ω^{KM} are components of $C^{\frac{\infty}{2}}\left(\mathbb{V}_{\kappa}^{0}\right)$.

Recall our strategy:

$$
\begin{aligned}
& \hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime}-------\rightarrow \operatorname{Rep}_{q}^{\mathrm{mxd}}(G)_{\text {ren }} \\
& J_{*}^{K M} \downarrow \simeq \quad \simeq \downarrow J_{*}^{\text {Quant }} \\
& \Omega^{\mathrm{KM}} \text {-FactMod }{ }_{\text {alg }} \xrightarrow[\text { Riemann-Hilbert }]{\simeq} \Omega^{\text {Quant }} \text {-FactMod }{ }_{\text {top }}
\end{aligned}
$$

We have argued that $J_{*}^{\text {Quant }}$ is an equivalence. The remaining tasks are:

- Showing that Ω^{KM} and $\Omega^{\text {Quant }}$ match up under Riemann-Hilbert; and
- Showing that $J_{*}^{K M}$ is an equivalence for $c>0$.

Let us do the first part. Recall that, !-fiber of $\Omega^{\text {Quant }}$ are components of $\operatorname{Ext}_{U{ }_{q}^{\mathrm{Lus}(\mathfrak{n})}}^{\bullet}(\mathbb{C}, \mathbb{C})$, and that of Ω^{KM} are components of $C^{\frac{\infty}{2}}\left(\mathbb{V}_{\kappa}^{0}\right)$.

Problem: neither is easy to compute / explicitly known.

Matching Factorization Algebras

Proposition ([Gai21])

There exists an unique $\check{\Lambda}^{<0}$-graded factorization algebra Ω such that:

- if $\check{\lambda} \notin \check{\Lambda}^{<0}$, then the !-fiber at $\check{\lambda} x$ is zero;
- the !-fiber at every $\check{\lambda} x$ has no negative cohomology;
- if $\check{\lambda}$ is a simple negative root, then either the $*$-fiber at $\check{\lambda} x$ is $\mathbb{C}[1]$, or the !-fiber at $\check{\lambda} x$ is $\mathbb{C}[-1]$;
- if $\check{\lambda}$ equals $w(\check{\rho})-\check{\rho}$ for some $\ell(w)=2$, then the !-fiber at $\check{\lambda} x$ vanishes at H^{0} and H^{1}, and $*$-fiber at $\check{\lambda} x$ vanishes at H^{0} and H^{-1};
- otherwise, the !-fiber at $\check{\lambda} x$ vanishes at H^{0}, and $*$-fiber at $\check{\lambda} x$ vanishes at H^{0}, H^{-1} and H^{-2}.

One can use direct computation (using e.g. Kashiwara-Tanisaki localization) to verify this for both Ω^{KM} and $\Omega^{\text {Quant }}$.

(1) Statement of Result

(2) Proof Strategy: Factorization

(3) Quantum Side

4 Affine Side
(5) Global Methods

Proving $J_{*}^{K M}$ is an Equivalence

The category Ω^{KM}-FactMod ${ }_{\mathrm{alg}}$ has a highest weight structure: it contains standard objects which are compact generators, and costandard objects which are their right orthogonals.

Proving $J_{*}^{K M}$ is an Equivalence

The category Ω^{KM}-FactMod ${ }_{\mathrm{alg}}$ has a highest weight structure: it contains standard objects which are compact generators, and costandard objects which are their right orthogonals. It suffices to show that (co)standards map to (co)standards under $J_{*}^{K M}$.

Proving $J_{*}^{K M}$ is an Equivalence

The category Ω^{KM}-FactMod ${ }_{\mathrm{alg}}$ has a highest weight structure: it contains standard objects which are compact generators, and costandard objects which are their right orthogonals. It suffices to show that (co)standards map to (co)standards under $J_{*}^{K M}$.

Standards
Costandards

$\hat{\mathfrak{g}}_{\kappa}-$ mod $_{\text {ren }}^{\prime}$
Ω-FactModalg

Proving $J_{*}^{K M}$ is an Equivalence

The category Ω^{KM}-FactMod ${ }_{\mathrm{alg}}$ has a highest weight structure: it contains standard objects which are compact generators, and costandard objects which are their right orthogonals. It suffices to show that (co)standards map to (co)standards under $J_{*}^{K M}$.

Standards
Costandards

$$
\begin{array}{ll}
\hat{\mathfrak{g}}_{\kappa}-\text { mod }_{\text {ren }}^{l} \\
\Omega \text {-FactMod } & \\
\text { alg }
\end{array} \quad M_{\text {fact }}^{!\check{,}}(\text { !-extensions })
$$

Proving $J_{*}^{K M}$ is an Equivalence

The category Ω^{KM}-FactMod ${ }_{\mathrm{alg}}$ has a highest weight structure: it contains standard objects which are compact generators, and costandard objects which are their right orthogonals. It suffices to show that (co)standards map to (co)standards under $J_{*}^{K M}$.

Standards
$M_{\text {fact }}^{!!\check{\lambda}}(!$-extensions $)$

Costandards

$$
\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime}
$$

Ω-FactMod ${ }_{\text {alg }}$

Proving $J_{*}^{K M}$ is an Equivalence

The category Ω^{KM}-FactMod ${ }_{\mathrm{alg}}$ has a highest weight structure: it contains standard objects which are compact generators, and costandard objects which are their right orthogonals. It suffices to show that (co)standards map to (co)standards under $J_{*}^{K M}$.

$$
\begin{array}{ccc}
\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime} & M_{\mathrm{KM}}^{!, \check{\lambda}}:=\mathbb{D}^{\text {can }}\left(\mathbb{W}_{-\kappa}^{1,-\check{\lambda}-2 \check{\rho}}[\operatorname{dim}(\mathfrak{n})]\right) & \text { Costandards } \\
\Omega \text {-FactMod } & \\
M_{\text {alg }}^{!, \check{\lambda}} & M_{\text {fact }}(!-\text {-extensions }) & M_{\text {fact }}^{*, \check{\lambda}}(* \text {-extensions })
\end{array}
$$

Proving $J_{*}^{K M}$ is an Equivalence

The category Ω^{KM}-FactMod ${ }_{\mathrm{alg}}$ has a highest weight structure: it contains standard objects which are compact generators, and costandard objects which are their right orthogonals. It suffices to show that (co)standards map to (co)standards under $J_{*}^{K M}$.

$$
\begin{array}{ccc}
\hat{\mathfrak{g}}_{\kappa}-\text { mod }_{\text {ren }}^{\prime} & M_{\text {KM }}^{!, \check{\lambda}}:=\mathbb{D}^{\text {can }}\left(\mathbb{W}_{-\kappa}^{1,-\check{\lambda}-2 \check{\rho}}[\operatorname{dim}(\mathfrak{n})]\right) & \text { Costandards } \\
\Omega \text {-FactMod } & \\
M_{\text {fact }}^{!, \check{\lambda}} & M_{\text {fact }}^{*}(!-\text {-extensions }) & M_{\text {fact }}^{*, \check{\lambda}}(* \text {-extensions })
\end{array}
$$

$\mathbb{D}^{\text {can }}$ is the canonical (not contragredient) duality between $\hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{l}$ and $\hat{\mathfrak{g}}_{-\kappa}-\bmod _{\mathrm{ren}}^{1}$.

Proving $J_{*}^{K M}$ is an Equivalence

The category Ω^{KM}-FactMod ${ }_{\mathrm{alg}}$ has a highest weight structure: it contains standard objects which are compact generators, and costandard objects which are their right orthogonals. It suffices to show that (co)standards map to (co)standards under $J_{*}^{K M}$.

$$
\begin{array}{ccc}
\hat{\mathfrak{g}}_{\kappa}-\text { mod }_{\text {ren }}^{l} & M_{\text {KM }}^{!, \check{\lambda}}:=\mathbb{D}^{\text {Can }}\left(\mathbb{W}_{-\kappa}^{1,-\check{\lambda}-2 \check{\rho}}[\operatorname{dim}(\mathfrak{n})]\right) & \text { Costandards } \\
\Omega \text {-FactMod } & \\
M_{\text {fact }}^{!, \check{\lambda}}(!-\text {-extensions }) & M_{\text {fact }}^{*, \check{\lambda}}(* \text {-extensions })
\end{array}
$$

$\mathbb{D}^{\text {can }}$ is the canonical (not contragredient) duality between $\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{l}$ and $\hat{\mathfrak{g}}_{-\kappa}-\bmod _{\mathrm{ren}}$.
$\mathbb{W}_{-\kappa}^{1, \check{\mu}}$ is the Wakimoto module (of type 1) of highest weight $\check{\mu}$ and level $-\kappa$.

Proving $J_{*}^{K M}$ is an Equivalence

The category Ω^{KM}-FactMod ${ }_{\mathrm{alg}}$ has a highest weight structure: it contains standard objects which are compact generators, and costandard objects which are their right orthogonals. It suffices to show that (co)standards map to (co)standards under $J_{*}^{K M}$.

$$
\begin{array}{ccc}
& \text { Standards } & \text { Costandards } \\
\hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{\prime} & M_{\mathrm{KM}}^{!, \check{\lambda}}:=\mathbb{D}^{\text {can }}\left(\mathbb{W}_{-\kappa}^{1,-\check{\lambda}-2 \check{\rho}}[\operatorname{dim}(\mathfrak{n})]\right) & M_{\mathrm{KM}}^{*, \check{\lambda}}:=\mathbb{W}_{\kappa}^{w_{0}, \check{\lambda}} \\
\Omega \text {-FactMod } \\
\text { alg } & M_{\text {fact }}^{!, \check{\lambda}}(!\text { !-extensions }) & M_{\text {fact }}^{*, \check{ }}(* \text {-extensions })
\end{array}
$$

$\mathbb{D}^{\text {can }}$ is the canonical (not contragredient) duality between $\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{l}$ and $\hat{\mathfrak{g}}_{-\kappa}-\bmod _{\text {ren }}^{l}$.
$\mathbb{W}_{-\kappa}^{1, \check{\mu}}$ is the Wakimoto module (of type 1) of highest weight $\check{\mu}$ and level $-\kappa$.

Proving $J_{*}^{K M}$ is an Equivalence

The category Ω^{KM}-FactMod ${ }_{\mathrm{alg}}$ has a highest weight structure: it contains standard objects which are compact generators, and costandard objects which are their right orthogonals. It suffices to show that (co)standards map to (co)standards under $J_{*}^{K M}$.

$$
\begin{array}{ccc}
& \text { Standards } & \text { Costandards } \\
\hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{\prime} & M_{\mathrm{KM}}^{!, \check{\lambda}}:=\mathbb{D}^{\text {can }}\left(\mathbb{W}_{-\kappa}^{1,-\check{\lambda}-2 \check{\rho}}[\operatorname{dim}(\mathfrak{n})]\right) & M_{K M}^{*, \check{\lambda}}:=\mathbb{W}_{\kappa}^{w_{0}, \check{\lambda}} \\
\Omega \text {-FactMod } \\
\text { alg } & M_{\text {fact }}^{!, \check{c}}(!\text { !-extensions }) & M_{\text {fact }}^{*, \check{\lambda}}(* \text {-extensions })
\end{array}
$$

$\mathbb{D}^{\text {can }}$ is the canonical (not contragredient) duality between $\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{l}$ and $\hat{\mathfrak{g}}_{-\kappa}-\bmod _{\mathrm{ren}}^{l}$.
$\mathbb{W}_{-\kappa}^{1, \check{\mu}}$ is the Wakimoto module (of type 1) of highest weight $\check{\mu}$ and level $-\kappa . \mathbb{W}_{\kappa}^{w_{0}, \check{\lambda}}$ is the Wakimoto module of type w_{0} at level κ.

Wakimoto modules are the $\frac{\infty}{2}$-analogues of Verma modules.
At generic $c, M_{\text {KM }}^{!, \check{\lambda}}$ becomes the affine Verma module $\operatorname{Ind}{ }_{\text {Lie }(I)}^{\hat{\mathrm{g}}_{\kappa}}(\mathbb{C})$, and $M_{\mathrm{KM}}^{*, \check{\lambda}}$ becomes the dual affine Verma module.

Wakimoto modules are the $\frac{\infty}{2}$-analogues of Verma modules.
At generic $c, M_{\text {KM }}^{!, \check{\lambda}}$ becomes the affine Verma module $\operatorname{Ind}{ }_{\text {Lie }(I)}^{\hat{\mathrm{g}}_{\kappa}}(\mathbb{C})$, and $M_{K M}^{*, \check{\lambda}}$ becomes the dual affine Verma module.

Our choice is made such that $\operatorname{Hom}_{\hat{\mathfrak{g}}_{\kappa}-\bmod _{\text {ren }}^{\prime}}\left(M_{\mathrm{KM}}^{1, \check{\lambda}}, N\right)$ gives the $\check{\lambda}$-component of $C^{\frac{\infty}{2}}(N)$. It follows from definition that $M_{K M}^{*, \check{\lambda}}$ are right orthogonals to $M_{\mathrm{KM}}^{!, \check{\lambda}}$ and $J_{*}^{\mathrm{KM}}\left(M_{\mathrm{KM}}^{*, \check{\lambda}}\right) \simeq M_{\text {fact }}^{*, \check{\lambda}}$.

Wakimoto modules are the $\frac{\infty}{2}$-analogues of Verma modules.
At generic $c, M_{\text {KM }}^{!, \check{\lambda}}$ becomes the affine Verma module $\operatorname{Ind}{ }_{\text {Lie }(I)}^{\hat{\mathrm{g}}_{\kappa}}(\mathbb{C})$, and $M_{K M}^{*, \check{\lambda}}$ becomes the dual affine Verma module.

Our choice is made such that $\operatorname{Hom}_{\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime}}\left(M_{\mathrm{KM}}^{!, \check{\lambda}}, N\right)$ gives the $\check{\lambda}$-component of $C^{\frac{\infty}{2}}(N)$. It follows from definition that $M_{K M}^{*, \check{\lambda}}$ are right orthogonals to $M_{\mathrm{KM}}^{!, \check{\lambda}}$ and $J_{*}^{\mathrm{KM}}\left(M_{\mathrm{KM}}^{*, \check{\lambda}}\right) \simeq M_{\text {fact }}^{*, \check{\lambda}}$.

To show $M_{\mathrm{KM}}^{!!\check{\lambda}} \mapsto M_{\text {fact }}^{!!\check{\lambda}}$ it suffices to compute the $*$-fiber of $M_{\mathrm{KM}}^{!, \check{\lambda}}$ at every $\check{\mu} x$.

Wakimoto modules are the $\frac{\infty}{2}$-analogues of Verma modules.
At generic $c, M_{K M}^{!, \check{\lambda}}$ becomes the affine Verma module $\operatorname{Ind}_{\text {Lie }(I)}^{\hat{\mathrm{g}}_{\kappa}}(\mathbb{C})$, and $M_{K M}^{*, \check{\lambda}}$ becomes the dual affine Verma module.

Our choice is made such that $\operatorname{Hom}_{\hat{\mathfrak{g}}_{\kappa}-\bmod _{\mathrm{ren}}^{\prime}}\left(M_{\mathrm{KM}}^{1, \check{\lambda}}, N\right)$ gives the $\check{\lambda}$-component of $C^{\frac{\infty}{2}}(N)$. It follows from definition that $M_{K M}^{*, \check{\lambda}}$ are right orthogonals to $M_{\mathrm{KM}}^{!, \check{\lambda}}$ and $J_{*}^{\mathrm{KM}}\left(M_{\mathrm{KM}}^{*, \check{\lambda}}\right) \simeq M_{\text {fact }}^{*, \check{\lambda}}$.

To show $M_{\mathrm{KM}}^{!, \check{\lambda}} \mapsto M_{\text {fact }}^{!!\check{\lambda}}$ it suffices to compute the $*$-fiber of $M_{\mathrm{KM}}^{!}, \check{\lambda}$ at every $\check{\mu} x$. Using contraction principle, this can be done by:

- Placing another costandard object $M_{K M}^{*, 2 \check{\rho}-\breve{\mu}}$ at $\infty \in \mathbb{P}^{1}$;
- !-pushing $\left.J_{*}^{K M}\left(M_{K \text { KM }}^{!, \check{\lambda}}, M_{K M}^{*, 2 \check{\rho}-\check{\mu}}\right)_{0, \infty}\right|_{\text {tot.deg. }}=2 \check{\rho}$ along the Abel-Jacobi $\operatorname{map} \mathrm{AJ}: \mathfrak{C o n f}_{0, \infty} \rightarrow \operatorname{Bun}_{\check{T}}\left(\mathbb{P}^{1}\right)$;
- Pairing with the (pushforward of) dualizing sheaf of the $\left(\omega_{\mathbb{P}^{1}}^{1 / 2}\right)^{2 \check{\rho}}$-component of $\operatorname{Bun}_{\check{T}}\left(\mathbb{P}^{1}\right)$.

Localization

Set $\operatorname{Bun}_{G}\left(\mathbb{P}^{1}\right)_{0, \infty}:=\operatorname{Bun}_{G}\left(\mathbb{P}^{1}\right) \times(\mathrm{pt} / G \times \mathrm{pt} / G)(\mathrm{pt} / B \times \mathrm{pt} / B)$. There exists a localization functor

$$
\operatorname{Loc}_{G}^{0, \infty}: \hat{\mathfrak{g}}_{\kappa}-\bmod ^{\prime} \otimes \hat{\mathfrak{g}}_{\kappa}-\bmod ^{\prime} \rightarrow \operatorname{DMod}_{\kappa}\left(\operatorname{Bun}_{G}\left(\mathbb{P}^{1}\right)_{0, \infty}\right)
$$

where the !-fiber at the trivial bundle is given by conformal block of the two modules (placed at 0 and ∞) over \mathbb{P}^{1}.

Localization

Set $\operatorname{Bun}_{G}\left(\mathbb{P}^{1}\right)_{0, \infty}:=\operatorname{Bun}_{G}\left(\mathbb{P}^{1}\right) \times(\mathrm{pt} / G \times \mathrm{pt} / G)(\mathrm{pt} / B \times \mathrm{pt} / B)$. There exists a localization functor

$$
\operatorname{Loc}_{G}^{0, \infty}: \hat{\mathfrak{g}}_{\kappa}-\bmod ^{\prime} \otimes \hat{\mathfrak{g}}_{\kappa}-\bmod ^{\prime} \rightarrow \operatorname{DMod}_{\kappa}\left(\operatorname{Bun}_{G}\left(\mathbb{P}^{1}\right)_{0, \infty}\right)
$$

where the !-fiber at the trivial bundle is given by conformal block of the two modules (placed at 0 and ∞) over \mathbb{P}^{1}.

Work of N. Rozenblyum [Roz11] tells us that there is also a chiral localization functor

$$
\operatorname{Loc}_{T, \Omega}: C^{\frac{\infty}{2}}\left(\mathbb{V}_{\kappa}^{0}\right) \text {-FactMod }\left(\operatorname{KL}_{\kappa-\kappa_{\text {crit }}}(T)_{\text {ren }}\right) \rightarrow \operatorname{DMod}_{\kappa-\kappa_{\text {crit }}}\left(\operatorname{Bun}_{T}\left(\mathbb{P}^{1}\right)\right) ;
$$

the !-fiber is more interesting here (intuitively, it computes conformal block with $C^{\frac{\infty}{2}}\left(\mathbb{V}_{\kappa}^{0}\right)$ occupying everywhere away from $\left.0, \infty\right)$.

Let $\mathrm{CT}_{*}: \operatorname{DMod}_{\kappa}\left(\operatorname{Bun}_{G}\left(\mathbb{P}^{1}\right)_{0, \infty}\right) \rightarrow \operatorname{DMod}_{\kappa-\kappa_{\text {crit }}}\left(\operatorname{Bun}_{T}\left(\mathbb{P}^{1}\right)\right)$ denote

 the !-pull-*-push along
(followed by a $\kappa_{\text {crit }}$ shift).

Let $\mathrm{CT}_{*}: \operatorname{DMod}_{\kappa}\left(\operatorname{Bun}_{G}\left(\mathbb{P}^{1}\right)_{0, \infty}\right) \rightarrow \operatorname{DMod}_{\kappa-\kappa_{\text {crit }}}\left(\operatorname{Bun}_{T}\left(\mathbb{P}^{1}\right)\right)$ denote the !-pull-*-push along

(followed by a $\kappa_{\text {crit }}$ shift).
The final piece of folklore that we prove is the commutativity of the following diagram:

$\operatorname{DMod}_{\kappa}\left(\operatorname{Bun}_{G}\left(\mathbb{P}^{1}\right)_{0, \infty}\right) \xrightarrow[\mathrm{CT}_{*}]{ } \operatorname{DMod}_{\kappa-\kappa_{\text {crit }}}\left(\operatorname{Bun}_{T}\left(\mathbb{P}^{1}\right)\right) \xrightarrow[\text { Fourier-Mukai }]{ } \operatorname{DMod}_{\left(\kappa-\kappa_{\text {crit }}\right)^{-1}}\left(\operatorname{Bun}_{\check{T}}\left(\mathbb{P}^{1}\right)\right)$
from which the $*$-fibers can be computed.

Bibliography I

[BFS06] Roman Bezrukavnikov, Michael Finkelberg, and Vadim Schechtman. Factorizable sheaves and quantum groups. Springer, 2006.
[Gai21] Dennis Gaitsgory. "On factorization algebras arising in the quantum geometric langlands theory". In: Advances in Mathematics 391 (2021), p. 107962.
[GR20] Dennis Gaitsgory and Nick Rozenblyum. A study in derived algebraic geometry: Volume II: deformations, Lie theory and formal geometry. Vol. 221. American Mathematical Society, 2020.
[KL94] David Kazhdan and George Lusztig. "Tensor structures arising from affine Lie algebras. IV". In: Journal of the American Mathematical Society 7.2 (1994), pp. 383-453.

Bibliography II

[Lur] Jacob Lurie. Higher Algebra. Available at http://www.math.harvard.edu/~lurie/papers/HA.pdf (2017/09/18).
[Ras20] Sam Raskin. "Homological methods in semi-infinite contexts". In: arXiv preprint arXiv:2002.01395 (2020).
[Roz11] Nikita Rozenblyum. "Connections on conformal blocks". PhD thesis. Massachusetts Institute of Technology, 2011.

