From braids to transverse slices in reductive groups

Wicher Malten ${ }^{1}$
${ }^{1}$ Mathematical Institute University of Oxford
Wicher.Malten@maths.ox.ac.uk

Lie Groups Seminar, Massachusetts Institute of Technology, September 2021

Outline

(1) Background
(2) He-Lusztig's work
(3) My work
(4) End

One historical path

- Let G be a reductive group, fix a maximal torus T and denote the Weyl group by $W=N_{G}(T) / T$, and similarly for its Lie algebra \mathfrak{g}.

One historical path

- Let G be a reductive group, fix a maximal torus T and denote the Weyl group by $W=N_{G}(T) / T$, and similarly for its Lie algebra \mathfrak{g}.
- Around 1969, Grothendieck constructed a simultaneous resolution of the singularities of the fibres of

$$
G \longrightarrow G / / G \simeq T / W
$$

and suggested that (strictly) transverse slices to conjugacy classes at subregular elements should yield universal deformations of the corresponding Du Val-Klein (or "ADE") singularity, and similarly for the Lie algebra.

One historical path

- Let G be a reductive group, fix a maximal torus T and denote the Weyl group by $W=N_{G}(T) / T$, and similarly for its Lie algebra \mathfrak{g}.
- Around 1969, Grothendieck constructed a simultaneous resolution of the singularities of the fibres of

$$
G \longrightarrow G / / G \simeq T / W
$$

and suggested that (strictly) transverse slices to conjugacy classes at subregular elements should yield universal deformations of the corresponding Du Val-Klein (or "ADE") singularity, and similarly for the Lie algebra.

- Around 1980, Slowody constructed suitable slices in the Lie algebra, and studied this.

Slodowy slices

- They already appear in Harish-Chandra's 1964 work on invariant distributions on Lie algebras.

Slodowy slices

- They already appear in Harish-Chandra's 1964 work on invariant distributions on Lie algebras.
- They play a crucial role in the classification of certain infinite-dimensional representations appearing in the Langlands program ("Whittaker representations"), due to

Slodowy slices

- They already appear in Harish-Chandra's 1964 work on invariant distributions on Lie algebras.
- They play a crucial role in the classification of certain infinite-dimensional representations appearing in the Langlands program ("Whittaker representations"), due to
- The fact that they are the semi-classical limits of finite W-algebras (and their affine cousins).

Slodowy slices

- They already appear in Harish-Chandra's 1964 work on invariant distributions on Lie algebras.
- They play a crucial role in the classification of certain infinite-dimensional representations appearing in the Langlands program ("Whittaker representations"), due to
- The fact that they are the semi-classical limits of finite W-algebras (and their affine cousins).
- Have recently been applied to reconstruct Khovanov homology (Seidel-Smith, Abouzaid-Smith).

Slodowy slices

- They already appear in Harish-Chandra's 1964 work on invariant distributions on Lie algebras.
- They play a crucial role in the classification of certain infinite-dimensional representations appearing in the Langlands program ("Whittaker representations"), due to
- The fact that they are the semi-classical limits of finite W-algebras (and their affine cousins).
- Have recently been applied to reconstruct Khovanov homology (Seidel-Smith, Abouzaid-Smith).
- Appear in the work of numerous physicists on supersymmetric gauge theories (Gaoitto, Witten, etc.).

The Kostant Slice

- Kostant's slice: fixing a principal nilpotent element e in \mathfrak{g}, the Jacobson-Morozov theorem furnishes an embedding $\langle e, h, f\rangle=\mathfrak{s l}_{2} \hookrightarrow \mathfrak{g}$; set $\mathfrak{s}:=e+\operatorname{ker} \operatorname{ad} f \subset \mathfrak{g}$. It comes with two different cross section statements (from 1963 and 1978):

The Kostant Slice

- Kostant's slice: fixing a principal nilpotent element e in \mathfrak{g}, the Jacobson-Morozov theorem furnishes an embedding $\langle e, h, f\rangle=\mathfrak{s l}_{2} \hookrightarrow \mathfrak{g}$; set $\mathfrak{s}:=e+\operatorname{ker} \operatorname{ad} f \subset \mathfrak{g}$. It comes with two different cross section statements (from 1963 and 1978):
- The composition

$$
\mathfrak{s} \longleftrightarrow \mathfrak{g} \longrightarrow \mathfrak{g} / / G \simeq \mathfrak{t} / W
$$

is an isomorphism.

The Kostant Slice

- Kostant's slice: fixing a principal nilpotent element e in \mathfrak{g}, the Jacobson-Morozov theorem furnishes an embedding $\langle e, h, f\rangle=\mathfrak{s l}_{2} \hookrightarrow \mathfrak{g}$; set $\mathfrak{s}:=e+\operatorname{ker} \operatorname{ad} f \subset \mathfrak{g}$. It comes with two different cross section statements (from 1963 and 1978):
- The composition

$$
\mathfrak{s} \longleftrightarrow \mathfrak{g} \longrightarrow \mathfrak{g} / / G \simeq \mathfrak{t} / W
$$

is an isomorphism.

- Denote by $N_{+}=[B, B]$ the unipotent radical of a Borel subgroup B, by N_{-}its opposite.

The Kostant Slice

- Kostant's slice: fixing a principal nilpotent element e in \mathfrak{g}, the Jacobson-Morozov theorem furnishes an embedding $\langle e, h, f\rangle=\mathfrak{s l}_{2} \hookrightarrow \mathfrak{g}$; set $\mathfrak{s}:=e+\operatorname{ker} \operatorname{ad} f \subset \mathfrak{g}$. It comes with two different cross section statements (from 1963 and 1978):
- The composition

$$
\mathfrak{s} \longleftrightarrow \mathfrak{g} \longrightarrow \mathfrak{g} / / G \simeq \mathfrak{t} / W
$$

is an isomorphism.

- Denote by $N_{+}=[B, B]$ the unipotent radical of a Borel subgroup B, by N_{-}its opposite.
- The adjoint action map

$$
N_{+} \times \mathfrak{s} \longrightarrow e+\mathfrak{n}_{+}^{\perp}=: \mu^{-1}(e)
$$

is an isomorphism, where $\mathfrak{n}_{+}^{\perp}=\mathfrak{b}_{+}$denotes the Killing form complement to \mathfrak{n}_{+}.

The Steinberg Slice

- For $w \in W$, write

$$
N_{w}:=N_{+} \cap w^{-1} N_{-} w=\prod_{\beta \in \Re_{w}} N_{\beta},
$$

where \mathfrak{R}_{w} is the set of positive roots made negative by w, and by T^{w} the points in T fixed by \dot{w}.

The Steinberg Slice

- For $w \in W$, write

$$
N_{w}:=N_{+} \cap w^{-1} N_{-} w=\prod_{\beta \in \Re_{w}} N_{\beta},
$$

where \mathfrak{R}_{w} is the set of positive roots made negative by w, and by T^{w} the points in T fixed by \dot{w}.

- Steinberg's slice comes with similar cross sections (1965): if G is simply-connected and w a Coxeter element and $S:=\dot{w} N_{w}$,

$$
S \hookrightarrow G \longrightarrow G / / G \simeq T / W
$$

is an isomorphism.

The Steinberg Slice

- For $w \in W$, write

$$
N_{w}:=N_{+} \cap w^{-1} N_{-} w=\prod_{\beta \in \Re_{w}} N_{\beta},
$$

where \mathfrak{R}_{w} is the set of positive roots made negative by w, and by T^{w} the points in T fixed by \dot{w}.

- Steinberg's slice comes with similar cross sections (1965): if G is simply-connected and w a Coxeter element and $S:=\dot{w} N_{w}$,

$$
S \hookrightarrow G \longrightarrow G / / G \simeq T / W
$$

is an isomorphism.

- Moreover, so is the conjugation action

$$
N_{+} \times S \longrightarrow N_{+} \dot{W} N_{+}, \quad(n, s) \longmapsto n^{-1} s n
$$

The Steinberg Slice

- For $w \in W$, write

$$
N_{w}:=N_{+} \cap w^{-1} N_{-} w=\prod_{\beta \in \Re_{w}} N_{\beta},
$$

where \mathfrak{R}_{w} is the set of positive roots made negative by w, and by T^{w} the points in T fixed by \dot{w}.

- Steinberg's slice comes with similar cross sections (1965): if G is simply-connected and w a Coxeter element and $S:=\dot{w} N_{w}$,

$$
S \longleftrightarrow G \longrightarrow G / / G \simeq T / W
$$

is an isomorphism.

- Moreover, so is the conjugation action

$$
N_{+} \times S \longrightarrow N_{+} \dot{W} N_{+}, \quad(n, s) \longmapsto n^{-1} s n
$$

- (Proof of the second cross section is missing!!)

The Steinberg Slice

Example

Let $G=\mathrm{SL}_{r+1}$ over a commutative ring \mathcal{A} and consider the Coxeter element $w=s_{1} \cdots s_{r}$. A suitable lift \dot{w} yields the Steinberg slice of Frobenius companion matrices

$$
\dot{w} N_{w}=\left\{\left[\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 \\
(-1)^{r} & c_{r} & \cdots & c_{2} & c_{1}
\end{array}\right]: c_{1}, \ldots, c_{r} \in \mathcal{A}\right\} .
$$

Generalisations

- Slodowy slices are constructed out of nilpotent elements, whereas Steinberg's slice is constructed out of Coxeter elements in the Weyl group.

Generalisations

- Slodowy slices are constructed out of nilpotent elements, whereas Steinberg's slice is constructed out of Coxeter elements in the Weyl group.
- In the late 1970s, Spaltenstein tried generalising Steinberg's slice to conjugates of Coxeter elements and noticed this second cross section property fails in type A_{5} for

$$
w=s_{2} s_{1} s_{4} s_{3} s_{5} s_{4} s_{3} s_{2} s_{1}
$$

Generalisations

- Slodowy slices are constructed out of nilpotent elements, whereas Steinberg's slice is constructed out of Coxeter elements in the Weyl group.
- In the late 1970s, Spaltenstein tried generalising Steinberg's slice to conjugates of Coxeter elements and noticed this second cross section property fails in type A_{5} for

$$
w=s_{2} s_{1} s_{4} s_{3} s_{5} s_{4} s_{3} s_{2} s_{1}
$$

- In 2011, Sevostyanov constructed slices out of Weyl group elements whose "eigenspaces" in the reflection representation can be ordered "nicely" w.r.t. the dominant Weyl chamber.

Generalisations

- Slodowy slices are constructed out of nilpotent elements, whereas Steinberg's slice is constructed out of Coxeter elements in the Weyl group.
- In the late 1970s, Spaltenstein tried generalising Steinberg's slice to conjugates of Coxeter elements and noticed this second cross section property fails in type A_{5} for

$$
w=S_{2} S_{1} S_{4} S_{3} S_{5} S_{4} S_{3} S_{2} S_{1}
$$

- In 2011, Sevostyanov constructed slices out of Weyl group elements whose "eigenspaces" in the reflection representation can be ordered "nicely" w.r.t. the dominant Weyl chamber.
- In 2012 (independently), He-Lusztig constructed slices of out elliptic Weyl group elements (= no fixed points in the reflection representation) which have minimal length.

An example

Example

Let $G=\mathrm{SL}_{3}$ over a commutative ring and $w:=s_{1} s_{2} s_{1}$. The cross section statement asks whether the conjugation map

$$
\left(\left[\begin{array}{ccc}
1 & n_{1} & n_{12} \\
0 & 1 & n_{2} \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
x_{1} & x_{12} & t \\
x_{2} & -t^{-2} & 0 \\
t & 0 & 0
\end{array}\right]\right) \in N_{+} \times \dot{w} T^{w} N_{+}
$$

to

$$
\left[\begin{array}{ccc}
n_{12} t+x_{1}+n_{1} x_{2} & -n_{1} t^{-2}+x_{12}-n_{1}\left(n_{12} t+x_{1}+n_{1} x_{2}\right) & n_{1} n_{2} t^{-2}+t-n_{2} x_{12}+\left(n_{1} n_{2}-n_{12}\right)\left(n_{12} t+x_{1}+n_{1} x_{2}\right) \\
n_{2} t+x_{2} & -t^{-2}-n_{1}\left(n_{2} t+x_{2}\right) & n_{2} t^{-2}+\left(n_{1} n_{2}-n_{12}\right)\left(n_{2} t+x_{2}\right) \\
t & -n_{1} t & \left(n_{1} n_{2}-n_{12}\right) t
\end{array}\right]
$$

in $N_{+} \dot{W} T^{w} N_{+}$is an isomorphism.

Dissimilarity

- Sevostyanov's conditions work for some elements in each conjugacy class

Dissimilarity

- Sevostyanov's conditions work for some elements in each conjugacy class

Lemma
But only for the two bipartite Coxeter elements

Dissimilarity

- Sevostyanov's conditions work for some elements in each conjugacy class

Lemma

But only for the two bipartite Coxeter elements

- He-Lusztig: all elliptic elements of minimal length, e.g.:

Dissimilarity

- Sevostyanov's conditions work for some elements in each conjugacy class

Lemma

But only for the two bipartite Coxeter elements

- He-Lusztig: all elliptic elements of minimal length, e.g.:

Example

All Coxeter elements are elliptic, and in type A all elliptic elements are conjugate to Coxeter elements.

Dissimilarity

- Sevostyanov's conditions work for some elements in each conjugacy class

Lemma

But only for the two bipartite Coxeter elements

- He-Lusztig: all elliptic elements of minimal length, e.g.:

Example

All Coxeter elements are elliptic, and in type A all elliptic elements are conjugate to Coxeter elements.
Outside of type A, there are always more.

Dissimilarity

- Sevostyanov's conditions work for some elements in each conjugacy class

Lemma

But only for the two bipartite Coxeter elements

- He-Lusztig: all elliptic elements of minimal length, e.g.:

Example

All Coxeter elements are elliptic, and in type A all elliptic elements are conjugate to Coxeter elements.
Outside of type A, there are always more.

- Sevostyanov's 2019 computations show that in order to construct strictly transverse slices to all conjugacy classes in reductive groups, you need to use most non-elliptic classes.

The braid monoid: definition

- Weyl groups are examples of finite Coxeter groups, which have a presentation

$$
W=\left\langle s_{1}, \ldots, s_{\mathrm{rk}}: s_{i} s_{j} s_{i} \cdots=s_{j} s_{i} s_{j} \cdots, s_{i}^{2}=1\right\rangle_{\mathrm{grp}}
$$

The braid monoid: definition

- Weyl groups are examples of finite Coxeter groups, which have a presentation

$$
W=\left\langle s_{1}, \ldots, s_{\mathrm{rk}}: s_{i} s_{j} s_{i} \cdots=s_{j} s_{i} s_{j} \cdots, s_{i}^{2}=1\right\rangle_{\mathrm{grp}}
$$

- The corresponding braid monoid is given by

$$
B^{+}:=B_{W}^{+}:=\left\langle b_{1}, \ldots, b_{\mathrm{rk}}: b_{i} b_{j} b_{i} \cdots=b_{j} b_{i} b_{j} \cdots\right\rangle_{\mathrm{mon}}
$$

The braid monoid: definition

- Weyl groups are examples of finite Coxeter groups, which have a presentation

$$
W=\left\langle s_{1}, \ldots, s_{\mathrm{rk}}: s_{i} s_{j} s_{i} \cdots=s_{j} s_{i} s_{j} \cdots, s_{i}^{2}=1\right\rangle_{\mathrm{grp}}
$$

- The corresponding braid monoid is given by

$$
B^{+}:=B_{W}^{+}:=\left\langle b_{1}, \ldots, b_{\mathrm{rk}}: b_{i} b_{j} b_{i} \cdots=b_{j} b_{i} b_{j} \cdots\right\rangle_{\mathrm{mon}}
$$

- The corresponding (Artin-Tits) braid group is given by

$$
B:=B_{W}:=\left\langle b_{1}, \ldots, b_{\mathrm{rk}}: b_{i} b_{j} b_{i} \cdots=b_{j} b_{i} b_{j} \cdots\right\rangle_{\mathrm{grp}}
$$

The braid monoid: properties

- The braid monoid B^{+}embeds into the braid group B.

The braid monoid: properties

- The braid monoid B^{+}embeds into the braid group B.
- Moreover, any element in B can be expressed as a "fraction" of elements in B^{+}.

The braid monoid: properties

- The braid monoid B^{+}embeds into the braid group B.
- Moreover, any element in B can be expressed as a "fraction" of elements in B^{+}.
- Matsumoto's theorem furnishes a well-defined inclusion of sets

$$
W \longrightarrow B^{+}, \quad w \longmapsto b_{w}
$$

by picking any reduced expression $w=s_{i_{1}} \cdots s_{i_{1}}$ and then mapping w to $b_{i_{l}} \cdots b_{i_{1}}=: b_{i_{l} \cdots i_{1}}=: b_{w}$. The elements b_{w} are called reduced/simple braids.

The braid group: word problem

- Emil Artin (1925) wanted to construct for each element of B in type A a unique "word", to be able to distinguish braids.

The braid group: word problem

- Emil Artin (1925) wanted to construct for each element of B in type A a unique "word", to be able to distinguish braids.

Example

Let W be of type A_{2} and consider

$$
b_{1} b_{2} \stackrel{?}{=} b_{2} b_{1},
$$

The braid group: word problem

- Emil Artin (1925) wanted to construct for each element of B in type A a unique "word", to be able to distinguish braids.

Example

Let W be of type A_{2} and consider

$$
\begin{gathered}
b_{1} b_{2} \stackrel{?}{=} b_{2} b_{1} \\
b_{1} b_{2} b_{1} \stackrel{?}{=} b_{2} b_{1} b_{2}
\end{gathered}
$$

The braid group: example

Example

Let W be of type A_{4} and consider

The braid group: example

Example

Let W be of type A_{4} and consider
$\left(b_{1} b_{2} b_{1} b_{3} b_{2} b_{4}\right)^{3} \stackrel{?}{=} b_{1} b_{2} b_{3} b_{4} b_{1} b_{2} b_{3} b_{1} b_{2} b_{1} b_{3} b_{4} b_{2} b_{2} b_{3} b_{4} b_{1} b_{2}$.

Deligne-Garside normal form: definition

- Artin found a solution in type A ("braid/Artin combing")

Deligne-Garside normal form: definition

- Artin found a solution in type A ("braid/Artin combing")
- He then wanted to know when elements are conjugate, but this "word" did not tell him when braids are conjugate

Deligne-Garside normal form: definition

- Artin found a solution in type A ("braid/Artin combing")
- He then wanted to know when elements are conjugate, but this "word" did not tell him when braids are conjugate
- Garside gave a new solution to the word problem that also solves the conjugacy problem (~ 1965).

Deligne-Garside normal form: definition

- Artin found a solution in type A ("braid/Artin combing")
- He then wanted to know when elements are conjugate, but this "word" did not tell him when braids are conjugate
- Garside gave a new solution to the word problem that also solves the conjugacy problem (~ 1965).
- Roughly speaking, the (right) Deligne-Garside normal form of a b braid in B^{+}is obtained by decomposing it as a product of reduced braids $b=b_{w_{n}} \cdots b_{w_{1}}$, and then making the rightmost factors as large as possible.

Deligne-Garside normal form: definition

- Artin found a solution in type A ("braid/Artin combing")
- He then wanted to know when elements are conjugate, but this "word" did not tell him when braids are conjugate
- Garside gave a new solution to the word problem that also solves the conjugacy problem (~ 1965).
- Roughly speaking, the (right) Deligne-Garside normal form of a b braid in B^{+}is obtained by decomposing it as a product of reduced braids $b=b_{w_{n}} \cdots b_{w_{1}}$, and then making the rightmost factors as large as possible.
- So apparently this yields a unique expression

$$
b_{w_{m}} \cdots b_{w_{1}}=: \mathrm{DG}_{m}(b) \cdots \mathrm{DG}_{1}(b)
$$

Deligne-Garside normal form: definition

- Artin found a solution in type A ("braid/Artin combing")
- He then wanted to know when elements are conjugate, but this "word" did not tell him when braids are conjugate
- Garside gave a new solution to the word problem that also solves the conjugacy problem (~ 1965).
- Roughly speaking, the (right) Deligne-Garside normal form of a b braid in B^{+}is obtained by decomposing it as a product of reduced braids $b=b_{w_{n}} \cdots b_{w_{1}}$, and then making the rightmost factors as large as possible.
- So apparently this yields a unique expression

$$
b_{w_{m}} \cdots b_{w_{1}}=: \mathrm{DG}_{m}(b) \cdots \mathrm{DG}_{1}(b)
$$

- We write $\mathrm{DG}(b):=\mathrm{DG}_{1}(b)$, and will often identify it with the corresponding Coxeter group element w_{1}.

Deligne-Garside normal form: back to examples

Example

Let W be of type A_{2}, now find

$$
b_{1} b_{2}=b_{s_{1}} b_{s_{2}}=b_{s_{1} s_{2}} \neq b_{s_{2} s_{1}}=b_{2} b_{1}
$$

Deligne-Garside normal form: back to examples

Example

Let W be of type A_{2}, now find

$$
\begin{gathered}
b_{1} b_{2}=b_{s_{1}} b_{s_{2}}=b_{s_{1} s_{2}} \neq b_{s_{2} s_{1}}=b_{2} b_{1} \\
b_{2} b_{1} b_{2}=b_{212}=b_{121}=b_{1} b_{2} b_{1}
\end{gathered}
$$

Deligne-Garside normal form: back to examples

Example

Let W be of type A_{2}, now find

$$
\begin{gathered}
b_{1} b_{2}=b_{s_{1}} b_{s_{2}}=b_{s_{1} s_{2}} \neq b_{s_{2} s_{1}}=b_{2} b_{1} \\
b_{2} b_{1} b_{2}=b_{212}=b_{121}=b_{1} b_{2} b_{1}
\end{gathered}
$$

Example

Let W be of type A_{4}, now find

$$
\begin{aligned}
\left(b_{1} b_{2} b_{1} b_{3} b_{2} b_{4}\right)^{3} & =b_{23} b_{341231} b_{w_{\circ}} \\
& =b_{1} b_{2} b_{3} b_{4} b_{1} b_{2} b_{3} b_{1} b_{2} b_{1} b_{3} b_{4} b_{2} b_{2} b_{3} b_{4} b_{1} b_{2}
\end{aligned}
$$

He-Lusztig's result

- Recall: Steinberg's claim is for Coxeter elements, e.g. $s_{1} \cdots s_{\mathrm{rk}}$ where rk is the rank of W (or G): the conjugation action

$$
N_{+} \times \dot{w} N_{w} \xrightarrow{\sim} N_{+} \dot{w} N_{+}
$$

is an isomorphism.

He-Lusztig's result

- Recall: Steinberg's claim is for Coxeter elements, e.g. $s_{1} \cdots s_{\mathrm{rk}}$ where rk is the rank of W (or G): the conjugation action

$$
N_{+} \times \dot{w} N_{w} \xrightarrow{\sim} N_{+} \dot{w} N_{+}
$$

is an isomorphism.

- The cross sections of He-Lusztig apply to elliptic elements w of minimal length in their conjugacy class, in the same way:

$$
N_{+} \times \dot{w} N_{w} \xrightarrow{\sim} N_{+} \dot{w} N_{+} .
$$

He-Lusztig's proof

- Ultimately, consists of two major steps:

He-Lusztig's proof

- Ultimately, consists of two major steps:
- (1): Proven "directly" for all elements w, such that $\mathrm{DG}\left(b_{w}^{d}\right)=w_{0}$ for some integer $d \geq 1$. From case-by-case work (Geck-Michel), it was known then that this is true for some elements of minimal length in each elliptic conjugacy class, when $d=\operatorname{ord}(w)$.

He-Lusztig's proof

- Ultimately, consists of two major steps:
- (1): Proven "directly" for all elements w, such that $\mathrm{DG}\left(b_{w}^{d}\right)=w_{0}$ for some integer $d \geq 1$. From case-by-case work (Geck-Michel), it was known then that this is true for some elements of minimal length in each elliptic conjugacy class, when $d=\operatorname{ord}(w)$.
- (2): If it is true for an element $w=x y$ with $\ell(w)=\ell(x)+\ell(y)$, then it is also true for $w^{\prime}:=y x$ if $\ell(y)+\ell(x)=\ell\left(w^{\prime}\right)$. From case-by-case work (Geck-Pfeiffer), it was known then that all elliptic elements of minimal length are conjugate to each other by such cyclic shifts.

He-Lusztig's proof

- Ultimately, consists of two major steps:
- (1): Proven "directly" for all elements w, such that $\mathrm{DG}\left(b_{w}^{d}\right)=w_{\circ}$ for some integer $d \geq 1$. From case-by-case work (Geck-Michel), it was known then that this is true for some elements of minimal length in each elliptic conjugacy class, when $d=\operatorname{ord}(w)$.
- (2): If it is true for an element $w=x y$ with $\ell(w)=\ell(x)+\ell(y)$, then it is also true for $w^{\prime}:=y x$ if $\ell(y)+\ell(x)=\ell\left(w^{\prime}\right)$. From case-by-case work (Geck-Pfeiffer), it was known then that all elliptic elements of minimal length are conjugate to each other by such cyclic shifts.
- (2'): Simpler: if w and w^{\prime} are conjugate by cyclic shifts and $\operatorname{DG}\left(b_{w}^{d}\right)=w_{\circ}$, then $\operatorname{DG}\left(b_{w^{\prime}}^{d^{\prime}}\right)=w_{\circ}$ for some d^{\prime}.

He-Lusztig's proof, tweaked

- So it becomes, over any ring:

He-Lusztig's proof, tweaked

- So it becomes, over any ring:
- (1): Cross section holds if $\mathrm{DG}\left(b_{w}^{d}\right)=w_{0}$ for some computable integer $d \geq 1$, say $d=\left|\Re_{+}\right|-\ell(w)+1$.

He-Lusztig's proof, tweaked

- So it becomes, over any ring:
- (1): Cross section holds if $\operatorname{DG}\left(b_{w}^{d}\right)=w_{0}$ for some computable integer $d \geq 1$, say $d=\left|\Re_{+}\right|-\ell(w)+1$.
- (2): This braid equation holds for all elliptic elements of minimal length.

He-Lusztig's proof, tweaked

- So it becomes, over any ring:
- (1): Cross section holds if $\mathrm{DG}\left(b_{w}^{d}\right)=w_{0}$ for some computable integer $d \geq 1$, say $d=\left|\Re_{+}\right|-\ell(w)+1$.
- (2): This braid equation holds for all elliptic elements of minimal length.

Lemma

Sevostyanov's elliptic elements satisfy this braid equation.

He-Lusztig's proof, tweaked

- So it becomes, over any ring:
- (1): Cross section holds if $\mathrm{DG}\left(b_{w}^{d}\right)=w_{0}$ for some computable integer $d \geq 1$, say $d=\left|\Re_{+}\right|-\ell(w)+1$.
- (2): This braid equation holds for all elliptic elements of minimal length.

Lemma

Sevostyanov's elliptic elements satisfy this braid equation.

- Do his non-elliptic satisfy it? Rarely... but those slices are a bit different!

New definitions: firmly convex elements

- Let W be a finite Coxeter group. An element w is called firmly convex if:

New definitions: firmly convex elements

- Let W be a finite Coxeter group. An element w is called firmly convex if:
- the subset of roots \mathfrak{R}^{ω} that it fixes, forms a standard parabolic subroot system.

New definitions: firmly convex elements

- Let W be a finite Coxeter group. An element w is called firmly convex if:
- the subset of roots \mathfrak{R}^{w} that it fixes, forms a standard parabolic subroot system.
- + technical condition.

New definitions: firmly convex elements

- Let W be a finite Coxeter group. An element w is called firmly convex if:
- the subset of roots \mathfrak{R}^{w} that it fixes, forms a standard parabolic subroot system.
- + technical condition.

Lemma

\mathfrak{R}^{ω} forms a standard parabolic subsystem if and only if the complement $\mathfrak{R}_{+} \backslash \mathfrak{R}^{w}$ is convex, i.e.:
If $\beta_{0}, \beta_{1} \in \mathfrak{R}_{+} \backslash \mathfrak{R}^{w}$ and $c_{0}, c_{1} \in \mathbb{R}_{>0}$ are such that $c_{0} \beta_{0}+c_{1} \beta_{1}$ is again a root, then it lies in $\mathfrak{R}_{+} \backslash \mathfrak{R}^{w}$.

New definitions: braid power bound

Definition

Let w_{0} denote the longest element of W. Given a firmly convex element w, let w_{f} denote the longest element of the standard parabolic subsystem \mathfrak{R}^{w}; this yields a braid power bound

$$
w_{\circ} W_{f}
$$

New definitions: braid power bound

Definition

Let w_{0} denote the longest element of W. Given a firmly convex element w, let w_{f} denote the longest element of the standard parabolic subsystem \mathfrak{R}^{w}; this yields a braid power bound

$$
w_{\circ} W_{f} .
$$

Example

Let W be of type A_{3}. If w is reflecting in $\alpha_{1}+\alpha_{2}+\alpha_{3}$, then this is $w_{\circ} s_{2}$.

New definitions: braid power bound

Definition

Let w_{0} denote the longest element of W. Given a firmly convex element w, let w_{f} denote the longest element of the standard parabolic subsystem \mathfrak{R}^{w}; this yields a braid power bound

$$
w_{\circ} W_{f} .
$$

Example

Let W be of type A_{3}. If w is reflecting in $\alpha_{1}+\alpha_{2}+\alpha_{3}$, then this is $w_{\circ} s_{2}$.

- So $\Re_{w_{o} w_{f}}=\Re_{+} \backslash \Re^{w}$.

New definitions: dominant elements

Definition

Let C denote the dominant Weyl chamber. For any w, let
$V_{w}=\operatorname{im}(\mathrm{id}-w)$ denote the orthogonal complement to the subset of fixed points $\operatorname{ker}(\mathrm{id}-w)$ in the reflection representation.

New definitions: dominant elements

Definition

Let C denote the dominant Weyl chamber. For any w, let $V_{w}=\operatorname{im}(\mathrm{id}-w)$ denote the orthogonal complement to the subset of fixed points $\operatorname{ker}(\mathrm{id}-w)$ in the reflection representation.
Then w is called dominant if the closure \bar{C} of C contains an open subset of V_{w}.

New definitions: dominant elements

Definition

Let C denote the dominant Weyl chamber. For any w, let $V_{w}=\operatorname{im}(\mathrm{id}-w)$ denote the orthogonal complement to the subset of fixed points $\operatorname{ker}(\mathrm{id}-w)$ in the reflection representation.
Then w is called dominant if the closure \bar{C} of C contains an open subset of V_{w}.

Example

Reflection in a root is dominant if and only if this root is the highest root or the highest short root.

New definitions: dominant elements

Lemma

An involution has maximal length if and only if it is dominant.

New definitions: dominant elements

Lemma

An involution has maximal length if and only if it is dominant.

Lemma

For any element w there are implications
elliptic or Sevostyanov element \Longrightarrow dominant \Longrightarrow firmly convex

Transversality

- Let G be a manifold (or variety), and let C and S be two submanifolds. We say that the intersection $C \cap S$ is transverse if for all $g \in C \cap S$, we have

$$
T_{g} G=T_{g} C+T_{g} S
$$

Transversality

- Let G be a manifold (or variety), and let C and S be two submanifolds. We say that the intersection $C \cap S$ is transverse if for all $g \in C \cap S$, we have

$$
T_{g} G=T_{g} C+T_{g} S
$$

- We say that the intersection is strictly transverse if this is a direct sum, i.e.

$$
T_{g} C \cap T_{g} S=\{0\}
$$

Inspiration from braids

- For any w, analysing roots shows that

$$
\mathfrak{R}_{\mathrm{DG}\left(b_{w}^{d}\right)} \subseteq \mathfrak{R}_{+} \backslash \mathfrak{R}^{w} .
$$

Inspiration from braids

- For any w, analysing roots shows that

$$
\mathfrak{R}_{\mathrm{DG}\left(b_{w}^{d}\right)} \subseteq \mathfrak{R}_{+} \backslash \mathfrak{R}^{w} .
$$

- By the "convexity" lemma, this inclusion is strict if w is not firmly convex; if it is firmly convex then it is equivalent to

$$
\operatorname{DG}\left(b_{w}^{d}\right) \leq w_{\circ} w_{f}
$$

in the left weak Bruhat-Chevalley order.

Inspiration from braids

- For any w, analysing roots shows that

$$
\mathfrak{R}_{\mathrm{DG}\left(b_{w}^{d}\right)} \subseteq \mathfrak{R}_{+} \backslash \mathfrak{R}^{w}
$$

- By the "convexity" lemma, this inclusion is strict if w is not firmly convex; if it is firmly convex then it is equivalent to

$$
\operatorname{DG}\left(b_{w}^{d}\right) \leq w_{o} w_{f}
$$

in the left weak Bruhat-Chevalley order.

- We can modify Sevostyanov's definitions to come up with a cross section statement

$$
N \times \dot{w} L^{w} N_{w} \longrightarrow N \dot{w} L^{w} N
$$

for any firmly convex element w. Here $N \subseteq N_{+}$is generated by root subgroups for roots in $\mathfrak{R}_{+} \backslash \mathfrak{R}^{w}$, whereas L^{w} is the reductive subgroup "generated" by \Re^{w} and T^{w}.

From braids to cross sections

- Can now modify the He-Lusztig proof to:

From braids to cross sections

- Can now modify the He-Lusztig proof to:

Theorem

If w is firmly convex and for some $d \geq 1$ we have

$$
\operatorname{DG}\left(b_{w}^{d}\right)=w_{o} w_{f},
$$

then the conjugation map

$$
N \times \dot{w} L^{w} N_{w} \longrightarrow N \dot{w} L^{w} N, \quad(n, s) \longmapsto n^{-1} s n
$$

is an isomorphism, over any commutative ring.

From braids to cross sections

- Can now modify the He-Lusztig proof to:

Theorem

If w is firmly convex and for some $d \geq 1$ we have

$$
\operatorname{DG}\left(b_{w}^{d}\right)=w_{o} w_{f},
$$

then the conjugation map

$$
N \times \dot{w} L^{w} N_{w} \longrightarrow N \dot{w} L^{w} N, \quad(n, s) \longmapsto n^{-1} s n
$$

is an isomorphism, over any commutative ring.

Lemma

He-Lusztig's and Sevostyanov's elements satisfy this equation.

More?

- How about Poisson structures?

More?

- How about Poisson structures?
- How about transversality?

More?

- How about Poisson structures?
- How about transversality?
- How about strict transversality?

More?

- How about Poisson structures?
- How about transversality?
- How about strict transversality?
- How about the converse?

Poisson structures

- In the late 90 s, some people tried to obtain quantum analogues of finite W-algebras, but failed to obtain suitable characters.

Poisson structures

- In the late 90 s, some people tried to obtain quantum analogues of finite W-algebras, but failed to obtain suitable characters.
- Sevostyanov '99 succeeded, by slightly "modifying" the Drinfeld-Jimbo quantum group $U_{q} G$.

Poisson structures

- In the late 90s, some people tried to obtain quantum analogues of finite W-algebras, but failed to obtain suitable characters.
- Sevostyanov '99 succeeded, by slightly "modifying" the Drinfeld-Jimbo quantum group $U_{q} G$.
- Can reinterpret his solution as a Drinfeld twist.

Poisson structures

- In the late 90s, some people tried to obtain quantum analogues of finite W-algebras, but failed to obtain suitable characters.
- Sevostyanov '99 succeeded, by slightly "modifying" the Drinfeld-Jimbo quantum group $U_{q} G$.
- Can reinterpret his solution as a Drinfeld twist.
- Quasiclassically, this twist corresponds to modifying the Semenov-Tian-Shansky bracket on G. Using the cross section isomorphism, can show:

Poisson structures

- In the late 90s, some people tried to obtain quantum analogues of finite W-algebras, but failed to obtain suitable characters.
- Sevostyanov '99 succeeded, by slightly "modifying" the Drinfeld-Jimbo quantum group $U_{q} G$.
- Can reinterpret his solution as a Drinfeld twist.
- Quasiclassically, this twist corresponds to modifying the Semenov-Tian-Shansky bracket on G. Using the cross section isomorphism, can show:

Lemma

This Poisson bracket reduces to a Poisson bracket on the slices if and only if such a twist is made.

Transversality again

- Sevostyanov deduces transversality by combining the cross section statement for w and the cross section statement for w^{-1}.

Transversality again

- Sevostyanov deduces transversality by combining the cross section statement for w and the cross section statement for w^{-1}.
- So we would need: $\operatorname{DG}\left(b_{w}^{d}\right)=w_{o} w_{f}$ if and only if $\operatorname{DG}\left(b_{w^{-1}}^{d^{\prime}}\right)=w_{0} w_{f}$.

Transversality again

- Sevostyanov deduces transversality by combining the cross section statement for w and the cross section statement for w^{-1}.
- So we would need: $\operatorname{DG}\left(b_{w}^{d}\right)=w_{o} w_{f}$ if and only if $\operatorname{DG}\left(b_{w^{-1}}^{d^{\prime}}\right)=w_{\circ} w_{f}$.

Example

Consider $w=s_{3} s_{1} s_{2} s_{3}$ in type B_{3}; it does not fix any roots so it is closed, but for any integer $d>1$ we have

$$
\operatorname{DGN}\left(b_{w}^{d}\right)=b_{w}^{d} \quad \text { and } \quad \operatorname{DGN}\left(b_{w^{-1}}^{d}\right)=b_{323} b_{w}^{d-2} b_{13213} .
$$

Transversality again

- Sevostyanov deduces transversality by combining the cross section statement for w and the cross section statement for w^{-1}.
- So we would need: $\operatorname{DG}\left(b_{w}^{d}\right)=w_{o} w_{f}$ if and only if $\operatorname{DG}\left(b_{w^{-1}}^{d^{\prime}}\right)=w_{\circ} w_{f}$.

Example

Consider $w=s_{3} s_{1} s_{2} s_{3}$ in type B_{3}; it does not fix any roots so it is closed, but for any integer $d>1$ we have

$$
\operatorname{DGN}\left(b_{w}^{d}\right)=b_{w}^{d} \quad \text { and } \quad \operatorname{DGN}\left(b_{w^{-1}}^{d}\right)=b_{323} b_{w}^{d-2} b_{13213} .
$$

- We will see that this is true, with $d^{\prime}=d$. Surprising... because normally $\mathrm{DG}\left(b_{w}^{d}\right)$ and $\mathrm{DG}\left(b_{w^{-1}}^{d}\right)$ are very different!

The converse

- The cross section statement is almost a statement about roots.

The converse

- The cross section statement is almost a statement about roots.
- But what is the identity $\operatorname{DG}\left(b_{w}^{d}\right)=w_{o} w_{f}$ really doing in the proof?

The converse

- The cross section statement is almost a statement about roots.
- But what is the identity $\operatorname{DG}\left(b_{w}^{d}\right)=w_{o} w_{f}$ really doing in the proof?
- It's trying to make all the roots in $\mathfrak{R}_{+} \backslash \mathfrak{R}^{w}$ negative, step by step:

$$
\operatorname{DG}\left(b_{w}^{d}\right)=w_{0} w_{f} \quad \Longrightarrow \quad \operatorname{cross}_{w}^{d}\left(\Re_{+} \backslash \Re^{w}\right)=\varnothing
$$

$\Longrightarrow \quad$ cross section is isomorphism

Crossing roots

Definition

For any positive root β and w, we obtain a subset of positive roots $\operatorname{cross}_{w}(\beta):=\left\{w\left(\beta+\sum_{i=1}^{m} \beta_{i}\right) \in \mathfrak{R}: \beta_{1}, \ldots, \beta_{m} \in \mathfrak{R}_{w}, m \geq 0\right\} \cap \mathfrak{R}_{+}$ and for a subset of positive roots $\mathfrak{N} \subseteq \mathfrak{R}_{+}$we set

$$
\operatorname{cross}_{w}(\mathfrak{N}):=\bigcup_{\beta \in \mathfrak{N}} \operatorname{cross}_{w}(\beta)
$$

Crossing roots

Definition

For any positive root β and w, we obtain a subset of positive roots $\operatorname{cross}_{w}(\beta):=\left\{w\left(\beta+\sum_{i=1}^{m} \beta_{i}\right) \in \mathfrak{R}: \beta_{1}, \ldots, \beta_{m} \in \mathfrak{R}_{w}, m \geq 0\right\} \cap \Re_{+}$ and for a subset of positive roots $\mathfrak{N} \subseteq \mathfrak{R}_{+}$we set

$$
\operatorname{cross}_{w}(\mathfrak{N}):=\bigcup_{\beta \in \mathfrak{N}} \operatorname{cross}_{w}(\beta)
$$

Example

What is $\operatorname{cross}_{w}(\beta)$ when β lies in \mathfrak{R}_{w} ? When $w(\beta)$ is simple?

Crossing roots

Lemma

- For any simple root α not in \mathfrak{R}_{w}, the set $\operatorname{cross}_{w}(\alpha)$ contains simple roots.

Crossing roots

Lemma

- For any simple root α not in \mathfrak{R}_{w}, the set $\operatorname{cross}_{w}(\alpha)$ contains simple roots.
- Implies: For any other element v of W and integer $d \geq 0$,

$$
\operatorname{DG}\left(b_{w}^{d}\right) \geq v \quad \text { if and only if } \quad \operatorname{cross}_{w}^{d}\left(\Re_{v}\right)=\varnothing
$$

if and only if $\operatorname{cross}_{w}^{d}\left(\Re_{v}\right)$ does not contain any simple roots.

Crossing roots

Lemma

- For any simple root α not in \Re_{w}, the set $\operatorname{cross}_{w}(\alpha)$ contains simple roots.
- Implies: For any other element v of W and integer $d \geq 0$,

$$
\operatorname{DG}\left(b_{w}^{d}\right) \geq v \quad \text { if and only if } \quad \operatorname{cross}_{w}^{d}\left(\Re_{v}\right)=\varnothing
$$

if and only if $\operatorname{cross}_{w}^{d}\left(\Re_{v}\right)$ does not contain any simple roots.

- In particular: w is firmly convex and satisfies the braid equation $\mathrm{DG}\left(b_{w}^{d}\right)=w_{o} w_{f}$ if and only if $\operatorname{cross}_{w}^{d}\left(\Re_{+} \backslash \Re^{w}\right)=\varnothing$.

Crossing roots

Lemma

- For any simple root α not in \Re_{w}, the set $\operatorname{cross}_{w}(\alpha)$ contains simple roots.
- Implies: For any other element v of W and integer $d \geq 0$,

$$
\operatorname{DG}\left(b_{w}^{d}\right) \geq v \quad \text { if and only if } \quad \operatorname{cross}_{w}^{d}\left(\Re_{v}\right)=\varnothing
$$

if and only if $\operatorname{cross}_{w}^{d}\left(\Re_{v}\right)$ does not contain any simple roots.

- In particular: w is firmly convex and satisfies the braid equation $\mathrm{DG}\left(b_{w}^{d}\right)=w_{\circ} w_{f}$ if and only if $\operatorname{cross}_{w}^{d}\left(\Re_{+} \backslash \Re^{w}\right)=\varnothing$.
- And that easily implies: if w is firmly convex then $\mathrm{DG}\left(b_{w}^{d}\right)=w_{0} w_{f}$ if and only if $\mathrm{DG}\left(b_{w^{-1}}^{d}\right)=w_{\circ} w_{f}$.

Strict transversality: minimally dominant elements

Definitions

A dominant element is called minimally dominant if its length is minimal among the dominant elements in its conjugacy class.

Strict transversality: minimally dominant elements

Definitions

A dominant element is called minimally dominant if its length is minimal among the dominant elements in its conjugacy class.

Example

For elliptic conjugacy classes, "minimally dominant" = "has minimal length".

Strict transversality: minimally dominant elements

Definitions

A dominant element is called minimally dominant if its length is minimal among the dominant elements in its conjugacy class.

Example

For elliptic conjugacy classes, "minimally dominant" = "has minimal length".

Lemma

For (nontrivial) non-elliptic conjugacy classes, minimally dominant elements never have minimal length.

Braid powers of minimally dominant elements

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that $\mathrm{DG}\left(b_{w}^{\text {ord }(w)}\right)=w_{\circ}$

Braid powers of minimally dominant elements

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that $\mathrm{DG}\left(b_{w}^{\text {ord }(w)}\right)=w_{0}$
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts

Braid powers of minimally dominant elements

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that $\mathrm{DG}\left(b_{w}^{\text {ord }(w)}\right)=w_{0}$
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts
- Combine: \Rightarrow they all satisfy $\operatorname{DG}\left(b_{w}^{d}\right)=w_{\circ}$ for some d

Braid powers of minimally dominant elements

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that $\mathrm{DG}\left(b_{w}^{\text {ord }(w)}\right)=w_{0}$
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts
- Combine: \Rightarrow they all satisfy $\operatorname{DG}\left(b_{w}^{d}\right)=w_{0}$ for some d

Lemma

Every conjugacy class contains a minimally dominant element w such that $\mathrm{DG}\left(b_{w}^{\operatorname{ord}(w)}\right)=w_{0} w_{f}$, and

Braid powers of minimally dominant elements

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that $\mathrm{DG}\left(b_{w}^{\text {ord }(w)}\right)=w_{0}$
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts
- Combine: \Rightarrow they all satisfy $\operatorname{DG}\left(b_{w}^{d}\right)=w_{\circ}$ for some d

Lemma

Every conjugacy class contains a minimally dominant element w such that $\mathrm{DG}\left(b_{w}^{\operatorname{ord}(w)}\right)=w_{\circ} w_{f}$, and minimally dominant elements are conjugate by cyclic shifts

Braid powers of minimally dominant elements

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that $\mathrm{DG}\left(b_{w}^{\text {ord }(w)}\right)=w_{0}$
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts
- Combine: \Rightarrow they all satisfy $\operatorname{DG}\left(b_{w}^{d}\right)=w_{\circ}$ for some d

Lemma

Every conjugacy class contains a minimally dominant element w such that $\mathrm{DG}\left(b_{w}^{\operatorname{ord}(w)}\right)=w_{\circ} w_{f}$, and minimally dominant elements are conjugate by cyclic shifts

- Combine: \Rightarrow they all satisfy $\mathrm{DG}\left(b_{w}^{d}\right)=w_{\circ} w_{f}$ for some d

Braid powers of minimally dominant elements

- Geck-Michel/He-Nie: Every elliptic conjugacy class contains an element w of minimal length such that $\mathrm{DG}\left(b_{w}^{\text {ord }(w)}\right)=w_{0}$
- Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are conjugate by cyclic shifts
- Combine: \Rightarrow they all satisfy $\operatorname{DG}\left(b_{w}^{d}\right)=w_{\circ}$ for some d

Lemma

Every conjugacy class contains a minimally dominant element w such that $\mathrm{DG}\left(b_{w}^{\operatorname{ord}(w)}\right)=w_{\circ} w_{f}$, and minimally dominant elements are conjugate by cyclic shifts

- Combine: \Rightarrow they all satisfy $\mathrm{DG}\left(b_{w}^{d}\right)=w_{\circ} w_{f}$ for some d
- So by the previous theorem, they all yield transverse slices!

Strict transversality and minimally dominant elements

- In 2019, Sevostyanov showed that a subset of his elements yield strictly transverse slices (by using Lusztig's partition).

Strict transversality and minimally dominant elements

- In 2019, Sevostyanov showed that a subset of his elements yield strictly transverse slices (by using Lusztig's partition).
- He already knew they were transverse, so his main ingredient is a case-by-case dimension calculation.

Strict transversality and minimally dominant elements

- In 2019, Sevostyanov showed that a subset of his elements yield strictly transverse slices (by using Lusztig's partition).
- He already knew they were transverse, so his main ingredient is a case-by-case dimension calculation.
- Can show that these elements are all minimally dominant.

Strict transversality and minimally dominant elements

- In 2019, Sevostyanov showed that a subset of his elements yield strictly transverse slices (by using Lusztig's partition).
- He already knew they were transverse, so his main ingredient is a case-by-case dimension calculation.
- Can show that these elements are all minimally dominant.
- Can now deduce that all minimally dominant elements in these conjugacy classes yield strictly transverse slices!

Final statement

Theorem

Let C be a conjugacy class of a connected reductive group over an algebraically closed field, and let w be a minimally dominant element in the corresponding conjugacy class in Lusztig's partition.

Final statement

Theorem

Let C be a conjugacy class of a connected reductive group over an algebraically closed field, and let w be a minimally dominant element in the corresponding conjugacy class in Lusztig's partition.

Then C is strictly transversally intersected by $\dot{w} L^{w} N_{w}$, and this slice inherits a natural Poisson structure.

End

- Thanks for listening!!
- Questions? Ideas??
- w.malten@gmail.com

