Spherical varieties, L-functions, and crystal bases

Jonathan Wang (joint w/ Yiannis Sakellaridis)

MIT
MIT Lie Groups Seminar, September 23, 2020
Notes available at: http://jonathanpwang.com/notes/sphL_talk_notes.pdf

Outline

(1) What is a spherical variety?
(2) Function-theoretic results
(3) Geometry $(k=\mathbb{C})$

- $F=\mathbb{F}_{q}((t)), O=\mathbb{F}_{q} \llbracket t \rrbracket$
- $k=\overline{\mathbb{F}}_{q}$
- G connected (split)reductive group $/ \mathbb{F}_{q}$

What is a spherical variety?

Definition

A G-variety $X_{/ \mathbb{F}_{q}}$ is called spherical if X_{k} is normal and has an open dense orbit of $B_{k} \subset G_{k}$ after base change to k

What is a spherical variety?

Definition

A G-variety $X_{/ \mathbb{F}_{q}}$ is called spherical if X_{k} is normal and has an open dense orbit of $B_{k} \subset G_{k}$ after base change to k

Think of this as a finiteness condition (good combinatorics)

$$
(\Leftrightarrow X \text { has finitely mang } B \text {-orbits) }
$$

What is a spherical variety?

Definition

A G-variety $X_{/ \mathbb{F}_{q}}$ is called spherical if X_{k} is normal and has an open dense orbit of $B_{k} \subset G_{k}$ after base change to k

Think of this as a finiteness condition (good combinatorics) Examples:

- Toric varieties $G=T$
- Symmetric spaces $K \backslash G$
- Group $X=G^{\prime} \circlearrowleft G^{\prime} \times G^{\prime}=G$

Why are they relevant?

Conjecture (Sakellaridis, Sakellaridis-Venkatesh)

For any affine spherical G-variety $X\left({ }^{*}\right)$,
and an irreducible unitary $G(F)$-representation π, there is an "integral"

involving the IC function of $X(O)$ such that
a $\left|\mathcal{D}_{\chi}\right|^{2} \neq 0$ determines a functorial lifting of π to $\sigma \in \operatorname{lrr}(G \times(F))$ corresponding to a map $\check{G} X(\mathbb{C}) \rightarrow \check{G}(\mathbb{C})$,
(2) there should exist a GX-representation

$$
\rho_{x}: \ddot{G}(\mathbb{C}) \rightarrow G L\left(V_{x}\right)
$$

such that $\left|\mathcal{P}_{X}\right|_{\pi}^{2} "=" L\left(\sigma, \rho_{X}, s_{0}\right)$ for a special value s_{0}.

Why are they relevant?

Conjecture (Sakellaridis, Sakellaridis-Venkatesh)

For any affine spherical G-variety $X\left({ }^{*}\right)$, and an irreducible unitary $G(F)$-representation π, there is an "integral"

involving the IC function of $X(O)$ such that
(1) $|\mathcal{P} X|_{\pi}^{2} \neq 0$ determines a functorial lifting of π to $\sigma \in \operatorname{lrr}\left(G_{X}(F)\right)$ corresponding to a $\operatorname{map} \breve{G}_{X}(\mathbb{C}) \rightarrow \check{G}(\mathbb{C})$,
(2) there should exist a GX-representation

$$
p_{x}: G_{X}(\mathbb{C}) \rightarrow G L\left(V_{x}\right)
$$

such that $\left|\mathcal{P}_{X}\right|_{\pi}^{2} "=" L\left(\sigma, \rho_{X}, s_{0}\right)$ for a special value s_{0}.

Why are they relevant?

Conjecture (Sakellaridis, Sakellaridis-Venkatesh)

For any affine spherical G-variety $X\left({ }^{*}\right)$, and an irreducible unitary $G(F)$-representation π, there is an "integral"

$$
\left|\mathcal{P}_{X}\right|_{\pi}^{2}: \pi \otimes \bar{\pi} \rightarrow \mathbb{C}
$$

involving the IC function of $X(O)$ such that
(1) $\left|\mathcal{P}_{X}\right|_{\pi}^{2} \neq 0$ determines a functorial lifting of π to $\sigma \in \operatorname{lrr}\left(G_{X}(F)\right)$ corresponding to a $\operatorname{map} \check{G}_{X}(\mathbb{C}) \rightarrow \check{G}(\mathbb{C})$,
(2) there should exist a Ğ-representation

such that $\left|\mathcal{P}_{X}\right|_{\pi}^{2} "=" L\left(\sigma, \rho_{X}, s_{0}\right)$ for a special value s_{0}.

Why are they relevant?

Conjecture (Sakellaridis, Sakellaridis-Venkatesh)

For any affine spherical G-variety $X\left({ }^{*}\right)$, and an irreducible unitary $G(F)$-representation π, there is an "integral"

$$
\left|\mathcal{P}_{X}\right|_{\pi}^{2}: \pi \otimes \bar{\pi} \rightarrow \mathbb{C}
$$

involving the IC function of $X(O)$ such that

(1) $\left|\mathcal{P}_{X}\right|_{\pi}^{2} \neq 0$ determines a functorial lifting of π to $\sigma \in \operatorname{Irr}\left(G_{X}(F)\right)$ corresponding to a map $\check{G}_{X}(\mathbb{C}) \rightarrow \check{G}(\mathbb{C})$,
(2) there should exist a GX-representation

such that $\left|\mathcal{P}_{X}\right|_{\pi}^{2} "=" L\left(\sigma, \rho x, s_{0}\right)$ for a special value s_{0}.

Why are they relevant?

Conjecture (Sakellaridis, Sakellaridis-Venkatesh)

For any affine spherical G-variety $X\left({ }^{*}\right)$, and an irreducible unitary $G(F)$-representation π, there is an "integral"

$$
\left|\mathcal{P}_{X}\right|_{\pi}^{2}: \pi \otimes \bar{\pi} \rightarrow \mathbb{C}
$$

involving the IC function of $X(O)$ such that
(1) $\left|\mathcal{P}_{X}\right|_{\pi}^{2} \neq 0$ determines a functorial lifting of π to $\sigma \in \operatorname{Irr}\left(G_{X}(F)\right)$ corresponding to a map $\check{G}_{X}(\mathbb{C}) \rightarrow \check{G}(\mathbb{C})$, Latter: $\breve{G}_{x}=\breve{G}$
0 there should exist a Ǧ x-representation

$$
\rho_{X}: \check{G}_{X}(\mathbb{C}) \rightarrow \mathrm{GL}\left(V_{X}\right)
$$

such that $\left|\mathcal{P}_{X}\right|_{\pi}^{2}$ " $=" L\left(\sigma, \rho_{X}, s_{0}\right)$ for a special value s_{0}.

Some history on \breve{G}_{X}

Goal: $a \operatorname{map} \check{G}_{X} \rightarrow \check{G}$ with finite kernel

Some history on \breve{G}_{X}

Goal: a map $\check{G}_{X} \rightarrow \bar{G}$ with finite kernel

- \check{T}_{X} is easy to define

Some history on \breve{G}_{X}

Goal: a map $\check{G}_{X} \rightarrow \check{G}$ with finite kernel

- \check{T}_{X} is easy to define
- Little Weyl group W_{X} and spherical root system
- Symmetric variety: Cartan '27

Some history on \breve{G}_{X}

Goal: a map $\check{G}_{X} \rightarrow \check{G}$ with finite kernel

- \check{T}_{X} is easy to define
- Little Weyl group W_{X} and spherical root system
- Symmetric variety: Cartan '27
- Spherical variety: Luna-Vust '83, Brion '90; reflection group of fundamental domain

Some history on \breve{G}_{X}

Goal: a map $\check{G}_{X} \rightarrow \check{G}$ with finite kernel

- \check{T}_{X} is easy to define
- Little Weyl group W_{X} and spherical root system
- Symmetric variety: Cartan '27
- Spherical variety: Luna-Vust '83, Brion '90; reflection group of fundamental domain
- Irreducible G-variety: Knop '90, '93, '94; moment map, invariant differential operators

- Gaitsgory-Nadler '06: define subgroup $\check{G}_{X}^{G N} \subset \check{G}$ using Tannakian formalism

Some history on \breve{G}_{X}

Goal: a map $\check{G}_{X} \rightarrow \check{G}$ with finite kernel

- \check{T}_{X} is easy to define
- Little Weyl group W_{X} and spherical root system
- Symmetric variety: Cartan '27
- Spherical variety: Luna-Vust '83, Brion '90; reflection group of fundamental domain
- Irreducible G-variety: Knop '90, '93, '94; moment map, invariant differential operators
- Gaitsgory-Nadler '06: define subgroup $\check{G}_{X}^{G N} \subset \check{G}$ using Tannakian formalism
- Sakellaridis-Venkatesh '12: normalized root system, define $\check{G}_{X} \rightarrow \check{G}$ combinatorially with image $\check{G}_{X}^{G N}$ under assumptions about GN

Some history on \breve{G}_{X}

Goal: a map $\check{G}_{X} \rightarrow \bar{G}$ with finite kernel

- \check{T}_{X} is easy to define
- Little Weyl group W_{X} and spherical root system
- Symmetric variety: Cartan '27
- Spherical variety: Luna-Vust '83, Brion '90; reflection group of fundamental domain
- Irreducible G-variety: Knop '90, '93, '94; moment map, invariant differential operators
- Gaitsgory-Nadler '06: define subgroup $\check{G}_{X}^{G N} \subset \check{G}$ using Tannakian formalism
- Sakellaridis-Venkatesh '12: normalized root system, define $\check{G} X \rightarrow \check{G}$ combinatorially with image $\check{G}_{X}^{G N}$ under assumptions about GN
- Knop-Schalke '17: define $\check{G}_{X} \rightarrow \check{G}$ combinatorially unconditionally

	$X \circlearrowleft G$	$\stackrel{G}{X}$	V_{X}
Usual Langlands	$G^{\prime} \circlearrowleft G^{\prime} \times G^{\prime}$	\breve{G}^{\prime} 女 ${ }^{\prime}$	$\check{\mathfrak{g}}^{\prime}$

	$X \circlearrowleft G$	\check{G}_{X}	V_{X}
Usual Langlands	$G^{\prime} \circlearrowleft G^{\prime} \times G^{\prime}$	\check{G}^{\prime}	\mathfrak{g}^{\prime}
Whittaker normal- ization	$(N, \psi) \backslash G$	\check{G}	0
	$(N, \psi)(G)=C^{\infty}(G)^{\Gamma, \psi}$		

$T^{*} u=u \otimes u^{*}$

	$X \circlearrowleft G$	\check{G}_{X}	V_{X}
Usual Langlands	$G^{\prime} \circlearrowleft G^{\prime} \times G^{\prime}$	\check{G}^{\prime}	$\check{\mathfrak{g}}^{\prime}$
Whittaker normal- ization	$(N, \psi) \backslash G$	\check{G}	0
Hecke	$\mathbb{G}_{m} \backslash \mathrm{PGL}_{2}$	$\check{G}=\mathrm{SL}_{2}$	T^{*} std

	$X \bigcirc G$	$\stackrel{G}{G}^{\prime}$	V_{X}
Usual Langlands	$G^{\prime} \circlearrowleft G^{\prime} \times G^{\prime}$	G^{\prime}	$\breve{\mathfrak{g}}^{\prime}$
Whittaker normalization	$(N, \psi) \backslash G$	G	0
Hecke	$\mathbb{G}_{m} \backslash \mathrm{PGL}{ }_{2}$	$\check{G}=\mathrm{SL}_{2}$	T* std
Rankin-Selberg, Jacquet-Piatetski- Shapiro-Shalika	$\begin{array}{ll} \overline{H \backslash \mathrm{GL}_{n} \times \mathrm{GL}_{n}} & = \\ \mathrm{GL}_{n} \times \mathbb{A}^{n}=X & \end{array}$ $H=$ dicegonal mirabolic	Ğ ${ }_{-n} \times G L_{n}=G$	$T^{*}(\operatorname{std} \otimes \operatorname{std})$

	$X \circlearrowleft G$	\breve{G}_{X}	V_{X}
Usual Langlands	$G^{\prime} \circlearrowleft G^{\prime} \times G^{\prime}$	\breve{G}^{\prime}	\mathfrak{g}^{\prime}
Whittaker normal- ization	$(N, \psi) \backslash G$	\breve{G}	0
Hecke	$\mathbb{G}_{m} \backslash \mathrm{PGL}_{2}$	$\check{G}=\mathrm{SL}_{2}$	T^{*} std
Rankin-Selberg, Jacquet-Piatetski- Shapiro-Shalika	$\mathrm{H} \backslash \mathrm{GL}_{n} \times \mathrm{GL}_{n}$ $\mathrm{GL}_{n} \times \mathbb{A}^{n}$	$\check{\mathrm{G}}$	$T^{*}($ std \otimes std $)$
Gan-Gross-Prasad	$\mathrm{SO}_{2 n} \backslash \mathrm{SO}_{2 n+1} \times \mathrm{SO}_{2 n}$	G $\mathrm{Sp}_{2 n}$	$\mathrm{SO}_{2 n} \times$
std \otimes std			

$$
\begin{aligned}
& \text { Example (Sakellaridis) } \\
& G=\mathrm{GL}_{2}^{\times n} \times \mathbb{G}_{m}, H= \\
& \left\{\left.\left(\begin{array}{cc}
a & x_{1} \\
& 1
\end{array}\right) \times\left(\begin{array}{cc}
a & x_{2} \\
& 1
\end{array}\right) \times \cdots \times\left(\begin{array}{cc}
a & x_{n} \\
& 1
\end{array}\right) \times a \right\rvert\, x_{1}+\cdots+x_{n}=0\right\} \\
& X=\overline{H \backslash G}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example (Sakellaridis) } \\
& G=\mathrm{GL}_{2}^{\times n} \times \mathbb{G}_{m}, H= \\
& \left\{\left.\left(\begin{array}{cc}
a & x_{1} \\
1
\end{array}\right) \times\left(\begin{array}{cc}
a & x_{2} \\
& 1
\end{array}\right) \times \cdots \times\left(\begin{array}{cc}
a & x_{n} \\
& 1
\end{array}\right) \times a \right\rvert\, x_{1}+\cdots+x_{n}=0\right\} \\
& X=\overline{H \backslash G} \\
& \bullet \check{G}_{X}=\check{G}=\mathrm{GL}_{2}^{\times n} \times \mathbb{G}_{m} \\
& \bullet V_{X}=T^{*}\left(\operatorname{std}_{2}^{\otimes n} \otimes \operatorname{std}_{1}\right) .
\end{aligned}
$$

Example (Sakellaridis)

$$
G=G L_{2}^{\times n} \times \mathbb{G}_{m}, H=
$$

$$
\left\{\left.\left(\begin{array}{cc}
a & x_{1} \\
& 1
\end{array}\right) \times\left(\begin{array}{cc}
a & x_{2} \\
& 1
\end{array}\right) \times \cdots \times\left(\begin{array}{cc}
a & x_{n} \\
& 1
\end{array}\right) \times a \right\rvert\, x_{1}+\cdots+x_{n}=0\right\}
$$

$$
X=\overline{H \backslash G}
$$

- $\check{G}_{X}=\check{G}=\mathrm{GL}_{2}^{\times n} \times \mathbb{G}_{m}$
- $V_{X}=T^{*}\left(\operatorname{std}_{2}^{\otimes n} \otimes \operatorname{std}_{1}\right)$.

To find new interesting examples, need to consider singular $X \neq H \backslash G$.

Theorem (Luna, Richardson)

$H \backslash G$ is affine if and only if H is reductive

$\breve{G}_{X}=\check{G}$

$$
A v \text { id: } O_{n} \backslash G L_{n}
$$

For this talk, assume $\check{G}_{X}=\check{G}$ (and X has no type N roots). [' N ' is for normalizer]

$$
\check{G}_{X}=\check{G}
$$

For this talk, assume $\check{G}_{X}=G$ (and X has no type N roots). [' N ' is for normalizer]

Equivalent to:

(Base change to k)

- X has open B-orbit $X^{\circ} \cong B \quad x_{0} \in X^{0}\left(\bar{F}_{q}\right)$
- $\mathrm{X}^{\circ} \mathrm{P}_{\alpha} / \mathcal{R}\left(P_{\alpha}\right) \cong \overbrace{}^{\mathbb{G}_{m} \backslash \mathrm{PGL}_{2}}$ for every simple $\alpha, P_{\alpha} \supset B$

$$
P_{\sigma} / R\left(P_{\alpha}\right)=P G L_{2}
$$

Sakellaridis-Venkatesh á la Bernstein asymptstics

Definition

Fix $x_{0} \in X^{\circ}\left(\mathbb{F}_{q}\right)$ in open B-orbit. Define the X-Radon transform

Sakellaridis-Venkatesh á la Bernstein

Definition

Fix $\underset{\sim}{x_{0}} \in X^{\circ}\left(\mathbb{F}_{q}\right)$ in open B-orbit. Define the X-Radon transform

$$
\pi_{!}: C_{c}^{\infty}(X(F))^{G(O)} \rightarrow C^{\infty}(N(F) \backslash G(F))^{G(O)}
$$

by

$$
\pi_{!} \Phi(g):=\int_{N(F)} \Phi\left(x_{0} n g\right) d n, \quad g \in G(F)
$$

Sakellaridis-Venkatesh á la Bernstein

Definition

Fix $x_{0} \in X^{\circ}\left(\mathbb{F}_{q}\right)$ in open B-orbit. Define the X-Radon transform

$$
\pi_{!}: C_{c}^{\infty}(X(F))^{G(O)} \rightarrow C^{\infty}(N(F) \backslash G(F))^{G(O)}
$$

by

$$
\pi_{!} \Phi(g):=\int_{N(F)} \Phi\left(x_{0} n g\right) d n, \quad g \in G(F)
$$

$\pi!\Phi$ is a function on $N(F) \backslash G(F) / G(O)=T(F) / T(O)=\check{\Lambda}$.

Sakellaridis-Venkatesh á la Bernstein

Definition

Fix $x_{0} \in X^{\circ}\left(\mathbb{F}_{q}\right)$ in open B-orbit. Define the X-Radon transform

$$
\pi_{!}: C_{c}^{\infty}(X(F))^{G(O)} \rightarrow C^{\infty}(N(F) \backslash G(F))^{G(O)}
$$

by

$$
\pi_{!} \Phi(g):=\int_{N(F)} \Phi\left(x_{0} n g\right) d n, \quad g \in G(F)
$$

$\pi!\Phi$ is a function on $N(F) \backslash G(F) / G(O)=T(F) / T(O)=\check{\Lambda}$.
Related:

- spherical functions (unramified Hecke eigenfunction) on $X(F)$
- unramified Plancherel measure on $X(F)$

Conjecture 1 (Sakellaridis-Venkatesh)

Assume $\check{G}_{X}=\check{G}$ and X has no type N roots.

Conjecture 1 (Sakellaridis-Venkatesh)

Assume $\check{G}_{X}=\check{G}$ and X has no type N roots.
There exists a symplectic $V_{X} \in \operatorname{Rep}(\check{G})$ with a \bar{T} polarization $V_{X}=V_{X}^{+} \oplus\left(V_{X}^{+}\right)^{*}$ such that

Conjecture 1 (Sakellaridis-Venkatesh)

Assume $\check{G}_{X}=\check{G}$ and X has no type N roots.
There exists a symplectic $V_{X} \in \operatorname{Rep}(\check{G})$ with a \bar{T} polarization $V_{X}=V_{X}^{+} \oplus\left(V_{X}^{+}\right)^{*}$ such that

$$
\pi_{!} \Phi_{I C_{X(O)}}=\frac{\prod_{\check{\alpha} \in \check{\Phi}_{G}^{+}}\left(1-q^{-1} e^{\check{\alpha}}\right)}{\prod_{\check{\lambda} \in w t\left(V_{X}^{+}\right)}\left(1-q^{-\frac{1}{2}} e^{\check{\lambda}}\right)} \in \operatorname{Fn}(\check{\Lambda})
$$

where $e^{\check{\lambda}}$ is the indicator function of $\check{\lambda}, e^{\check{\lambda}} e^{\check{\mu}}=e^{\check{\lambda}+\check{\mu}}$

$$
\frac{1}{1-q^{-\frac{1}{2}} e^{\frac{\lambda}{x}}}=\sum_{n \geq 0}\left(q^{-\frac{1}{2}} e^{\frac{\lambda}{1}}\right)^{n}
$$

Conjecture 1 (Sakellaridis-Venkatesh)
Assume $\check{G}_{X}=\check{G}$ and X has no type N roots. $\quad G \times V_{X} \longrightarrow \check{g}^{*}$
There exists a symplectic $V_{X} \in \operatorname{Rep}(\check{G})$ with a \check{T} polarization $V_{X}=V_{X}^{+} \oplus\left(V_{X}^{+}\right)^{*}$ such that

$$
\pi_{!} \Phi_{\mathbf{I C}}^{X(O)}, \frac{\prod_{\check{\alpha} \in \Phi_{G}^{+}}\left(1-q^{-1} e^{\check{\alpha}}\right)}{\prod_{\check{\lambda} \in w t\left(V_{X}^{+}\right)}\left(1-q^{-\frac{1}{2}} e^{\check{\lambda}}\right)} \in \operatorname{Fn}(\check{\Lambda})
$$

where $e^{\check{\lambda}}$ is the indicator function of $\check{\lambda}, e^{\check{\lambda}} e^{\breve{\mu}}=e^{\check{\lambda}+\check{\mu}}$
Mellin transform of right hand side gives
$e^{\tilde{x}} \leadsto{ }^{2}(x)$

$$
\chi \in \check{T}(\mathbb{C}) \mapsto \frac{L\left(\chi, V_{\chi}^{+}, \frac{1}{2}\right)}{L(\chi, \check{\mathfrak{n}}, 1)}, \text { this is "half" of } \frac{\left.L\left(\chi, V_{\chi}, \frac{1}{2}\right)\right\}}{L(\chi, \check{\mathfrak{g}} / \check{\mathrm{t}}, 1)} €_{n_{0}}
$$

Warming: V_{x}^{f} never \bar{G}-rep

$$
\begin{aligned}
& \text { Vex never G-rep } \quad V_{x}^{t} \quad(1,0) \quad(0,-1) \\
& \text { e.g. Heche } V_{x}=T^{*} a+d,
\end{aligned}
$$

Previous work

Conjecture 1 (possibly with $\check{G}_{X} \neq \check{G}$) was proved in the following cases:

Previous work

Conjecture 1 (possibly with $\check{G}_{X} \neq \check{G}$) was proved in the following cases:

- Sakellaridis ('08, '13): function-theoretic smooth
- $X=H \backslash G$ and H is reductive (iff $H \backslash G$ is affine), no assumption on \check{G}_{X}
- doesn't consider $X \supsetneq H \backslash G$

Previous work

Conjecture 1 (possibly with $\check{G}_{X} \neq \check{G}$) was proved in the following cases:

- Sakellaridis ('08, '13):
- $X=H \backslash G$ and H is reductive (iff $H \backslash G$ is affine), no assumption on \check{G}_{X}
- doesn't consider $X \supsetneq H \backslash G$
- Braverman-Finkelberg-Gaitsgory-Mirković [BFGM] '02:
- $X=\overline{N^{-} \backslash G}, \stackrel{\check{G}_{X}}{\sim} \underset{\sim}{\bar{T}}, ~ V_{X}=\check{\mathfrak{n}}$

Previous work

Conjecture 1 (possibly with $\check{G}_{X} \neq \check{G}$) was proved in the following cases:

- Sakellaridis ('08, '13):
- $X=H \backslash G$ and H is reductive (iff $H \backslash G$ is affine), no assumption on \check{G}_{X}
- doesn't consider $X \supsetneq H \backslash G$
- Braverman-Finkelberg-Gaitsgory-Mirković [BFGM] '02:
- $X=\overline{N^{-} \backslash G}, \check{G}_{X}=\check{T}, V_{X}=\check{\mathfrak{n}}$
- Bouthier-Ngô-Sakellaridis [BNS] '16:
- X toric variety, $G=T, \check{G}_{X}=\check{T}$, weights of V_{X} correspond to lattice generators of a cone

Previous work

Conjecture 1 (possibly with $\breve{G}_{X} \neq \breve{G}$) was proved in the following cases:

- Sakellaridis ('08, '13): funchion_theosetic
- $X=H \backslash G$ and H is reductive (iff $H \backslash G$ is affine), no assumption on \check{G}_{X}
- doesn't consider $X \supsetneq H \backslash G$
(ค Braverman-Finkelberg-Gaitsgory-Mirković [BFGM] '02:
- $X=\overline{N^{-} \backslash G, \check{G}_{X}}=\check{T} N_{x}=\check{\mathfrak{n}}$
- Bouthier-Ngô-Sakettaridis [BNS] '16:

Geopmefrica X toric variety, $G=T, \check{G}_{X}=\check{T}$, weights of V_{X} correspond to lattice generators of a cone

H^{\prime}

Theorem (Sakellaridis-W)

Assume X affine spherical, $\check{G}_{X}=\check{G}$ and X has no type N roots. Then

Theorem (Sakellaridis-W)

Assume X affine spherical, $\check{G}_{X}=\check{G}$ and X has no type N roots. Then

$$
\pi_{!} \Phi_{I C_{X(0)}}=\frac{\prod_{\check{\alpha} \in \check{\Phi}_{G}^{+}}\left(1-q^{-1} e^{\check{\alpha}}\right)}{\prod_{\check{\lambda} \in w_{\sim}^{t}\left(V_{X}^{+}\right)}\left(1-q^{-\frac{1}{2}} e^{\check{\jmath}}\right)}
$$

for some $V_{X}^{+} \in \operatorname{Rep}(\check{T})$ such that:

Theorem (Sakellaridis-W)

Assume X affine spherical, $\check{G}_{X}=\check{G}$ and X has no type N roots. Then

$$
\pi_{1} \Phi_{I C_{X(0)}}=\frac{\prod_{\check{\alpha} \in \check{\Phi}_{G}^{+}}\left(1-q^{-1} e^{\check{\alpha}}\right)}{\prod_{\check{\lambda} \in \operatorname{wt}\left(V_{X}^{+}\right)}\left(1-q^{-\frac{1}{2}} e^{\check{\chi}}\right)}
$$

for some $V_{X}^{+} \in \operatorname{Rep}(\check{T})$ such that:
(1) $V_{X}^{\prime}:=V_{X}^{+} \oplus\left(V_{X}^{+}\right)^{*}$ has action of $\left(\mathrm{SL}_{2}\right)_{\alpha}$ for every simple root α

- We do not check Serre relations

Theorem (Sakellaridis-W)

Assume X affine spherical, $\check{G}_{X}=\check{G}$ and X has no type N roots. Then

$$
\pi_{!} \Phi_{\Phi_{C}(0)}=\frac{\prod_{\check{\alpha} \in \check{\Phi}_{G}^{+}}\left(1-q^{-1} e^{\check{\alpha}}\right)}{\prod_{\grave{\lambda} \in \operatorname{wt}\left(V_{X}^{+}\right)}\left(1-q^{-\frac{1}{2}} e^{\check{ }}\right)}
$$

for some $V_{X}^{+} \in \operatorname{Rep}(\check{T})$ such that:
(1) $V_{X}^{\prime}:=V_{X}^{+} \oplus\left(V_{X}^{+}\right)^{*}$ has action of $\left(\mathrm{SL}_{2}\right)_{\alpha}$ for every simple root α

- We do not check Serre relations
(2) Assuming V_{X}^{\prime} satisfies Serre relations (so it is a Ğ-rep), we determine its highest weights with multiplicities (in terms of X)

Theorem (Sakellaridis-W)

Assume X affine spherical, $\check{G}_{X}=\check{G}$ and X has no type N roots. Then

$$
\pi_{!} \Phi_{I C_{X(O)}}=\frac{\prod_{\check{\alpha} \in \check{\Phi}_{G}^{+}}\left(1-q^{-1} e^{\check{\alpha}}\right)}{\prod_{\check{\lambda} \in \operatorname{wt}\left(V_{X}^{+}\right)}\left(1-q^{-\frac{1}{2}} e^{\check{\nearrow}}\right)}
$$

for some $V_{X}^{+} \in \operatorname{Rep}(\check{T})$ such that:
(1) $V_{X}^{\prime}:=V_{X}^{+} \oplus\left(V_{X}^{+}\right)^{*}$ has action of $\left(\mathrm{SL}_{2}\right)_{\alpha}$ for every simple root α

- We do not check Serre relations
(2) Assuming V_{X}^{\prime} satisfies Serre relations (so it is a $\check{G}-r e p$), we determine its highest weights with multiplicities (in terms of X)
- (2) gives recipe for conjectural V_{X} in terms of X

Theorem (Sakellaridis-W)

Assume X affine spherical, $\check{G}_{X}=\check{G}$ and X has no type N roots. Then

$$
\pi_{1} \Phi_{I C_{X(O)}}=\frac{\prod_{\check{\alpha} \in \check{\Phi}_{G}^{+}}\left(1-q^{-1} e^{\check{\alpha}}\right)}{\prod_{\check{\lambda} \in w t\left(V_{X}^{+}\right)}\left(1-q^{-\frac{1}{2}} e^{\check{\lambda}}\right)}
$$

for some $V_{X}^{+} \in \operatorname{Rep}(\check{T})$ such that:
(1) $V_{X}^{\prime}:=V_{X}^{+} \oplus\left(V_{X}^{+}\right)^{*}$ has action of $\left(\mathrm{SL}_{2}\right)_{\alpha}$ for every simple root α

- We do not check Serre relations \rightarrow veduce ~ 10 cases, G ss runk 2
(2) Assuming V_{X}^{\prime} satisfies Serre relations (so it is a $\check{G}-r e p$), we determine its highest weights with multiplicities (in terms of X)
- (2) gives recipe for conjectural V_{X} in terms of X
- If V_{X} is minuscule, then $V_{X}=V_{X}^{\prime}$.

Proposition

If $X=H \backslash G$ with H reductive, then V_{X} is minuscule.

Enter geometry

- Base change to $k=\overline{\mathbb{F}}_{q}$ (or $k=\mathbb{C}$)
- $\mathbf{X}_{\mathbf{O}}(k)=X(k \llbracket t \rrbracket)$
- $\mathbf{X}_{\mathbf{F}}(k)=X(k((t)))$

Enter geometry

- Base change to $k=\overline{\mathbb{F}}_{q}$ (or $k=\mathbb{C}$)
- $\mathbf{X}_{\mathbf{O}}(k)=X(k \llbracket t \rrbracket)$
- $\mathbf{X}_{\mathbf{F}}(k)=X(k((t)))$
- Problem: $\mathbf{X}_{\mathbf{O}}$ is an infinite type scheme no perverse sheares

Enter geometry

- Base change to $k=\overline{\mathbb{F}}_{q}$ (or $k=\mathbb{C}$)
- $\mathbf{X}_{\mathbf{O}}(k)=X(k \llbracket t \rrbracket)$
- $\mathbf{X}_{\mathbf{F}}(k)=X(k((t)))$
- Problem: $\mathbf{X}_{\mathbf{O}}$ is an infinite type scheme
- Bouthier-Ngô-Sakellaridis: IC function still makes sense by Grinberg-Kazhdan theorem
(cher 0)

Zastava space

Drinfeld's proof of Grinberg-Kazhdan theorem gives an explicit model for $X_{0}: \quad x^{0} \cong B$

Zastava space

Drinfeld's proof of Grinberg-Kazhdan theorem gives an explicit model for X_{O} :

Definition

Let C be a smooth curve over k. Define

$$
y=\operatorname{Maps}_{\operatorname{gen}}\left(C, X / B \supset X^{\circ} / B\right)^{\partial}
$$

$$
\begin{aligned}
& \mathrm{s}: \mathrm{c} \rightarrow x / \mathrm{B} \\
& \mathrm{pa} \rightarrow x_{\mathrm{B}-\mathrm{F}+\mathrm{ph}}
\end{aligned}
$$

Zastava space

Drinfeld's proof of Grinberg-Kazhdan theorem gives an explicit model for X_{O} :

Definition

Let C be a smooth curve over k. Define

$$
y=\operatorname{Maps}_{\mathrm{gen}}\left(C, X / B \supset X^{\circ} / B\right)
$$

Following Finkelberg-Mirković, we call this the Zastava space of X.

$$
X=N^{-} \backslash G
$$

Zastava space

Drinfeld's proof of Grinberg-Kazhdan theorem gives an explicit model for X_{O} :

Definition

Let C be a smooth curve over k. Define

$$
y=\operatorname{Maps}_{\mathrm{gen}}\left(C, X / B \supset X^{\circ} / B\right)
$$

Following Finkelberg-Mirković, we call this the Zastava space of X.
Fact: y is an infinite disjoint union of finite type schemes.

Zastava space

Drinfeld's proof of Grinberg-Kazhdan theorem gives an explicit model for X_{O} :

Definition

Let C be a smooth curve over k. Define

$$
y=\operatorname{Maps}_{\mathrm{gen}}\left(C, X / B \supset X^{\circ} / B\right)
$$

Following Finkelberg-Mirković, we call this the Zastava space of X.
Fact: y is an infinite disjoint union of finite type schemes.

$\{\check{\Lambda}$-valued divisors on $C\} \Rightarrow \sum \check{\lambda}_{i} v_{i}$

Define the central fiber $\mathbb{Y}^{\check{\lambda}}=\pi^{-1}(\check{\lambda} \cdot v)$ for a single point $v \in C(k)$.

Define the central fiber $\mathbb{Y}^{\grave{\lambda}}=\pi^{-1}(\check{\lambda} \cdot v)$ for a single point $v \in C(k)$.

Graded factorization property

The fiber $\pi^{-1}\left(\check{\lambda}_{1} v_{1}+\check{\lambda}_{2} v_{2}\right)$ for distinct v_{1}, v_{2} is isomorphic to $\mathbb{Y}^{\check{\lambda}_{1}} \times \mathbb{Y}^{\check{\lambda}_{2}}$.

Define the central fiber $\mathbb{Y}^{\check{\lambda}}=\pi^{-1}(\check{\lambda} \cdot v)$ for a single point $v \in C(k)$.

Graded factorization property

The fiber $\pi^{-1}\left(\check{\lambda}_{1} v_{1}+\check{\lambda}_{2} v_{2}\right)$ for distinct v_{1}, v_{2} is isomorphic to $\mathbb{Y}^{\check{\lambda}_{1}} \times \mathbb{Y}^{\check{\lambda}_{2}}$.

Upshot

$$
\pi_{!} \Phi_{I C_{x_{0}}}\left(t^{\check{\lambda}}\right)=\operatorname{tr}\left(\mathrm{Fr},\left.\left(\pi!\mid C_{y}\right)\right|_{\check{\lambda} \cdot v} ^{*}\right)
$$

Semi-small map

Can compactify π to proper map $\bar{\pi}: \bar{y} \rightarrow \mathcal{A} . \quad$ sperial $\quad \check{G}_{x}=\breve{G}$

Theorem (Sakellaridis-W)

Under previous assumptions, $\bar{\pi}: \underset{\sim}{w} \rightarrow \mathcal{A}$ is stratified semi-small. In particular, $\bar{\pi}_{!} \mid \mathrm{C}_{\bar{y}}$ is perverse.

Semi-small map

Can compactify π to proper map $\bar{\pi}: \bar{y} \rightarrow \mathcal{A}$.

Theorem (Sakellaridis-W)

Under previous assumptions, $\bar{\pi}: \bar{y} \rightarrow \mathcal{A}$ is stratified semi-small. In particular, $\bar{\pi}_{!} I C_{\bar{y}}$ is perverse.

If \bar{y} is smooth, then semi-smallness amounts to the inequality

$$
\operatorname{dim} \overline{\mathbb{Y}}^{\check{\lambda}} \leq \underline{\Longleftrightarrow}
$$

Semi-small map

Can compactify π to proper map $\bar{\pi}: \bar{y} \rightarrow \mathcal{A}$.

Theorem (Sakellaridis-W)

Under previous assumptions, $\bar{\pi}: \bar{y} \rightarrow \mathcal{A}$ is stratified semi-small. In particular, $\bar{\pi}_{!} I \mathrm{C}_{\bar{y}}$ is perverse.

If \bar{y} is smooth, then semi-smallness amounts to the inequality

$$
\operatorname{dim} \overline{\mathbb{Y}}^{\check{\lambda}} \leq \operatorname{crit}(\check{\lambda})
$$

Decomposition theorem + factorization property imply

Euler product

$$
\operatorname{tr}\left(\operatorname{Fr},\left.\left(\bar{\pi}_{!} \mid C_{\bar{y}}\right)\right|_{? \cdot v} ^{*}\right)=\frac{1 \longleftarrow}{\prod_{\check{\lambda} \in \mathfrak{B}^{+}}\left(1-q^{-\frac{1}{2}} e^{\check{\lambda}}\right)} \text { y vs } y
$$

Semi-small map

Can compactify π to proper map $\bar{\pi}: \bar{y} \rightarrow \mathcal{A}$.

Theorem (Sakellaridis-W)

Under previous assumptions, $\bar{\pi}: \bar{y} \rightarrow \mathcal{A}$ is stratified semi-small. In particular, $\bar{\pi}_{!} I C_{\bar{y}}$ is perverse.

If \bar{y} is smooth, then semi-smallness amounts to the inequality

$$
\operatorname{dim} \overline{\mathbb{Y}}^{\check{\lambda}} \leq \operatorname{crit}(\check{\lambda})
$$

Decomposition theorem + factorization property imply

Euler product

$$
\operatorname{tr}\left(\operatorname{Fr},\left.\left(\bar{\pi}!\mathrm{C}_{\bar{y}}\right)\right|_{? \cdot v} ^{*}\right)=\frac{1}{\prod_{\check{\lambda} \in \mathfrak{B}^{+}}\left(1-q^{-\frac{1}{2}} e^{\check{\lambda}}\right)}
$$

velevant stratum supported atv $\prod_{\check{\lambda} \in \mathfrak{B}+}\left(1-q{ }^{2}\right)$
irred. components of $\overline{\mathbb{Y}}$ of $\operatorname{dim}=\operatorname{crit}(\check{\lambda})$ as $\check{\lambda}$ varies

- $\mathfrak{B}^{+}=$irred. components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of $\operatorname{dim}=\operatorname{crit}(\check{\lambda})$ as $\check{\lambda}$ varies
- $\mathfrak{B}^{+}=$irred. components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of $\operatorname{dim}=\operatorname{crit}(\check{\lambda})$ as $\check{\lambda}$ varies
- Define V_{X}^{+}to have basis \mathfrak{B}^{+}
- $\mathfrak{B}^{+}=$irred. components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of $\operatorname{dim}=\operatorname{crit}(\check{\lambda})$ as $\check{\lambda}$ varies
- Define V_{X}^{+}to have basis \mathfrak{B}^{+}
- Formally set $\mathfrak{B}=\mathfrak{B}^{+} \sqcup\left(\mathfrak{B}^{+}\right)^{*}$, so $\left(\mathfrak{B}^{+}\right)^{*}$ is a basis of $\left(V_{X}^{+}\right)^{*}$

- $\mathfrak{B}^{+}=$irred. components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of $\operatorname{dim}=\operatorname{crit}(\check{\lambda})$ as $\check{\lambda}$ varies
- Define V_{X}^{+}to have basis \mathfrak{B}^{+}
- Formally set $\mathfrak{B}=\mathfrak{B}^{+} \sqcup\left(\mathfrak{B}^{+}\right)^{*}$, so $\left(\mathfrak{B}^{+}\right)^{*}$ is a basis of $\left(V_{X}^{+}\right)^{*}$

Theorem (Sakellaridis-W)

\mathfrak{B} has the structure of a (Kashiwara) crystal, i.e., graph with weighted vertices and edges \leftrightarrow raising/lowering operators $\tilde{e}_{\alpha}, \tilde{f}_{\alpha}$

- $\mathfrak{B}^{+}=$irred. components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of $\operatorname{dim}=\operatorname{crit}(\check{\lambda})$ as $\check{\lambda}$ varies
- Define V_{X}^{+}to have basis \mathfrak{B}^{+}
- Formally set $\mathfrak{B}=\mathfrak{B}^{+} \sqcup\left(\mathfrak{B}^{+}\right)^{*}$, so $\left(\mathfrak{B}^{+}\right)^{*}$ is a basis of $\left(V_{X}^{+}\right)^{*}$

Theorem (Sakellaridis-W)

\mathfrak{B} has the structure of a (Kashiwara) crystal, i.e., graph with weighted vertices and edges \leftrightarrow raising/lowering operators $\tilde{e}_{\alpha}, \tilde{f}_{\alpha}$

Crystal basis is the (Lusztig) canonical basis at $q=0$ of a f.d. $U_{q}(\mathfrak{g})$-module.

- $\mathfrak{B}^{+}=$irred. components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of $\operatorname{dim}=\operatorname{crit}(\check{\lambda})$ as $\check{\lambda}$ varies
- Define V_{X}^{+}to have basis \mathfrak{B}^{+}
- Formally set $\mathfrak{B}=\mathfrak{B}^{+} \sqcup\left(\mathfrak{B}^{+}\right)^{*}$, so $\left(\mathfrak{B}^{+}\right)^{*}$ is a basis of $\left(V_{X}^{+}\right)^{*}$

Theorem (Sakellaridis-W)

\mathfrak{B} has the structure of a (Kashiwara) crystal, i.e., graph with weighted vertices and edges \leftrightarrow raising/lowering operators $\tilde{e}_{\alpha}, \tilde{f}_{\alpha}$

Crystal basis is the (Lusztig) canonical basis at $q=0$ of a f.d. $U_{q}(\mathfrak{g})$-module.

$$
q=1 \quad q=0
$$

$$
\text { f.d. Ǧ-representation } \rightsquigarrow \text { crystal basis } \in\{\text { crystals }\}
$$

Conjecture 2

\mathfrak{B} is the crystal basis for a finite dimensional \check{G}-representation V_{X}.

- Conjecture 2 implies Conjecture $1\left(\mathfrak{B} \leftrightarrow V_{X}^{\prime}\right)$.

Conjecture 2
\mathfrak{B} is the crystal basis for a finite dimensional \check{G}-representation V_{X}.

- Conjecture 2 implies Conjecture $1\left(\mathfrak{B} \leftrightarrow V_{X}^{\prime}\right)$.
- Conjecture 2 resembles geometric constructions of crystal bases by Lusztig, Braverman-Gaitsgory, Kamnitzer involving irreducible components of Gr_{G}
- $\mathbb{Y}^{\check{\lambda}}, \overline{\mathbb{Y}}^{\check{\lambda}} \subset \operatorname{Gr}_{G}$

$$
S^{\lambda}=N_{F} t^{\lambda} c G_{G}
$$

$$
y^{\lambda} \subset S^{\lambda}
$$

$$
\bar{y}^{\lambda}<\bar{S}^{\lambda}=\bigcup_{k \leqslant \lambda} S^{\mu}
$$

