From braids to transverse slices in reductive groups

Wicher Malten¹

¹Mathematical Institute University of Oxford Wicher.Malten@maths.ox.ac.uk

Lie Groups Seminar, Massachusetts Institute of Technology, September 2021

Outline

Wicher Malten Transverse slices in reductive groups

One historical path

• Let G be a reductive group, fix a maximal torus T and denote the Weyl group by $W = N_G(T)/T$, and similarly for its Lie algebra g.

One historical path

- Let G be a reductive group, fix a maximal torus T and denote the Weyl group by $W = N_G(T)/T$, and similarly for its Lie algebra g.
- Around 1969, Grothendieck constructed a simultaneous resolution of the singularities of the fibres of

$$G \longrightarrow G/\!/G \simeq T/W$$

and suggested that (strictly) transverse slices to conjugacy classes at subregular elements should yield universal deformations of the corresponding Du Val-Klein (or "ADE") singularity, and similarly for the Lie algebra.

One historical path

- Let G be a reductive group, fix a maximal torus T and denote the Weyl group by $W = N_G(T)/T$, and similarly for its Lie algebra g.
- Around 1969, Grothendieck constructed a simultaneous resolution of the singularities of the fibres of

$$G \longrightarrow G/\!/G \simeq T/W$$

and suggested that (strictly) transverse slices to conjugacy classes at subregular elements should yield universal deformations of the corresponding Du Val-Klein (or "ADE") singularity, and similarly for the Lie algebra.

• Around 1980, Slowody constructed suitable slices in the Lie *algebra*, and studied this.

Slodowy slices

• They already appear in Harish-Chandra's 1964 work on invariant distributions on Lie algebras.

- They already appear in Harish-Chandra's 1964 work on invariant distributions on Lie algebras.
- They play a crucial role in the classification of certain infinite-dimensional representations appearing in the Langlands program ("Whittaker representations"), due to

- They already appear in Harish-Chandra's 1964 work on invariant distributions on Lie algebras.
- They play a crucial role in the classification of certain infinite-dimensional representations appearing in the Langlands program ("Whittaker representations"), due to
- The fact that they are the semi-classical limits of finite *W*-algebras (and their affine cousins).

- They already appear in Harish-Chandra's 1964 work on invariant distributions on Lie algebras.
- They play a crucial role in the classification of certain infinite-dimensional representations appearing in the Langlands program ("Whittaker representations"), due to
- The fact that they are the semi-classical limits of finite *W*-algebras (and their affine cousins).
- Have recently been applied to reconstruct Khovanov homology (Seidel-Smith, Abouzaid-Smith).

- They already appear in Harish-Chandra's 1964 work on invariant distributions on Lie algebras.
- They play a crucial role in the classification of certain infinite-dimensional representations appearing in the Langlands program ("Whittaker representations"), due to
- The fact that they are the semi-classical limits of finite *W*-algebras (and their affine cousins).
- Have recently been applied to reconstruct Khovanov homology (Seidel-Smith, Abouzaid-Smith).
- Appear in the work of numerous physicists on supersymmetric gauge theories (Gaoitto, Witten, etc.).

The Kostant Slice

Kostant's slice: fixing a principal nilpotent element e in g, the Jacobson-Morozov theorem furnishes an embedding
 (e, h, f) = sl₂ → g; set s := e + ker ad f ⊂ g. It comes with
 two different cross section statements (from 1963 and 1978):

The Kostant Slice

- Kostant's slice: fixing a principal nilpotent element e in g, the Jacobson-Morozov theorem furnishes an embedding
 (e, h, f) = sl₂ → g; set s := e + ker ad f ⊂ g. It comes with
 two different cross section statements (from 1963 and 1978):
- The composition

$$\mathfrak{s} \hookrightarrow \mathfrak{g} \longrightarrow \mathfrak{g}/\!/ G \simeq \mathfrak{t}/W$$

is an isomorphism.

The Kostant Slice

- Kostant's slice: fixing a principal nilpotent element e in g, the Jacobson-Morozov theorem furnishes an embedding
 (e, h, f) = sl₂ → g; set s := e + ker ad f ⊂ g. It comes with
 two different cross section statements (from 1963 and 1978):
- The composition

$$\mathfrak{s} \hookrightarrow \mathfrak{g} \longrightarrow \mathfrak{g}/\!/ G \simeq \mathfrak{t}/W$$

is an isomorphism.

Denote by N₊ = [B, B] the unipotent radical of a Borel subgroup B, by N₋ its opposite.

The Kostant Slice

- Kostant's slice: fixing a principal nilpotent element e in g, the Jacobson-Morozov theorem furnishes an embedding
 (e, h, f) = sl₂ → g; set s := e + ker ad f ⊂ g. It comes with
 two different cross section statements (from 1963 and 1978):
- The composition

$$\mathfrak{s} \hookrightarrow \mathfrak{g} \twoheadrightarrow \mathfrak{g} /\!\!/ G \simeq \mathfrak{t} / W$$

is an isomorphism.

- Denote by N₊ = [B, B] the unipotent radical of a Borel subgroup B, by N₋ its opposite.
- The adjoint action map

$$N_+ imes \mathfrak{s} \longrightarrow e + \mathfrak{n}_+^\perp =: \mu^{-1}(e)$$

is an isomorphism, where $\mathfrak{n}_+^\perp=\mathfrak{b}_+$ denotes the Killing form complement to $\mathfrak{n}_+.$

The Steinberg Slice

• For $w \in W$, write

$$N_w := N_+ \cap w^{-1} N_- w = \prod_{\beta \in \mathfrak{R}_w} N_\beta,$$

where \mathfrak{R}_w is the set of positive roots made negative by w, and by T^w the points in T fixed by \dot{w} .

The Steinberg Slice

• For $w \in W$, write

$$N_w := N_+ \cap w^{-1} N_- w = \prod_{\beta \in \mathfrak{R}_w} N_\beta,$$

where \mathfrak{R}_w is the set of positive roots made negative by w, and by T^w the points in T fixed by \dot{w} .

Steinberg's slice comes with similar cross sections (1965): if G is simply-connected and w a Coxeter element and S := wNw,

$$S \hookrightarrow G \longrightarrow G //G \simeq T/W$$

is an isomorphism.

The Steinberg Slice

• For $w \in W$, write

$$N_w := N_+ \cap w^{-1} N_- w = \prod_{\beta \in \mathfrak{R}_w} N_\beta,$$

where \mathfrak{R}_w is the set of positive roots made negative by w, and by T^w the points in T fixed by \dot{w} .

Steinberg's slice comes with similar cross sections (1965): if G is simply-connected and w a Coxeter element and S := wNw,

$$S \longrightarrow G \longrightarrow G //G \simeq T/W$$

is an isomorphism.

• Moreover, so is the conjugation action

$$N_+ \times S \longrightarrow N_+ \dot{w} N_+, \qquad (n,s) \longmapsto n^{-1} sn$$

The Steinberg Slice

• For $w \in W$, write

$$N_w := N_+ \cap w^{-1} N_- w = \prod_{\beta \in \mathfrak{R}_w} N_\beta,$$

where \mathfrak{R}_w is the set of positive roots made negative by w, and by T^w the points in T fixed by \dot{w} .

Steinberg's slice comes with similar cross sections (1965): if G is simply-connected and w a Coxeter element and S := wNw,

$$S \longrightarrow G \longrightarrow G //G \simeq T/W$$

is an isomorphism.

• Moreover, so is the conjugation action

$$N_+ \times S \longrightarrow N_+ \dot{w} N_+, \qquad (n,s) \longmapsto n^{-1} s n$$

• (Proof of the second cross section is missing!!)

The Steinberg Slice

Example

Let $G = SL_{r+1}$ over a commutative ring A and consider the Coxeter element $w = s_1 \cdots s_r$. A suitable lift \dot{w} yields the Steinberg slice of Frobenius companion matrices

Generalisations

• Slodowy slices are constructed out of nilpotent elements, whereas Steinberg's slice is constructed out of Coxeter elements in the Weyl group.

Generalisations

- Slodowy slices are constructed out of nilpotent elements, whereas Steinberg's slice is constructed out of Coxeter elements in the Weyl group.
- In the late 1970s, Spaltenstein tried generalising Steinberg's slice to conjugates of Coxeter elements and noticed this second cross section property fails in type A_5 for

 $w = s_2 s_1 s_4 s_3 s_5 s_4 s_3 s_2 s_1.$

Generalisations

- Slodowy slices are constructed out of nilpotent elements, whereas Steinberg's slice is constructed out of Coxeter elements in the Weyl group.
- In the late 1970s, Spaltenstein tried generalising Steinberg's slice to conjugates of Coxeter elements and noticed this second cross section property fails in type A_5 for

 $w = s_2 s_1 s_4 s_3 s_5 s_4 s_3 s_2 s_1.$

• In 2011, Sevostyanov constructed slices out of Weyl group elements whose "eigenspaces" in the reflection representation can be ordered "nicely" w.r.t. the dominant Weyl chamber.

Generalisations

- Slodowy slices are constructed out of nilpotent elements, whereas Steinberg's slice is constructed out of Coxeter elements in the Weyl group.
- In the late 1970s, Spaltenstein tried generalising Steinberg's slice to conjugates of Coxeter elements and noticed this second cross section property fails in type A_5 for

 $w = s_2 s_1 s_4 s_3 s_5 s_4 s_3 s_2 s_1.$

- In 2011, Sevostyanov constructed slices out of Weyl group elements whose "eigenspaces" in the reflection representation can be ordered "nicely" w.r.t. the dominant Weyl chamber.
- In 2012 (independently), He-Lusztig constructed slices of out *elliptic* Weyl group elements (= no fixed points in the reflection representation) which have minimal length.

An example

Example

to

Let $G = SL_3$ over a commutative ring and $w := s_1 s_2 s_1$. The cross section statement asks whether the conjugation map

$$\begin{pmatrix} \begin{bmatrix} 1 & n_1 & n_{12} \\ 0 & 1 & n_2 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} x_1 & x_{12} & t \\ x_2 & -t^{-2} & 0 \\ t & 0 & 0 \end{bmatrix} \end{pmatrix} \in N_+ \times \dot{w} T^w N_+$$
$$\begin{bmatrix} n_{12}t + x_1 + n_{1}x_2 & -n_1(n_{12}t + x_1 + n_{1}x_2) & n_1n_2t^{-2} + t - n_2x_{12} + (n_1n_2 - n_{12})(n_{12}t + x_1 + n_{1}x_2) \\ n_2t + x_2 & -t^{-2} - n_1(n_2t + x_2) & n_1t^{-2} + (n_1n_2 - n_{12})(n_2t + x_1 + n_{1}x_2) \\ t & -n_1t & (n_1n_2 - n_{12})t \end{bmatrix}$$

in $N_+ \dot{w} T^w N_+$ is an isomorphism.

Dissimilarity

• Sevostyanov's conditions work for *some* elements in each conjugacy class

Dissimilarity

• Sevostyanov's conditions work for *some* elements in each conjugacy class

Lemma

But only for the two bipartite Coxeter elements

Dissimilarity

• Sevostyanov's conditions work for *some* elements in each conjugacy class

Lemma

But only for the two bipartite Coxeter elements

• He-Lusztig: all elliptic elements of minimal length, e.g.:

Dissimilarity

• Sevostyanov's conditions work for *some* elements in each conjugacy class

Lemma

But only for the two bipartite Coxeter elements

• He-Lusztig: all elliptic elements of minimal length, e.g.:

Example

All Coxeter elements are elliptic, and in type A all elliptic elements are conjugate to Coxeter elements.

Dissimilarity

• Sevostyanov's conditions work for *some* elements in each conjugacy class

Lemma

But only for the two bipartite Coxeter elements

• He-Lusztig: all elliptic elements of minimal length, e.g.:

Example

All Coxeter elements are elliptic, and in type A all elliptic elements are conjugate to Coxeter elements.

Outside of type A, there are always more.

Dissimilarity

• Sevostyanov's conditions work for *some* elements in each conjugacy class

Lemma

But only for the two bipartite Coxeter elements

• He-Lusztig: all elliptic elements of minimal length, e.g.:

Example

All Coxeter elements are elliptic, and in type A all elliptic elements are conjugate to Coxeter elements.

Outside of type A, there are always more.

• Sevostyanov's 2019 computations show that in order to construct strictly transverse slices to *all* conjugacy classes in reductive groups, you need to use most non-elliptic classes.

The braid monoid: definition

• Weyl groups are examples of finite Coxeter groups, which have a presentation

$$W = \langle s_1, \ldots, s_{\mathrm{rk}} : s_i s_j s_i \cdots = s_j s_i s_j \cdots, s_i^2 = 1 \rangle_{\mathrm{grp}}$$

The braid monoid: definition

• Weyl groups are examples of finite Coxeter groups, which have a presentation

$$W = \langle s_1, \ldots, s_{\mathrm{rk}} : s_i s_j s_i \cdots = s_j s_i s_j \cdots, s_i^2 = 1 \rangle_{\mathrm{grp}}$$

• The corresponding braid monoid is given by

$$B^+:=B^+_W:=\langle b_1,\ldots,b_{
m rk}:b_ib_jb_i\cdots=b_jb_ib_j\cdots
angle_{
m mon}$$

The braid monoid: definition

 Weyl groups are examples of finite Coxeter groups, which have a presentation

$$W = \langle s_1, \dots, s_{\mathrm{rk}} : s_i s_j s_i \dots = s_j s_i s_j \dots, s_i^2 = 1 \rangle_{\mathrm{grp}}$$

• The corresponding braid monoid is given by

$$B^+ := B^+_W := \langle b_1, \dots, b_{\mathrm{rk}} : b_i b_j b_i \dots = b_j b_i b_j \dots
angle_{\mathrm{mon}}$$

• The corresponding (Artin-Tits) braid group is given by

$$B := B_W := \langle b_1, \ldots, b_{\mathrm{rk}} : b_i b_j b_i \cdots = b_j b_i b_j \cdots \rangle_{\mathrm{grp}}$$

The braid monoid: properties

• The braid monoid B^+ embeds into the braid group B.

The braid monoid: properties

- The braid monoid B^+ embeds into the braid group B.
- Moreover, any element in *B* can be expressed as a "fraction" of elements in *B*⁺.

The braid monoid: properties

- The braid monoid B^+ embeds into the braid group B.
- Moreover, any element in *B* can be expressed as a "fraction" of elements in *B*⁺.
- Matsumoto's theorem furnishes a well-defined inclusion of sets

$$W \longrightarrow B^+, \qquad w \longmapsto b_w$$

by picking any reduced expression $w = s_{i_l} \cdots s_{i_1}$ and then mapping w to $b_{i_l} \cdots b_{i_1} =: b_{i_l \cdots i_1} =: b_w$. The elements b_w are called reduced/simple braids.
The braid group: word problem

• Emil Artin (1925) wanted to construct for each element of *B* in type A a unique "word", to be able to distinguish braids.

The braid group: word problem

• Emil Artin (1925) wanted to construct for each element of *B* in type A a unique "word", to be able to distinguish braids.

Example

Let W be of type A₂ and consider

$$b_1b_2\stackrel{?}{=}b_2b_1,$$

The braid group: word problem

• Emil Artin (1925) wanted to construct for each element of *B* in type A a unique "word", to be able to distinguish braids.

Example

Let W be of type A₂ and consider

$$b_1b_2\stackrel{?}{=}b_2b_1,$$

$$b_1b_2b_1\stackrel{?}{=}b_2b_1b_2.$$

The braid group: example

Example

Let W be of type A₄ and consider

Wicher Malten Transverse slices in reductive groups

The braid group: example

Example

Let W be of type A₄ and consider

$$(b_1b_2b_1b_3b_2b_4)^3 \stackrel{?}{=} b_1b_2b_3b_4b_1b_2b_3b_1b_2b_1b_3b_4b_2b_2b_3b_4b_1b_2.$$

Deligne-Garside normal form: definition

• Artin found a solution in type A ("braid/Artin combing")

- Artin found a solution in type A ("braid/Artin combing")
- He then wanted to know when elements are conjugate, but this "word" did not tell him when braids are conjugate

- Artin found a solution in type A ("braid/Artin combing")
- He then wanted to know when elements are conjugate, but this "word" did not tell him when braids are conjugate
- Garside gave a new solution to the word problem that *also* solves the conjugacy problem (~1965).

- Artin found a solution in type A ("braid/Artin combing")
- He then wanted to know when elements are conjugate, but this "word" did not tell him when braids are conjugate
- Garside gave a new solution to the word problem that also solves the conjugacy problem (\sim 1965).
- Roughly speaking, the (right) Deligne-Garside normal form of a *b* braid in B^+ is obtained by decomposing it as a product of reduced braids $b = b_{w_n} \cdots b_{w_1}$, and then making the rightmost factors as large as possible.

- Artin found a solution in type A ("braid/Artin combing")
- He then wanted to know when elements are conjugate, but this "word" did not tell him when braids are conjugate
- Garside gave a new solution to the word problem that *also* solves the conjugacy problem (~1965).
- Roughly speaking, the (right) Deligne-Garside normal form of a *b* braid in B^+ is obtained by decomposing it as a product of reduced braids $b = b_{w_n} \cdots b_{w_1}$, and then making the rightmost factors as large as possible.
- So apparently this yields a unique expression

$$b_{w_m}\cdots b_{w_1} =: \mathrm{DG}_m(b)\cdots \mathrm{DG}_1(b).$$

- Artin found a solution in type A ("braid/Artin combing")
- He then wanted to know when elements are conjugate, but this "word" did not tell him when braids are conjugate
- Garside gave a new solution to the word problem that also solves the conjugacy problem (\sim 1965).
- Roughly speaking, the (right) Deligne-Garside normal form of a *b* braid in B^+ is obtained by decomposing it as a product of reduced braids $b = b_{w_n} \cdots b_{w_1}$, and then making the rightmost factors as large as possible.
- So apparently this yields a unique expression

$$b_{w_m}\cdots b_{w_1} =: \mathrm{DG}_m(b)\cdots \mathrm{DG}_1(b).$$

 We write DG(b) := DG₁(b), and will often identify it with the corresponding Coxeter group element w₁.

Deligne-Garside normal form: back to examples

Example

Let W be of type A₂, now find

$$b_1b_2 = b_{s_1}b_{s_2} = b_{s_1s_2} \neq b_{s_2s_1} = b_2b_1,$$

Deligne-Garside normal form: back to examples

Example

Let W be of type A₂, now find

$$b_1b_2 = b_{s_1}b_{s_2} = b_{s_1s_2} \neq b_{s_2s_1} = b_2b_1,$$

$$b_2b_1b_2=b_{212}=b_{121}=b_1b_2b_1.$$

Deligne-Garside normal form: back to examples

Example

Let W be of type A₂, now find

$$b_1b_2 = b_{s_1}b_{s_2} = b_{s_1s_2} \neq b_{s_2s_1} = b_2b_1,$$

$$b_2b_1b_2 = b_{212} = b_{121} = b_1b_2b_1.$$

Example

Let W be of type A₄, now find

$$(b_1b_2b_1b_3b_2b_4)^3 = b_{23}b_{341231}b_{w_0}$$

= $b_1b_2b_3b_4b_1b_2b_3b_1b_2b_1b_3b_4b_2b_2b_3b_4b_1b_2.$

He-Lusztig's result

• Recall: Steinberg's claim is for Coxeter elements, e.g. $s_1 \cdots s_{\rm rk}$ where rk is the rank of W (or G): the conjugation action

$$N_+ \times \dot{w} N_w \xrightarrow{\sim} N_+ \dot{w} N_+$$

is an isomorphism.

He-Lusztig's result

• Recall: Steinberg's claim is for Coxeter elements, e.g. $s_1 \cdots s_{rk}$ where rk is the rank of W (or G): the conjugation action

$$N_+ \times \dot{w} N_w \xrightarrow{\sim} N_+ \dot{w} N_+$$

is an isomorphism.

• The cross sections of He-Lusztig apply to elliptic elements *w* of minimal length in their conjugacy class, in the same way:

$$N_+ \times \dot{w} N_w \xrightarrow{\sim} N_+ \dot{w} N_+.$$

He-Lusztig's proof

• Ultimately, consists of two major steps:

He-Lusztig's proof

- Ultimately, consists of two major steps:
- (1): Proven "directly" for all elements w, such that DG(b^d_w) = w_o for some integer d ≥ 1. From case-by-case work (Geck-Michel), it was known then that this is true for some elements of minimal length in each elliptic conjugacy class, when d = ord(w).

He-Lusztig's proof

- Ultimately, consists of two major steps:
- (1): Proven "directly" for all elements w, such that DG(b^d_w) = w₀ for some integer d ≥ 1. From case-by-case work (Geck-Michel), it was known then that this is true for some elements of minimal length in each elliptic conjugacy class, when d = ord(w).
- (2): If it is true for an element w = xy with ℓ(w) = ℓ(x) + ℓ(y), then it is also true for w' := yx if ℓ(y) + ℓ(x) = ℓ(w'). From case-by-case work (Geck-Pfeiffer), it was known then that all elliptic elements of minimal length are conjugate to each other by such cyclic shifts.

He-Lusztig's proof

- Ultimately, consists of two major steps:
- (1): Proven "directly" for all elements w, such that DG(b^d_w) = w₀ for some integer d ≥ 1. From case-by-case work (Geck-Michel), it was known then that this is true for some elements of minimal length in each elliptic conjugacy class, when d = ord(w).
- (2): If it is true for an element w = xy with
 ℓ(w) = ℓ(x) + ℓ(y), then it is also true for w' := yx if
 ℓ(y) + ℓ(x) = ℓ(w'). From case-by-case work (Geck-Pfeiffer),
 it was known then that all elliptic elements of minimal length
 are conjugate to each other by such cyclic shifts.
- (2'): Simpler: if w and w' are conjugate by cyclic shifts and $DG(b_w^d) = w_\circ$, then $DG(b_{w'}^{d'}) = w_\circ$ for some d'.

He-Lusztig's proof, tweaked

• So it becomes, over any ring:

He-Lusztig's proof, tweaked

- So it becomes, over any ring:
- (1): Cross section holds if DG(b^d_w) = w_o for some computable integer d ≥ 1, say d = |ℜ₊| ℓ(w) + 1.

He-Lusztig's proof, tweaked

- So it becomes, over any ring:
- (1): Cross section holds if DG(b^d_w) = w_o for some computable integer d ≥ 1, say d = |ℜ₊| ℓ(w) + 1.
- (2): This braid equation holds for all elliptic elements of minimal length.

He-Lusztig's proof, tweaked

- So it becomes, over any ring:
- (1): Cross section holds if DG(b^d_w) = w_o for some computable integer d ≥ 1, say d = |ℜ₊| ℓ(w) + 1.
- (2): This braid equation holds for all elliptic elements of minimal length.

Lemma

Sevostyanov's elliptic elements satisfy this braid equation.

He-Lusztig's proof, tweaked

- So it becomes, over any ring:
- (1): Cross section holds if DG(b^d_w) = w_o for some computable integer d ≥ 1, say d = |ℜ₊| ℓ(w) + 1.
- (2): This braid equation holds for all elliptic elements of minimal length.

Lemma

Sevostyanov's elliptic elements satisfy this braid equation.

• Do his non-elliptic satisfy it? Rarely... but those slices are a bit different!

New definitions: firmly convex elements

• Let *W* be a finite Coxeter group. An element *w* is called *firmly convex* if:

New definitions: firmly convex elements

- Let *W* be a finite Coxeter group. An element *w* is called *firmly convex* if:
 - $\bullet\,$ the subset of roots \mathfrak{R}^w that it fixes, forms a standard parabolic subroot system.

New definitions: firmly convex elements

- Let *W* be a finite Coxeter group. An element *w* is called *firmly convex* if:
 - $\bullet\,$ the subset of roots \mathfrak{R}^w that it fixes, forms a standard parabolic subroot system.
 - + technical condition.

New definitions: firmly convex elements

- Let *W* be a finite Coxeter group. An element *w* is called *firmly convex* if:
 - the subset of roots \mathfrak{R}^w that it fixes, forms a standard parabolic subroot system.
 - + technical condition.

Lemma

 \mathfrak{R}^{w} forms a standard parabolic subsystem if and only if the complement $\mathfrak{R}_{+} \setminus \mathfrak{R}^{w}$ is convex, i.e.: If $\beta_{0}, \beta_{1} \in \mathfrak{R}_{+} \setminus \mathfrak{R}^{w}$ and $c_{0}, c_{1} \in \mathbb{R}_{>0}$ are such that $c_{0}\beta_{0} + c_{1}\beta_{1}$ is again a root, then it lies in $\mathfrak{R}_{+} \setminus \mathfrak{R}^{w}$.

New definitions: braid power bound

Definition

Let w_o denote the longest element of W. Given a firmly convex element w, let w_f denote the longest element of the standard parabolic subsystem \mathfrak{R}^w ; this yields a *braid power bound*

 $W_{\odot}W_{f}$.

New definitions: braid power bound

Definition

Let w_o denote the longest element of W. Given a firmly convex element w, let w_f denote the longest element of the standard parabolic subsystem \mathfrak{R}^w ; this yields a *braid power bound*

 $W_{\odot}W_{f}$.

Example

Let W be of type A₃. If w is reflecting in $\alpha_1 + \alpha_2 + \alpha_3$, then this is $w_{\circ}s_2$.

New definitions: braid power bound

Definition

Let w_o denote the longest element of W. Given a firmly convex element w, let w_f denote the longest element of the standard parabolic subsystem \mathfrak{R}^w ; this yields a *braid power bound*

 $W_{\odot}W_{f}$.

Example

Let W be of type A₃. If w is reflecting in $\alpha_1 + \alpha_2 + \alpha_3$, then this is $w_{\circ}s_2$.

• So
$$\mathfrak{R}_{w_{\circ}w_{f}} = \mathfrak{R}_{+} \backslash \mathfrak{R}^{w}$$
.

New definitions: dominant elements

Definition

Let C denote the dominant Weyl chamber. For any w, let $V_w = im(id - w)$ denote the orthogonal complement to the subset of fixed points ker(id - w) in the reflection representation.

New definitions: dominant elements

Definition

Let *C* denote the dominant Weyl chamber. For any *w*, let $V_w = \operatorname{im}(\operatorname{id} - w)$ denote the orthogonal complement to the subset of fixed points $\operatorname{ker}(\operatorname{id} - w)$ in the reflection representation. Then *w* is called *dominant* if the closure \overline{C} of *C* contains an open subset of V_w .

New definitions: dominant elements

Definition

Let *C* denote the dominant Weyl chamber. For any *w*, let $V_w = \operatorname{im}(\operatorname{id} - w)$ denote the orthogonal complement to the subset of fixed points $\operatorname{ker}(\operatorname{id} - w)$ in the reflection representation. Then *w* is called *dominant* if the closure \overline{C} of *C* contains an open subset of V_w .

Example

Reflection in a root is dominant if and only if this root is the highest root or the highest short root.

New definitions: dominant elements

Lemma

An involution has maximal length if and only if it is dominant.
New definitions: dominant elements

Lemma

An involution has maximal length if and only if it is dominant.

Lemma

For any element w there are implications

 $elliptic \ or \ Sevostyanov \ element \Longrightarrow dominant \Longrightarrow firmly \ convex$

Transversality

 Let G be a manifold (or variety), and let C and S be two submanifolds. We say that the intersection C ∩ S is *transverse* if for all g ∈ C ∩ S, we have

$$T_g G = T_g C + T_g S.$$

Transversality

 Let G be a manifold (or variety), and let C and S be two submanifolds. We say that the intersection C ∩ S is *transverse* if for all g ∈ C ∩ S, we have

$$T_g G = T_g C + T_g S.$$

• We say that the intersection is *strictly transverse* if this is a direct sum, i.e.

$$T_gC\cap T_gS=\{0\}.$$

Inspiration from braids

• For any w, analysing roots shows that

 $\mathfrak{R}_{\mathrm{DG}(b^d_w)} \subseteq \mathfrak{R}_+ \backslash \mathfrak{R}^w.$

Inspiration from braids

• For any w, analysing roots shows that

$$\mathfrak{R}_{\mathrm{DG}(b^d_w)} \subseteq \mathfrak{R}_+ \backslash \mathfrak{R}^w.$$

• By the "convexity" lemma, this inclusion is strict if *w* is not firmly convex; if it is firmly convex then it is equivalent to

 $\mathrm{DG}(b^d_w) \leq w_\circ w_f$

in the left weak Bruhat-Chevalley order.

Inspiration from braids

• For any w, analysing roots shows that

$$\mathfrak{R}_{\mathrm{DG}(b^d_w)} \subseteq \mathfrak{R}_+ \backslash \mathfrak{R}^w.$$

• By the "convexity" lemma, this inclusion is strict if *w* is not firmly convex; if it is firmly convex then it is equivalent to

$$\mathrm{DG}(b^d_w) \leq w_\circ w_f$$

in the left weak Bruhat-Chevalley order.

• We can modify Sevostyanov's definitions to come up with a cross section *statement*

$$N \times \dot{w} L^w N_w \longrightarrow N \dot{w} L^w N$$
,

for any firmly convex element w. Here $N \subseteq N_+$ is generated by root subgroups for roots in $\mathfrak{R}_+ \setminus \mathfrak{R}^w$, whereas L^w is the reductive subgroup "generated" by \mathfrak{R}^w and T^w .

From braids to cross sections

• Can now modify the He-Lusztig proof to:

From braids to cross sections

• Can now modify the He-Lusztig proof to:

Theorem

If w is firmly convex and for some $d \ge 1$ we have

 $\mathrm{DG}(b^d_w) = w_\circ w_f,$

then the conjugation map

$$N \times \dot{w} L^w N_w \longrightarrow N \dot{w} L^w N, \qquad (n,s) \longmapsto n^{-1} sn$$

is an isomorphism, over any commutative ring.

From braids to cross sections

• Can now modify the He-Lusztig proof to:

Theorem

If w is firmly convex and for some $d \ge 1$ we have

 $\mathrm{DG}(b^d_w) = w_\circ w_f,$

then the conjugation map

 $N \times \dot{w} L^w N_w \longrightarrow N \dot{w} L^w N, \qquad (n,s) \longmapsto n^{-1} sn$

is an isomorphism, over any commutative ring.

Lemma

He-Lusztig's and Sevostyanov's elements satisfy this equation.

More?

• How about Poisson structures?

More?

- How about Poisson structures?
- How about transversality?

More?

- How about Poisson structures?
- How about transversality?
- How about strict transversality?

More?

- How about Poisson structures?
- How about transversality?
- How about strict transversality?
- How about the converse?

Poisson structures

• In the late 90s, some people tried to obtain quantum analogues of finite *W*-algebras, but failed to obtain suitable characters.

Poisson structures

- In the late 90s, some people tried to obtain quantum analogues of finite *W*-algebras, but failed to obtain suitable characters.
- Sevostyanov '99 succeeded, by slightly "modifying" the Drinfeld-Jimbo quantum group U_qG .

Poisson structures

- In the late 90s, some people tried to obtain quantum analogues of finite *W*-algebras, but failed to obtain suitable characters.
- Sevostyanov '99 succeeded, by slightly "modifying" the Drinfeld-Jimbo quantum group U_qG .
- Can reinterpret his solution as a Drinfeld twist.

Poisson structures

- In the late 90s, some people tried to obtain quantum analogues of finite *W*-algebras, but failed to obtain suitable characters.
- Sevostyanov '99 succeeded, by slightly "modifying" the Drinfeld-Jimbo quantum group U_qG .
- Can reinterpret his solution as a Drinfeld twist.
- Quasiclassically, this twist corresponds to modifying the Semenov-Tian-Shansky bracket on *G*. Using the cross section isomorphism, can show:

Poisson structures

- In the late 90s, some people tried to obtain quantum analogues of finite *W*-algebras, but failed to obtain suitable characters.
- Sevostyanov '99 succeeded, by slightly "modifying" the Drinfeld-Jimbo quantum group U_qG .
- Can reinterpret his solution as a Drinfeld twist.
- Quasiclassically, this twist corresponds to modifying the Semenov-Tian-Shansky bracket on *G*. Using the cross section isomorphism, can show:

Lemma

This Poisson bracket reduces to a Poisson bracket on the slices if and only if such a twist is made.

Transversality again

• Sevostyanov deduces transversality by combining the cross section statement for w and the cross section statement for w^{-1} .

Transversality again

- Sevostyanov deduces transversality by combining the cross section statement for w and the cross section statement for w^{-1} .
- So we would need: $DG(b_w^d) = w_o w_f$ if and only if $DG(b_{w^{-1}}^{d'}) = w_o w_f$.

Transversality again

- Sevostyanov deduces transversality by combining the cross section statement for w and the cross section statement for w^{-1} .
- So we would need: $DG(b_w^d) = w_o w_f$ if and only if $DG(b_{w^{-1}}^{d'}) = w_o w_f$.

Example

Consider $w = s_3 s_1 s_2 s_3$ in type B₃; it does not fix any roots so it is closed, but for any integer d > 1 we have

$$\mathrm{DGN}(b^d_w) = b^d_w$$
 and $\mathrm{DGN}(b^d_{w^{-1}}) = b_{323}b^{d-2}_w b_{13213}.$

Transversality again

- Sevostyanov deduces transversality by combining the cross section statement for w and the cross section statement for w^{-1} .
- So we would need: $DG(b_w^d) = w_o w_f$ if and only if $DG(b_{w^{-1}}^{d'}) = w_o w_f$.

Example

Consider $w = s_3 s_1 s_2 s_3$ in type B₃; it does not fix any roots so it is closed, but for any integer d > 1 we have

$$\mathrm{DGN}(b_w^d) = b_w^d$$
 and $\mathrm{DGN}(b_{w^{-1}}^d) = b_{323}b_w^{d-2}b_{13213}$.

• We will see that this is true, with d' = d. Surprising... because normally $DG(b_w^d)$ and $DG(b_{w^{-1}}^d)$ are very different!

• The cross section statement is almost a statement about roots.

The converse

- The cross section statement is almost a statement about roots.
- But what is the identity DG(b^d_w) = w_ow_f really doing in the proof?

The converse

- The cross section statement is almost a statement about roots.
- But what is the identity DG(b^d_w) = w_ow_f really doing in the proof?
- \bullet It's trying to make all the roots in $\mathfrak{R}_+ \backslash \mathfrak{R}^w$ negative, step by step:

$$\begin{array}{rcl} \mathrm{DG}(b^d_w) = w_\circ w_f & \Longrightarrow & \mathrm{cross}^d_w(\mathfrak{R}_+ \backslash \mathfrak{R}^w) = \varnothing \\ & \Longrightarrow & \mathrm{cross \ section \ is \ isomorphism} \end{array}$$

Crossing roots

Definition

For any positive root β and w, we obtain a subset of positive roots

$$\operatorname{cross}_{w}(\beta) := \{w(\beta + \sum_{i=1}^{m} \beta_{i}) \in \mathfrak{R} : \beta_{1}, \ldots, \beta_{m} \in \mathfrak{R}_{w}, m \geq 0\} \cap \mathfrak{R}_{+}$$

and for a subset of positive roots $\mathfrak{N}\subseteq\mathfrak{R}_+$ we set

$$\operatorname{cross}_{w}(\mathfrak{N}) := \bigcup_{\beta \in \mathfrak{N}} \operatorname{cross}_{w}(\beta).$$

Crossing roots

Definition

For any positive root β and w, we obtain a subset of positive roots

$$\operatorname{cross}_{w}(\beta) := \{w(\beta + \sum_{i=1}^{m} \beta_{i}) \in \mathfrak{R} : \beta_{1}, \ldots, \beta_{m} \in \mathfrak{R}_{w}, m \geq 0\} \cap \mathfrak{R}_{+}$$

and for a subset of positive roots $\mathfrak{N}\subseteq\mathfrak{R}_+$ we set

$$\operatorname{cross}_{w}(\mathfrak{N}) := \bigcup_{\beta \in \mathfrak{N}} \operatorname{cross}_{w}(\beta).$$

Example

What is $\operatorname{cross}_{w}(\beta)$ when β lies in \mathfrak{R}_{w} ? When $w(\beta)$ is simple?

Crossing roots

Lemma

 For any simple root α not in ℜ_w, the set cross_w(α) contains simple roots.

Crossing roots

Lemma

- For any simple root α not in ℜ_w, the set cross_w(α) contains simple roots.
- Implies: For any other element v of W and integer $d \ge 0$,

 $\mathrm{DG}(b^d_w) \ge v$ if and only if $\mathrm{cross}^d_w(\mathfrak{R}_v) = \varnothing$,

if and only if $\operatorname{cross}^d_w(\mathfrak{R}_v)$ does not contain any simple roots.

Crossing roots

Lemma

- For any simple root α not in ℜ_w, the set cross_w(α) contains simple roots.
- Implies: For any other element v of W and integer $d \ge 0$,

$$\mathrm{DG}(b^d_w) \ge v$$
 if and only if $\mathrm{cross}^d_w(\mathfrak{R}_v) = \varnothing$,

if and only if $\operatorname{cross}^d_w(\mathfrak{R}_v)$ does not contain any simple roots.

In particular: w is firmly convex and satisfies the braid equation DG(b^d_w) = w_ow_f if and only if cross^d_w(ℜ₊\ℜ^w) = Ø.

Crossing roots

Lemma

- For any simple root α not in ℜ_w, the set cross_w(α) contains simple roots.
- Implies: For any other element v of W and integer $d \ge 0$,

$$\mathrm{DG}(b^d_w) \ge v$$
 if and only if $\mathrm{cross}^d_w(\mathfrak{R}_v) = \varnothing$,

if and only if $\mathrm{cross}^d_w(\mathfrak{R}_v)$ does not contain any simple roots.

- In particular: w is firmly convex and satisfies the braid equation DG(b^d_w) = w_ow_f if and only if cross^d_w(ℜ₊\ℜ^w) = Ø.
- And that easily implies: if w is firmly convex then $DG(b_w^d) = w_o w_f$ if and only if $DG(b_{w^{-1}}^d) = w_o w_f$.

Strict transversality: minimally dominant elements

Definitions

A dominant element is called *minimally dominant* if its length is minimal among the dominant elements in its conjugacy class.

Strict transversality: minimally dominant elements

Definitions

A dominant element is called *minimally dominant* if its length is minimal among the dominant elements in its conjugacy class.

Example

For elliptic conjugacy classes, "minimally dominant" = "has minimal length".

Strict transversality: minimally dominant elements

Definitions

A dominant element is called *minimally dominant* if its length is minimal among the dominant elements in its conjugacy class.

Example

For elliptic conjugacy classes, "minimally dominant" = "has minimal length".

Lemma

For (nontrivial) non-elliptic conjugacy classes, minimally dominant elements never have minimal length.

Braid powers of minimally dominant elements

• Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that $DG(b_w^{ord(w)}) = w_\circ$

Braid powers of minimally dominant elements

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that DG(b_w^{ord(w)}) = w_o
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts
- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that DG(b_w^{ord(w)}) = w_o
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts
- Combine: \Rightarrow they all satisfy $DG(b_w^d) = w_\circ$ for some d

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that $DG(b_w^{ord(w)}) = w_\circ$
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts
- Combine: \Rightarrow they all satisfy $DG(b_w^d) = w_\circ$ for some d

Lemma

Every conjugacy class contains a minimally dominant element w such that $\mathrm{DG}(b^{\mathrm{ord}(w)}_w)=w_\circ w_f$, and

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that $DG(b_w^{ord(w)}) = w_\circ$
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts
- Combine: \Rightarrow they all satisfy $DG(b_w^d) = w_\circ$ for some d

Lemma

Every conjugacy class contains a minimally dominant element w such that $DG(b_w^{ord(w)}) = w_o w_f$, and minimally dominant elements are conjugate by cyclic shifts

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that $DG(b_w^{ord(w)}) = w_\circ$
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts
- Combine: \Rightarrow they all satisfy $DG(b_w^d) = w_\circ$ for some d

Lemma

Every conjugacy class contains a minimally dominant element w such that $DG(b_w^{ord(w)}) = w_o w_f$, and minimally dominant elements are conjugate by cyclic shifts

• Combine: \Rightarrow they all satisfy $DG(b_w^d) = w_\circ w_f$ for some d

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that DG(b_w^{ord(w)}) = w_o
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts
- Combine: \Rightarrow they all satisfy $DG(b^d_w) = w_\circ$ for some d

Lemma

Every conjugacy class contains a minimally dominant element w such that $DG(b_w^{ord(w)}) = w_o w_f$, and minimally dominant elements are conjugate by cyclic shifts

- Combine: \Rightarrow they all satisfy $DG(b_w^d) = w_\circ w_f$ for some d
- So by the previous theorem, they all yield transverse slices!

Strict transversality and minimally dominant elements

• In 2019, Sevostyanov showed that a subset of his elements yield strictly transverse slices (by using Lusztig's partition).

Strict transversality and minimally dominant elements

- In 2019, Sevostyanov showed that a subset of his elements yield strictly transverse slices (by using Lusztig's partition).
- He already knew they were transverse, so his main ingredient is a case-by-case dimension calculation.

Strict transversality and minimally dominant elements

- In 2019, Sevostyanov showed that a subset of his elements yield strictly transverse slices (by using Lusztig's partition).
- He already knew they were transverse, so his main ingredient is a case-by-case dimension calculation.
- Can show that these elements are all minimally dominant.

Strict transversality and minimally dominant elements

- In 2019, Sevostyanov showed that a subset of his elements yield strictly transverse slices (by using Lusztig's partition).
- He already knew they were transverse, so his main ingredient is a case-by-case dimension calculation.
- Can show that these elements are all minimally dominant.
- Can now deduce that all minimally dominant elements in these conjugacy classes yield strictly transverse slices!

Final statement

Theorem

Let C be a conjugacy class of a connected reductive group over an algebraically closed field, and let w be a minimally dominant element in the corresponding conjugacy class in Lusztig's partition.

Final statement

Theorem

Let C be a conjugacy class of a connected reductive group over an algebraically closed field, and let w be a minimally dominant element in the corresponding conjugacy class in Lusztig's partition.

Then C is strictly transversally intersected by $\dot{w}L^w N_w$, and this slice inherits a natural Poisson structure.

- Thanks for listening!!
- Questions? Ideas??
- w.malten@gmail.com