Spherical varieties, *L*-functions, and crystal bases

Jonathan Wang (joint w/ Yiannis Sakellaridis)

MIT

MIT Lie Groups Seminar, September 23, 2020

Notes available at:

http://jonathanpwang.com/notes/sphL_talk_notes.pdf

What is a spherical variety?

Function-theoretic results 2

Geometry (3

$$k = C$$

•
$$F = \mathbb{F}_q((t)), \ O = \mathbb{F}_q[[t]]$$

•
$$k = \overline{\mathbb{F}}_q$$

• G connected (split) reductive group $/\mathbb{F}_q$

< □ →

∃►

3

A *G*-variety $X_{/\mathbb{F}_q}$ is called spherical if X_k is normal and has an open dense orbit of $B_k \subset G_k$ after base change to k

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

A *G*-variety $X_{/\mathbb{F}_q}$ is called spherical if X_k is normal and has an open dense orbit of $B_k \subset G_k$ after base change to k

Think of this as a finiteness condition (good combinatorics) (X has finitely many B-orbits)

A *G*-variety $X_{/\mathbb{F}_q}$ is called spherical if X_k is normal and has an open dense orbit of $B_k \subset G_k$ after base change to k

Think of this as a finiteness condition (good combinatorics) Examples:

- Toric varieties G = T
- Symmetric spaces $K \setminus G$
 - Group $X = G' \circlearrowleft G' \times G' = G$

For any affine spherical G-variety X (*), and an irreducible unitary G(F)-representation π , there is an "integral"

 $|\mathcal{P}_X|^2_{\pi}:\pi\otimes\bar{\pi}\to\mathbb{C}$

involving the IC function of X(O) such that

■ $|\mathcal{P}_X|^2_{\pi} \neq 0$ determines a functorial lifting of π to $\sigma \in \operatorname{Irr}(G_X(F))$ corresponding to a map $\check{G}_X(\mathbb{C}) \to \check{G}(\mathbb{C})$,

2 there should exist a \check{G}_X -representation

 $\rho_X : \check{G}_X(\mathbb{C}) \to \mathrm{GL}(V_X)$

Image: Image:

< fi > <

such that $|\mathcal{P}_X|^2_{\pi} = L(\sigma, \rho_X, s_0)$ for a special value s_0 .

SAR

For any affine spherical G-variety X (*), and an irreducible unitary G(F)-representation π , there is an "integral"

 $|\mathcal{P}_X|^2_{\pi}:\pi\otimes\bar{\pi}\to\mathbb{C}$

involving the IC function of X(O) such that

■ $|\mathcal{P}_X|^2_{\pi} \neq 0$ determines a functorial lifting of π to $\sigma \in \operatorname{Irr}(G_X(F))$ corresponding to a map $\check{G}_X(\mathbb{C}) \to \check{G}(\mathbb{C})$,

2 there should exist a \check{G}_X -representation

 $\rho_X : \check{G}_X(\mathbb{C}) \to \mathrm{GL}(V_X)$

Image: Image:

such that $|\mathcal{P}_X|^2_{\pi}$ "=" $L(\sigma, \rho_X, s_0)$ for a special value s_0 .

SAR

For any affine spherical G-variety X (*), and an irreducible unitary G(F)-representation π , there is an "integral"

 $|\mathcal{P}_X|^2_{\pi}:\pi\otimes\bar{\pi}\to\mathbb{C}$

involving the IC function of X(O) such that

- $|\mathcal{P}_X|^2_{\pi} \neq 0$ determines a functorial lifting of π to $\sigma \in Irr(G_X(F))$ corresponding to a map $\check{G}_X(\mathbb{C}) \rightarrow \check{G}(\mathbb{C})$,
- **2** there should exist a \check{G}_X -representation

 $\rho_X : \check{G}_X(\mathbb{C}) \to \mathrm{GL}(V_X)$

such that $|\mathcal{P}_X|^2_{\pi}$ "=" $L(\sigma, \rho_X, s_0)$ for a special value s_0 .

SQA

Image: Image:

For any affine spherical G-variety X (*), and an irreducible unitary G(F)-representation π , there is an "integral"

$$\mathcal{P}_X|^2_{\pi}:\pi\otimes\bar{\pi}\to\mathbb{C}$$

involving the IC function of X(O) such that

- $\zeta_{1}(C) \rightarrow \zeta_{1}(C)$
- $|\mathcal{P}_X|^2_{\pi} \neq 0$ determines a functorial lifting of π to $\sigma \in Irr(G_X(F))$ corresponding to a map $\check{G}_X(\mathbb{C}) \to \check{G}(\mathbb{C})$,

2 there should exist a \check{G}_X -representation

$$p_X:\check{G}_X(\mathbb{C}) o \operatorname{GL}(V_X)$$

< 🗆 🕨

such that $|\mathcal{P}_X|^2_{\pi}$ "=" $L(\sigma, \rho_X, s_0)$ for a special value s_0 .

SQ Q

- 4 同 ト - 4 三 ト

For any affine spherical G-variety X (*), and an irreducible unitary G(F)-representation π , there is an "integral"

 $|\mathcal{P}_X|^2_{\pi}:\pi\otimes\bar{\pi}\to\mathbb{C}$

involving the IC function of X(O) such that

Image: P_X | $\pi^2 \neq 0$ determines a functorial lifting of π to $\sigma \in \operatorname{Irr}(G_X(F))$ corresponding to a map $\check{G}_X(\mathbb{C}) \to \check{G}(\mathbb{C})$, Lower: $\check{G}_X = \check{G}$ there should exist a \check{G}_X -representation

$$\rho_X : \check{G}_X(\mathbb{C}) \to \operatorname{GL}(V_X)$$

such that $|\mathcal{P}_X|^2_{\pi} \stackrel{\text{\tiny ``=''}L(\sigma, \rho_X, s_0)}{\mathcal{G}_{\mathcal{F}}}$ for a special value s_0 .

э

Goal: a map $\check{G}_X \to \check{G}$ with finite kernel

- E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

< □ ▶

Goal: a map $\check{G}_X \to \check{G}$ with finite kernel

• \check{T}_X is easy to define

< 🗆 🕨

< 47 ▶

∃ ▶

3

SQ (P

Goal: a map $\check{G}_X \to \check{G}$ with finite kernel

- \check{T}_X is easy to define
- Little Weyl group W_X and spherical root system
 - Symmetric variety: Cartan '27

< □ →

3

Goal: a map $\check{G}_X \to \check{G}$ with finite kernel

- \check{T}_X is easy to define
- Little Weyl group W_X and spherical root system
 - Symmetric variety: Cartan '27
 - Spherical variety: Luna–Vust '83, Brion '90; reflection group of fundamental domain

Goal: a map $\check{G}_X \to \check{G}$ with finite kernel

- \check{T}_X is easy to define
- Little Weyl group W_X and spherical root system
 - Symmetric variety: Cartan '27
 - Spherical variety: Luna–Vust '83, Brion '90; reflection group of fundamental domain
 - Irreducible G-variety: Knop '90, '93, '94; moment map, invariant differential operators
 ¬[™]_√ → [™]_√ → [™]_√
- Gaitsgory–Nadler '06: define subgroup $\check{G}_X^{GN} \subset \check{G}$ using Tannakian formalism

Goal: a map $\check{G}_X \to \check{G}$ with finite kernel

- \check{T}_X is easy to define
- Little Weyl group W_X and spherical root system
 - Symmetric variety: Cartan '27
 - Spherical variety: Luna–Vust '83, Brion '90; reflection group of fundamental domain
 - Irreducible *G*-variety: Knop '90, '93, '94; moment map, invariant differential operators
- Gaitsgory–Nadler '06: define subgroup $\check{G}_X^{GN} \subset \check{G}$ using Tannakian formalism
- Sakellaridis–Venkatesh '12: normalized root system, define $\check{G}_X \to \check{G}$ combinatorially with image \check{G}_X^{GN} under assumptions about GN

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Goal: a map $\check{G}_X \to \check{G}$ with finite kernel

- \check{T}_X is easy to define
- Little Weyl group W_X and spherical root system
 - Symmetric variety: Cartan '27
 - Spherical variety: Luna–Vust '83, Brion '90; reflection group of fundamental domain
 - Irreducible *G*-variety: Knop '90, '93, '94; moment map, invariant differential operators
- Gaitsgory–Nadler '06: define subgroup $\check{G}_X^{GN} \subset \check{G}$ using Tannakian formalism
- Sakellaridis–Venkatesh '12: normalized root system, define $\check{G}_X \to \check{G}$ combinatorially with image \check{G}_X^{GN} under assumptions about GN
- Knop–Schalke '17: define $\check{G}_X \to \check{G}$ combinatorially unconditionally

 $\mathcal{A} \mathcal{A} \mathcal{A}$

	X ♂ G	Ğ _X	V _X
Usual Langlands	$G' \circlearrowleft G' \times G'$	Ğ' ŧ Ğ	ğ'

	X 🔿 G	Ğ _X	V _X
Usual Langlands	$G' \circlearrowleft G' \times G'$	Ğ′	ğ′
Whittaker normal- ization	$(N,\psi) \setminus G$	Ğ	0 m
$C^{\infty}((\nu, +) \setminus G) = C^{\infty}(G)^{\nu, +}$			

τ*u= U⊕U*

	X 🔿 G	Ğ _X	V _X
Usual Langlands	$G' \circlearrowleft G' \times G'$	Ğ′	ğ′
Whittaker normal- ization	$(N,\psi)ackslash G$	Ğ	0
Hecke	$\mathbb{G}_m \setminus PGL_2$	$\check{G} = SL_2$	T^* std

	X 🔿 G	Ğ _X	V _X
Usual Langlands	$G' \circlearrowleft G' \times G'$	Ğ′	ğ′
Whittaker normal- ization	$(N,\psi)ackslash G$	Ğ	0
Hecke	$\mathbb{G}_m \setminus PGL_2$	$\check{G} = SL_2$	T^* std
Rankin–Selberg, Jacquet–Piatetski- Shapiro–Shalika	$ \begin{array}{c} \overline{H \setminus \operatorname{GL}_n \times \operatorname{GL}_n} &= \\ \operatorname{GL}_n \times \mathbb{A}^n = \mathbf{X} \end{array} $	Ğ	$T^*(std \otimes std)$
H= dicgonal GLn×GLn = G mircholic			

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ シタぐ

	X 🖑 G	Ğx	V _X
Usual Langlands	$G' \circlearrowleft G' \times G'$	Ğ′	ğ′
Whittaker normal- ization	$(N,\psi)ackslash G$	Ğ	0
Hecke	$\mathbb{G}_m \setminus PGL_2$	$\check{G} = SL_2$	T^* std
Rankin–Selberg, Jacquet–Piatetski- Shapiro–Shalika	$ \begin{array}{c} \overline{H \backslash \operatorname{GL}_n \times \operatorname{GL}_n} &= \\ \operatorname{GL}_n \times \mathbb{A}^n \end{array} $	Ğ	$T^*(std \otimes std)$
Gan–Gross–Prasad	$SO_{2n} \setminus SO_{2n+1} \times SO_{2n}$	$\check{G} = SO_{2n} \times Sp_{2n}$	std⊗std

Example (Sakellaridis)

$$G = GL_2^{\times n} \times \mathbb{G}_m, H = \left\{ \begin{pmatrix} a & x_1 \\ & 1 \end{pmatrix} \times \begin{pmatrix} a & x_2 \\ & 1 \end{pmatrix} \times \cdots \times \begin{pmatrix} a & x_n \\ & 1 \end{pmatrix} \times a \middle| x_1 + \cdots + x_n = 0 \right\}$$
$$X = \overline{H \setminus G}$$

Jonathan Wang (MIT)

Spherical varieties, *L*-functions, crystals

September 23, 2020 7 / 19

< ∃→

∃ ▶

< 17 > <

< □ ▶

₹.

590

Example (Sakellaridis)

$$G = \operatorname{GL}_{2}^{\times n} \times \mathbb{G}_{m}, H = \left\{ \left(\begin{array}{cc} a & x_{1} \\ & 1 \end{array}\right) \times \left(\begin{array}{cc} a & x_{2} \\ & 1 \end{array}\right) \times \cdots \times \left(\begin{array}{cc} a & x_{n} \\ & 1 \end{array}\right) \times a \middle| x_{1} + \cdots + x_{n} = 0 \right\}$$
$$X = \overline{H \setminus G}$$
$$\bullet \quad \check{G}_{X} = \check{G} = \operatorname{GL}_{2}^{\times n} \times \mathbb{G}_{m}$$
$$\bullet \quad V_{X} = T^{*}(\operatorname{std}_{2}^{\otimes n} \otimes \operatorname{std}_{1}).$$

- ∢ ⊒ →

∃ ▶

< 17 > <

< □ ▶

Ξ.

590

Example (Sakellaridis)

$$G = \operatorname{GL}_{2}^{\times n} \times \mathbb{G}_{m}, H = \left\{ \begin{pmatrix} a & x_{1} \\ & 1 \end{pmatrix} \times \begin{pmatrix} a & x_{2} \\ & 1 \end{pmatrix} \times \cdots \times \begin{pmatrix} a & x_{n} \\ & 1 \end{pmatrix} \times a \middle| x_{1} + \cdots + x_{n} = 0 \right\}$$
$$X = \overline{H \setminus G}$$
$$\bullet \ \check{G}_{X} = \check{G} = \operatorname{GL}_{2}^{\times n} \times \mathbb{G}_{m}$$
$$\bullet \ V_{X} = T^{*}(\operatorname{std}_{2}^{\otimes n} \otimes \operatorname{std}_{1}).$$

To find new interesting examples, need to consider singular $X \neq H \setminus G$.

Theorem (Luna, Richardson)

 $H \setminus G$ is affine if and only if H is reductive

3

For this talk, assume $\check{G}_X = \check{G}$ (and X has no type N roots). ['N' is for normalizer]

< 🗆 🕨

∢ ∄ ▶ ∢ ≣ ▶

Э

SQ (~

For this talk, assume $\check{G}_X = \check{G}$ (and X has no type N roots). ['N' is for normalizer]

Equivalent to:

(Base change to k)

• X has open B-orbit $X^{\circ} \cong B$

$$x_{o} \in \mathcal{X}(\overline{k}_{0})$$

< □ ▶

• $X^{\circ}P_{\alpha}/\mathcal{R}(P_{\alpha}) \cong \mathbb{G}_m \setminus \mathsf{PGL}_2$ for every simple $\alpha, P_{\alpha} \supset B$

$$P_{a}/R(P_{a}) = PGL_{2}$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

asymptotics

Definition

Fix $x_0 \in X^{\circ}(\mathbb{F}_q)$ in open *B*-orbit. Define the *X*-Radon transform

 $\pi_{!}: C^{\infty}_{c}(X(F)) \stackrel{G(O)}{\rightarrowtail} \to C^{\infty}(N(F) \backslash G(F))^{G(O)}$

1

Sakellaridis–Venkatesh á la Bernstein

Definition

Fix $x_0 \in X^{\circ}(\mathbb{F}_q)$ in open *B*-orbit. Define the *X*-Radon transform $\pi_{!}: C^{\infty}_{c}(X(F))^{G(O)} \to C^{\infty}(N(F) \setminus G(F))^{G(O)}$ by

$$\pi_! \Phi(g) := \int_{N(F)} \Phi(x_0 ng) dn, \quad g \in G(F)$$

Fix $x_0 \in X^{\circ}(\mathbb{F}_q)$ in open *B*-orbit. Define the *X*-Radon transform

$$\pi_{!}: C^{\infty}_{c}(X(F))^{G(O)} \to C^{\infty}(N(F) \backslash G(F))^{G(O)}$$

by

$$\pi_{!}\Phi(g) := \int_{N(F)} \Phi(x_0 ng) dn, \quad g \in G(F)$$

 $\pi_{!}\Phi$ is a function on $N(F)\setminus G(F)/G(O) = T(F)/T(O) = \check{\Lambda}$.

-∢ ⊒ ▶

3

Fix $x_0 \in X^{\circ}(\mathbb{F}_q)$ in open *B*-orbit. Define the *X*-Radon transform

$$\pi_{!}: C^{\infty}_{c}(X(F))^{G(O)} \to C^{\infty}(N(F) \backslash G(F))^{G(O)}$$

by

$$\pi_{!}\Phi(g) := \int_{N(F)} \Phi(x_0 ng) dn, \quad g \in G(F)$$

 $\pi_{!}\Phi$ is a function on $N(F)\setminus G(F)/G(O) = T(F)/T(O) = \check{\Lambda}$.

Related:

- spherical functions (unramified Hecke eigenfunction) on X(F)
- unramified Plancherel measure on X(F)

3

Assume $\check{G}_X = \check{G}$ and X has no type N roots.

Jonathan Wang (MIT)

Spherical varieties, *L*-functions, crystals

< □

September 23, 2020

-

I = ►

3

SQ (~

10 / 19

Assume $\check{G}_X = \check{G}$ and X has no type N roots. There exists a symplectic $V_X \in \text{Rep}(\check{G})$ with a \check{T} polarization $V_X = V_X^+ \oplus (V_X^+)^*$ such that

September 23, 2020 10 / 19

SQ (~

3

Assume $\check{G}_X = \check{G}$ and X has no type N roots. There exists a symplectic $V_X \in \text{Rep}(\check{G})$ with a \check{T} polarization $V_X = V_X^+ \oplus (V_X^+)^*$ such that

$$\pi_{!}\Phi_{\mathsf{IC}_{X(O)}} = \frac{\prod_{\check{\alpha}\in\check{\Phi}_{G}^{+}}(1-q^{-1}e^{\check{\alpha}})}{\prod_{\check{\lambda}\in\mathsf{wt}(V_{X}^{+})}(1-q^{-\frac{1}{2}}e^{\check{\lambda}})} \in \mathsf{Fn}(\check{\Lambda})$$

where $e^{\check{\lambda}}$ is the indicator function of $\check{\lambda}$, $e^{\check{\lambda}}e^{\check{\mu}} = e^{\check{\lambda}+\check{\mu}}$

$$\frac{1}{1-\bar{q}^{\frac{1}{2}}e^{\chi}} = \sum_{n\geq 0} (q^{-\frac{1}{2}}e^{\tilde{n}})^{n}$$

t

<\] →]

SQ Q

10 / 19

Assume $\check{G}_X = \check{G}$ and X has no type N roots. $\check{G}^{*} \vee_X \leadsto_{\check{Y}} \leadsto_{\check{Y}} \overset{*}{\longrightarrow} \check{g}^*$ There exists a symplectic $V_X \in \text{Rep}(\check{G})$ with a \check{T} polarization $V_X = V_X^+ \oplus (V_X^+)^*$ such that

$$\pi_{!}\Phi_{\mathsf{IC}_{X(O)}} = \frac{\prod_{\check{\alpha}\in\check{\Phi}_{G}^{+}}(1-q^{-1}e^{\check{\alpha}})}{\prod_{\check{\lambda}\in\mathsf{wt}(V_{X}^{+})}(1-q^{-\frac{1}{2}}e^{\check{\lambda}})} \in \mathsf{Fn}(\check{\Lambda})$$

where $e^{\check{\lambda}}$ is the indicator function of $\check{\lambda}$, $e^{\check{\lambda}}e^{\check{\mu}}=e^{\check{\lambda}+\check{\mu}}$

 $\begin{array}{l} \text{Mellin transform of right hand side gives} \\ e^{\tilde{\lambda}} & \sim \tilde{\lambda}(\chi) \\ \chi \in \check{T}(\mathbb{C}) \mapsto \frac{L(\chi, V_X^+, \frac{1}{2})}{L(\chi, \check{n}, 1)}, \text{ this is "half" of } \frac{L(\chi, V_X, \frac{1}{2})}{L(\chi, \check{g}/\check{t}, 1)} \underbrace{}_{\text{vormulation}} \\ Warming : & V_X^+ & \text{never} \quad \check{G} - \overset{\text{rep}}{G} + \overset{V_X^+}{I_1} \underbrace{}_{I_1} \underbrace{}_{I_1} \underbrace{}_{I_2} \underbrace{}_{I_1} \underbrace{}_{I_2} \underbrace{}_{I_2} \underbrace{}_{I_2} \underbrace{}_{I_1} \underbrace{}_{I_2} \underbrace{}_{I_$

< <p>Image: 1

∃►

3

590

- Sakellaridis ('08, '13): function theoretic smooth
 - $X = H \setminus G$ and H is reductive (iff $H \setminus G$ is affine), no assumption on \check{G}_X
 - doesn't consider $X \supseteq H \setminus G$

- Sakellaridis ('08, '13):
 - $X = H \setminus G$ and H is reductive (iff $H \setminus G$ is affine), no assumption on \check{G}_X
 - doesn't consider $X \supseteq H \setminus G$
- Braverman–Finkelberg–Gaitsgory–Mirković [BFGM] '02:

•
$$X = \overline{N^- \setminus G}$$
, $\check{G}_X = \check{T}$, $V_X = \check{\mathfrak{n}}$

- Sakellaridis ('08, '13):
 - $X = H \setminus G$ and H is reductive (iff $H \setminus G$ is affine), no assumption on \check{G}_X
 - doesn't consider $X \supsetneq H \setminus G$
- Braverman–Finkelberg–Gaitsgory–Mirković [BFGM] '02:

•
$$X = \overline{N^- \setminus G}$$
, $\check{G}_X = \check{T}$, $V_X = \check{\mathfrak{n}}$

- Bouthier–Ngô–Sakellaridis [BNS] '16:
 - X toric variety, G = T, $\check{G}_X = \check{T}$, weights of V_X correspond to lattice generators of a cone

Conjecture 1 (possibly with $\check{G}_X \neq \check{G}$) was proved in the following cases: • Sakellaridis ('08, '13): function - theoretic • $X = H \setminus G$ and H is reductive (iff $H \setminus G$ is affine), no assumption on \check{G}_X • doesn't consider $X \supseteq H \setminus G$ Braverman–Finkelberg–Gaitsgory–Mirković [BFGM] '02:
 X = N⁻\G, Ğ_X = Ť, N_X = ň
 Bouthier–Ngô–Sakellaridis [BNS] '16: geometrice X toric variety, G = T, $\check{G}_X = \check{T}$, weights of V_X correspond to lattice generators of a cone • $X \supset G'$ is L-monoid, $G = G' \times G' (\check{G}_X) = \check{G}', V_X = \check{g}' \oplus V^{\check{\lambda}}$ • \mathcal{H}^{G}

SQ (?

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots. Then

Jonathan Wang (MIT)

Spherical varieties, *L*-functions, crystals

< □

September 23, 2020 12 / 19

-

3

SQ (~

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots. Then

$$\pi_{!}\Phi_{\mathsf{IC}_{X(O)}} = \frac{\prod_{\check{\alpha}\in\check{\Phi}_{G}^{+}}(1-q^{-1}e^{\check{\alpha}})}{\prod_{\check{\lambda}\in\mathsf{wt}(V_{X}^{+})}(1-q^{-\frac{1}{2}}e^{\check{\lambda}})}$$

for some $V_{\mathbf{X}}^+ \in \operatorname{Rep}(\check{T})$ such that:

< n

3

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots. Then

$$\pi_{!}\Phi_{\mathsf{IC}_{X(O)}} = \frac{\prod_{\check{\alpha}\in\check{\Phi}_{G}^{+}}(1-q^{-1}e^{\check{\alpha}})}{\prod_{\check{\lambda}\in\mathsf{wt}(V_{X}^{+})}(1-q^{-\frac{1}{2}}e^{\check{\lambda}})}$$

for some V_X⁺ ∈ Rep(Ť) such that:
V'_X := V_X⁺ ⊕ (V_X⁺)^{*} has action of (SL₂)_α for every simple root α
We do not check Serre relations

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots. Then

$$\pi_{!}\Phi_{\mathsf{IC}_{X(\mathcal{O})}} = \frac{\prod_{\check{\alpha}\in\check{\Phi}_{G}^{+}}(1-q^{-1}e^{\check{\alpha}})}{\prod_{\check{\lambda}\in\mathsf{wt}(V_{X}^{+})}(1-q^{-\frac{1}{2}}e^{\check{\lambda}})}$$

for some $V_X^+ \in \text{Rep}(\check{T})$ such that:

V'_X := V⁺_X ⊕ (V⁺_X)* has action of (SL₂)_α for every simple root α
 We do not check Serre relations

Assuming V'_X satisfies Serre relations (so it is a Ğ-rep), we determine its highest weights with multiplicities (in terms of X)

SOR

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots. Then

$$\pi_{!}\Phi_{\mathsf{IC}_{X(\mathcal{O})}} = \frac{\prod_{\check{\alpha}\in\check{\Phi}_{G}^{+}}(1-q^{-1}e^{\check{\alpha}})}{\prod_{\check{\lambda}\in\mathsf{wt}(V_{X}^{+})}(1-q^{-\frac{1}{2}}e^{\check{\lambda}})}$$

for some $V_X^+ \in \text{Rep}(\check{T})$ such that:

V'_X := V⁺_X ⊕ (V⁺_X)* has action of (SL₂)_α for every simple root α
 We do not check Serre relations

Assuming V'_X satisfies Serre relations (so it is a Ğ-rep), we determine its highest weights with multiplicities (in terms of X)

• (2) gives recipe for conjectural V_X in terms of X

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots. Then

$$\pi_{!}\Phi_{\mathsf{IC}_{X(\mathcal{O})}} = \frac{\prod_{\check{\alpha}\in\check{\Phi}_{G}^{+}}(1-q^{-1}e^{\check{\alpha}})}{\prod_{\check{\lambda}\in\mathsf{wt}(V_{X}^{+})}(1-q^{-\frac{1}{2}}e^{\check{\lambda}})}$$

for some $V_X^+ \in \text{Rep}(\check{T})$ such that:

V'_X := V⁺_X ⊕ (V⁺_X)* has action of (SL₂)_α for every simple root α
 We do not check Serre relations → reduce ~10 cases, G, ss runde 2

Assuming V'_X satisfies Serre relations (so it is a Ğ-rep), we determine its highest weights with multiplicities (in terms of X)

- (2) gives recipe for conjectural V_X in terms of X
- If V_X is minuscule, then $V_X = V'_X$.

Proposition

If $X = H \setminus G$ with H reductive, then V_X is minuscule.

- Base change to $k = \overline{\mathbb{F}}_q$ (or $k = \mathbb{C}$)
- $X_{O}(k) = X(k[[t]])$
- $X_F(k) = X(k((t)))$

< □ ▶

< A ∃ ▶

3

SQ (~

- Base change to $k = \overline{\mathbb{F}}_q$ (or $k = \mathbb{C}$)
- $\mathbf{X}_{\mathbf{O}}(k) = X(k\llbracket t \rrbracket)$
- $X_F(k) = X(k((t)))$
- Problem: **X**₀ is an infinite type scheme

no perverse sheaves

< □ ▶

< 一型

э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

-∢∃>

∃ ▶

- Base change to $k = \overline{\mathbb{F}}_q$ (or $k = \mathbb{C}$)
- $\mathbf{X}_{\mathbf{O}}(k) = X(k\llbracket t \rrbracket)$
- $X_F(k) = X(k((t)))$
- Problem: X_0 is an infinite type scheme
- Bouthier–Ngô–Sakellaridis: IC function still makes sense by Grinberg–Kazhdan theorem (مسبل ٥)

э

< ∃ >

SQQ

Drinfeld's proof of Grinberg-Kazhdan theorem gives an explicit model for **X**₀: X° ~ B

< □ →

P

-

3

SQ (~

Drinfeld's proof of Grinberg–Kazhdan theorem gives an explicit model for X_0 :

Definition

Let C be a smooth curve over k. Define

$$\mathcal{Y} = \mathsf{Maps}_{\mathsf{gen}}(C, X/B \supset X^{\circ}/B)$$

< ∃ >

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

S: C ~ X/B > v v *pen ~ X°/B=pt

Drinfeld's proof of Grinberg–Kazhdan theorem gives an explicit model for X_0 :

Definition

Let C be a smooth curve over k. Define

X= N-\G

$$\mathcal{Y} = \mathsf{Maps}_{\mathsf{gen}}(C, X/B \supset X^{\circ}/B)$$

Following Finkelberg–Mirković, we call this the **Zastava space** of X.

< ∃ >

3

Drinfeld's proof of Grinberg–Kazhdan theorem gives an explicit model for X_0 :

Definition

Let C be a smooth curve over k. Define

$$\mathcal{Y} = \mathsf{Maps}_{\mathsf{gen}}(C, X/B \supset X^{\circ}/B)$$

Following Finkelberg–Mirković, we call this the **Zastava space** of X.

Fact: \mathcal{Y} is an infinite disjoint union of finite type schemes.

Drinfeld's proof of Grinberg–Kazhdan theorem gives an explicit model for X_0 :

Definition

Let C be a smooth curve over k. Define

$$\mathcal{Y} = \mathsf{Maps}_{\mathsf{gen}}(C, X/B \supset X^{\circ}/B)$$

Following Finkelberg–Mirković, we call this the **Zastava space** of X.

Fact: \mathcal{Y} is an infinite disjoint union of finite type schemes. $\begin{array}{c} \mathcal{Y} & \mathcal{F} & \mathcal{F} \\ \begin{array}{c} \mathcal{Y} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} & \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \\ \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \end{array} \xrightarrow{\mathcal{F}} \begin{array}{c} \mathcal{F} \end{array} \xrightarrow{\mathcal{F}} \end{array} \xrightarrow{\mathcal{F}} \begin{array}$

 $\{\check{\Lambda}\text{-valued divisors on } C\} \supset \check{\Sigma} \check{\lambda}_i \checkmark_i$

Define the **central fiber** $\mathbb{Y}^{\check{\lambda}} = \pi^{-1}(\check{\lambda} \cdot v)$ for a single point $v \in C(k)$.

< □ ▶

Define the **central fiber** $\mathbb{Y}^{\check{\lambda}} = \pi^{-1}(\check{\lambda} \cdot v)$ for a single point $v \in C(k)$.

Graded factorization property

The fiber $\pi^{-1}(\check{\lambda}_1 v_1 + \check{\lambda}_2 v_2)$ for distinct v_1, v_2 is isomorphic to $\mathbb{Y}^{\check{\lambda}_1} \times \mathbb{Y}^{\check{\lambda}_2}$.

▲ ■ ▶ ■ √ Q (~

Define the **central fiber** $\mathbb{Y}^{\check{\lambda}} = \pi^{-1}(\check{\lambda} \cdot v)$ for a single point $v \in C(k)$.

Graded factorization property

The fiber $\pi^{-1}(\check{\lambda}_1 v_1 + \check{\lambda}_2 v_2)$ for distinct v_1, v_2 is isomorphic to $\mathbb{Y}^{\check{\lambda}_1} \times \mathbb{Y}^{\check{\lambda}_2}$.

Upshot

$$\pi_{!}\Phi_{\mathsf{IC}_{\mathbf{X}_{\mathbf{O}}}}(t^{\check{\lambda}}) = tr(\mathsf{Fr},(\pi_{!}\mathsf{IC}_{\mathcal{Y}})|_{\check{\lambda}\cdot v}^{*})$$

Can compactify
$$\pi$$
 to proper map $\overline{\pi}: \overline{\mathcal{Y}} \to \mathcal{A}$.

Theorem (Sakellaridis–W)

Under previous assumptions, $\overline{\pi}: \overline{\mathcal{Y}} \to \mathcal{A}$ is stratified semi-small. In particular, $\overline{\pi}_! \mathsf{IC}_{\overline{\mathcal{Y}}}$ is perverse.

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

16 / 19

Can compactify π to proper map $\overline{\pi}: \overline{\mathcal{Y}} \to \mathcal{A}$.

Theorem (Sakellaridis–W)

Under previous assumptions, $\overline{\pi} : \overline{\mathcal{Y}} \to \mathcal{A}$ is stratified semi-small. In particular, $\overline{\pi}_! \mathsf{IC}_{\overline{\mathcal{Y}}}$ is perverse.

If $\overline{\mathcal{Y}}$ is smooth, then semi-smallness amounts to the inequality

$$\dim \overline{\mathbb{Y}}^{\check{\lambda}} \leq \operatorname{crit}(\check{\lambda})$$

JQ C

16 / 19

Can compactify
$$\pi$$
 to proper map $\overline{\pi}: \overline{\mathcal{Y}} \to \mathcal{A}$.

Theorem (Sakellaridis–W)

Under previous assumptions, $\overline{\pi} : \overline{\mathcal{Y}} \to \mathcal{A}$ is stratified semi-small. In particular, $\overline{\pi}_{!}IC_{\overline{\mathcal{Y}}}$ is perverse.

If $\overline{\mathcal{Y}}$ is smooth, then semi-smallness amounts to the inequality

$$\mathsf{dim}\,\overline{\mathbb{Y}}^{\check{\lambda}} \leq \mathsf{crit}(\check{\lambda})$$

Decomposition theorem + factorization property imply

Euler product

Jonathan Wang (MIT)

September 23, 2020 16 / 19

Can compactify
$$\pi$$
 to proper map $\overline{\pi}: \overline{\mathcal{Y}} \to \mathcal{A}$.

Theorem (Sakellaridis–W)

Under previous assumptions, $\overline{\pi} : \overline{\mathcal{Y}} \to \mathcal{A}$ is stratified semi-small. In particular, $\overline{\pi}_{!}IC_{\overline{\mathcal{Y}}}$ is perverse.

If $\overline{\mathcal{Y}}$ is smooth, then semi-smallness amounts to the inequality

$$\mathsf{dim}\,\overline{\mathbb{Y}}^{\check{\lambda}} \leq \mathsf{crit}(\check{\lambda})$$

Decomposition theorem + factorization property imply

Euler product

$$tr(\operatorname{Fr},(\overline{\pi}_{!}\operatorname{IC}_{\overline{\mathcal{Y}}})|_{?\cdot v}^{*}) = rac{1}{\prod_{\check{\lambda} \in \mathfrak{B}^{+}}(1-q^{-rac{1}{2}}e^{\check{\lambda}})}$$

 $velevant$ stratum supported at v
 $\mathfrak{B}^{+} = \operatorname{irred.}$ components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of dim $= \operatorname{crit}(\check{\lambda})$ as $\check{\lambda}$ varies

• $\mathfrak{B}^+ = \text{irred. components of } \overline{\mathbb{Y}}^{\check{\lambda}} \text{ of } \dim = \text{crit}(\check{\lambda}) \text{ as } \check{\lambda} \text{ varies}$

Jonathan Wang (MIT)

< D |

3

SQ (~

- $\mathfrak{B}^+ = \text{irred. components of } \overline{\mathbb{Y}}^{\check{\lambda}} \text{ of } \dim = \text{crit}(\check{\lambda}) \text{ as } \check{\lambda} \text{ varies}$
- Define V_X^+ to have basis \mathfrak{B}^+

3

- $\mathfrak{B}^+ = \text{irred. components of } \overline{\mathbb{Y}}^{\check{\lambda}} \text{ of } \dim = \text{crit}(\check{\lambda}) \text{ as } \check{\lambda} \text{ varies}$
- Define V_X^+ to have basis \mathfrak{B}^+
- Formally set $\mathfrak{B} = \mathfrak{B}^+ \sqcup (\mathfrak{B}^+)^*$, so $(\mathfrak{B}^+)^*$ is a basis of $(V_X^+)^*$ $\chi \qquad -\tilde{\lambda}$

SQQ

- $\mathfrak{B}^+ = \mathsf{irred.}$ components of $\overline{\mathbb{Y}}^{\hat{\lambda}}$ of dim = $\mathsf{crit}(\check{\lambda})$ as $\check{\lambda}$ varies
- Define V_X^+ to have basis \mathfrak{B}^+
- Formally set $\mathfrak{B} = \mathfrak{B}^+ \sqcup (\mathfrak{B}^+)^*$, so $(\mathfrak{B}^+)^*$ is a basis of $(V_X^+)^*$

 \mathfrak{B} has the structure of a (Kashiwara) crystal, i.e., graph with weighted vertices and edges \leftrightarrow raising/lowering operators $\tilde{e}_{\alpha}, \tilde{f}_{\alpha}$

SQ Q

S S. K.

- $\mathfrak{B}^+ = \text{irred. components of } \overline{\mathbb{Y}}^{\check{\lambda}} \text{ of } \dim = \text{crit}(\check{\lambda}) \text{ as } \check{\lambda} \text{ varies}$
- Define V_X^+ to have basis \mathfrak{B}^+
- Formally set $\mathfrak{B} = \mathfrak{B}^+ \sqcup (\mathfrak{B}^+)^*$, so $(\mathfrak{B}^+)^*$ is a basis of $(V_X^+)^*$

 \mathfrak{B} has the structure of a (Kashiwara) crystal, i.e., graph with weighted vertices and edges \leftrightarrow raising/lowering operators $\tilde{e}_{\alpha}, \tilde{f}_{\alpha}$

Crystal basis is the (Lusztig) canonical basis at q = 0 of a f.d. $U_q(\check{g})$ -module.

- $\mathfrak{B}^+ = \text{irred. components of } \overline{\mathbb{Y}}^{\check{\lambda}} \text{ of } \dim = \text{crit}(\check{\lambda}) \text{ as } \check{\lambda} \text{ varies}$
- Define V_X^+ to have basis \mathfrak{B}^+
- Formally set $\mathfrak{B} = \mathfrak{B}^+ \sqcup (\mathfrak{B}^+)^*$, so $(\mathfrak{B}^+)^*$ is a basis of $(V_X^+)^*$

 \mathfrak{B} has the structure of a (Kashiwara) crystal, i.e., graph with weighted vertices and edges \leftrightarrow raising/lowering operators $\tilde{e}_{\alpha}, \tilde{f}_{\alpha}$

Crystal basis is the (Lusztig) canonical basis at q = 0 of a f.d. $U_q(\check{\mathfrak{g}})$ -module. q = 0

f.d. \check{G} -representation \rightsquigarrow crystal basis $\in \{ crystals \}$

Conjecture 2

 \mathfrak{B} is the crystal basis for a finite dimensional \check{G} -representation V_X .

• Conjecture 2 implies Conjecture 1 ($\mathfrak{B} \leftrightarrow V'_X$).

3

Conjecture 2

 \mathfrak{B} is the crystal basis for a finite dimensional \check{G} -representation V_X .

- Conjecture 2 implies Conjecture 1 ($\mathfrak{B} \leftrightarrow V'_X$).
- Conjecture 2 resembles geometric constructions of crystal bases by Lusztig, Braverman–Gaitsgory, Kamnitzer involving irreducible components of Gr_G

Jonathan Wang (MIT)

Spherical varieties, *L*-functions, crystals

September 23, 2020 19 / 19