Langlands classification

Tuesday, September 7, 2021 6:07 AM

Topic: representation theory of a reductive group G over a local or finite field F.

Fundamental example: G=GL(n) n x n matrices.

A parabolic subgroup P of G is one with G/P projective. Example: Grassmann variety X = m-diml subspaces of n-diml vec space = GL(n)/P_{m,n-m}.

Parabolic subgroups are important because ANY G/H can be deformed to G/Hd with Hd normal in parabolic P

Original motivation: big idea from 1950s was that many representations are parabolically induced: sections of vector bundles over G(F)/P(F).

Langlands idea from 1960s: all reps of G(F) indexed by f: $W'_F = --> L_G$; here W'_F is the Weil-Deligne group of F, and $L_G = V_G > G$; V_G is cplx dual group, G is Gal(F).

MORE PRECISELY: G//F = all F-forms inner to G(F) <---> action of G on based root datum (P , X^* , P^V , X_*)

<---> action of G on dual based root datum (P^V , X_{*} , P , X^{*})

<---> action of G on complex dual group $\ ^V G$

<---> Langlands L-group ${}^{L}G = {}^{V}G \rtimes G$

 v_G and a covering group v_G^{Can} act on Langlands parameters f ---> stabilizer $s^{Can}(f)$, component group $A^{Can}(f)$. COMPLETE LANGLANDS PARAMETER is pair (f,x) with x irreducible of $A^{Can}(f)$.

LOCAL LANGLANDS CONJECTURE: pairs ("rigid inner twist" G(F), irr p of G(F))/G conjugacy <----> pairs (f,x) / VG^{Can} conjugacy

This is proven by Adams-Barbasch-V in 1992 for F=R, and formulated by Tasho Kaletha for F characteristic zero p-adic.

Details A: p-adic case
Tready, september 7, 2021 9:19 PM
F p-adic [char O],
$$\Gamma = Gal(F/F)$$

 Q_F integers
 P_F maximuli ideal $P_F/P_F = F_Q$
 $H \cdot H: W_F \Rightarrow \{qZ\}$ homomorphism
 $P_I: T(F) \Rightarrow W_F \Rightarrow Z \Rightarrow 1$
 $Well group < F_F >$
Langlands parameter starts with $P_I: T(F) \Rightarrow G = ~G \times \Gamma$
 $V_G \Rightarrow reductive subgroup C_F
 $Q(F_F)$ is semistarts
 $V_G P_0: W_F \Rightarrow G$
 $Q(F_F)$ is semistarts
 $V_G P_0: F_F$
 $Q(F_F)$ is semistarts
 $V_G P_0: F_F$$

Details B: p-adic case Tuesday, segmenter, starts with $\mathcal{P}_{L}: \mathbb{I}(F) \rightarrow \mathcal{L}_{G} = \mathcal{L}_{G} \times \Gamma$ Lanylands parameter starts with $\mathcal{P}_{L}: \mathbb{I}(F) \rightarrow \mathcal{L}_{G} = \mathcal{L}_{G} \times \Gamma$ $\mathcal{L}_{G} = \mathcal{L}_{G} \times \mathcal{L}_{G} \times \mathcal{L}_{G} \times \mathcal{L}_{G} \times \mathcal{L}_{G} = \mathcal{L}_{G} \times \mathcal{L}_{G} \times \mathcal{L}_{G} \times \mathcal{L}_{G} \times \mathcal{L}_{G} \times \mathcal{L}_{G} = \mathcal{L}_{G} \times \mathcal{L$

Details: real case
Wednesds, september 8.2021 S52AM

$$\Gamma = Gal(C/R) = \{1, \sigma\}$$
 $L_{C} = \vee_{G} \vee_{G} = \vee_{G} = \vee_{G} = \vee_{G} = \vee_{G} = e_{i} \vee_{g} = \vee_{G} = e_{i} \wedge_{i} = e_{i} \rho(2\pi i \lambda)$
Semisimple conjugacy doess $f_{i} \wedge_{i} \subset \vee_{g}$
are integer eigenspaces of ad(λ)
 $\vee_{G} e^{(\lambda)}$
pseudolevi in \vee_{G} ,
 $analogous to \vee_{C} \rho_{01} = (q^{2} - e_{i} \rho_{01} p_{01} p_{01} e_{i})$
 $e^{(\lambda)} \in Z(\vee_{G}) \bigoplus$
infinitesimal downder
is integer Advector
 $\vee_{G} e^{(\lambda)}$
 Z -graded by eigenspaces of ad(λ)
 $\vee_{G} \wedge_{i} = \lambda + [\Sigma : e_{i} \rho_{01} p_{01} e_{i}] \subset G \cdot \lambda$
 $\vee_{G} \wedge_{i} = \lambda + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $\vee_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{01} p_{02} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{i} p_{01} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{i} p_{01} e_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{i} p_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{i} p_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{i} p_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{i} p_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{i} p_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{i} p_{i}] \cap_{i} \rho_{i} e_{i}$
 $V_{G} \wedge_{i} = h + [\Sigma : e_{i} \rho_{i}$

What happened to parabolic induction? Γ -fixed character ξ of H(F) tonus in G(F) \longrightarrow P(F) = L(F) U(F) Γ -fixed one-parameter subge $\mathbb{C}^{\times \frac{q}{2}} \overset{\circ}{G}$ $\bigvee L = Cert_v (g(\mathbb{C}^{\times}))$ G