2d TQFT's and partial fractions

Tuesday, September 8, 2020 10:53 AM

MIT Lie Groups Seminar

October 7, 2020

Victor Ostrik (University of Oregon) (joint with M.Khovanov and Y.Kononov)

Definition (M.Atiyah): A TQFT is a symmetric tensor
functor Cob_d-Vec.
Mhue more general

Generalization: replace Vec by a symmetric tensor category C C-valued TQFT: symmetric tensor functor Cob_d→C.

Examples: C=Vec, sVec, Rep(G) etc

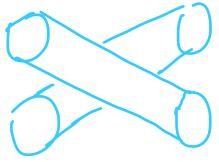
Today: d=2!

Objects: (d-1)-dimensional closed oriented manifolds Morphisms: d-dimensional oriented cobordisms Composition: gluing

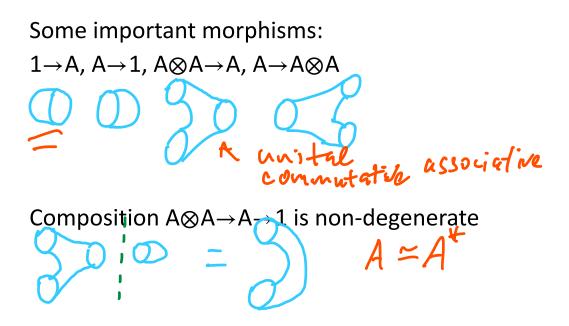
Identity morphisms=?

Tensor product: disjoint union Unit object=?

Symmetry:



Some important objects of Cob_2: empty set=1 and circle=A



Thus A is a commutative Frobenius object in Cob_2:

commutative associative unital monoid equipped with a map $A \rightarrow 1$ such that the composition $A \otimes A \rightarrow A \rightarrow 1$ is a non-degenerate pairing.

<u>Theorem</u> (R.Dijkgraaf + folklore): Cob_2 is free category generated by the commutative Frobenius object

<u>Corollary</u>: C-valued 2d TQFT's = Functors Cob_ $2 \rightarrow C =$ commutative Frobenius objects in C.

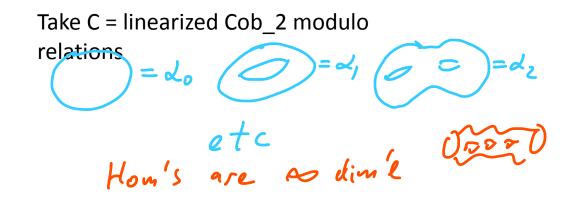
* TQFT output values at closed d-manifolds – elements of Hom_C(1,1)

Linear setup: choose a field k C — k-linear category Hom_C(1,1)=k

Frobenius object = Frobenius algebra

TQFT output: sequence α_0 , α_1 , α_2 , of elements of k

Main Question: Which sequences we will observe?
<u>Answer 1</u>: all sequences appear.



* Realization of sequence $\alpha = (\alpha_0, \alpha_1, \alpha_2,)$: pair (C,A) such that the corresponding TQFT outputs α .

Realization is finite if Hom spaces in C are finite dimensional.

<u>Answer 2</u> (M.Khovanov): sequence admits a finite realization if and only if it is linearly recursive, that is the generating function Z(T)= $\alpha_0 + \alpha_1 T + \alpha_2 T^2 + \dots$ is rational.

* $X = F(Q = Q) \in Hom_{c}(A, A)$ $I; X, X', X', \ldots$ are linearly dependent $e. S. X' = Q \times Y' + 3 \times S = Q$ hence $X'' = Q \times Y'' + 3 \times Y'' = Q$ for $h \neq 3$ hence $X'' = Q \times Y'' + 3 \times Y'' = Q$ for $h \neq 3$ hence $\chi'' = Q \times Y'' + 3 \times Y'' = Q$ for $h \geq 3$ $L_{n} = F(Q) \times Y' F(Q)$ $F(Q) \times Y' F(Q)$ Khovenon - See denovic

Existence: some quotients $Cob_2(\alpha)$ of linearized Cob_2.

 Realization is abelian if C is abelian, rigid, with finite dimensional Hom spaces.

<u>Answer 3</u> (M.Khovanov, Y.Kononov, V.O.): sequence α admits an abelian realization if and only if it is

1) linearly recursive, $Z(T) = \frac{P(T)}{Q(T)}$ with relatively prime P(T) and Q(T).

2) Q(T) has no multiple roots (in K) and deg P \leq deg Q+1. Thus Z(T)= $\delta_0 + \delta_1 T + \sum_i \frac{\beta_i}{1 - \gamma_i T}$ in cher K=0

3) If char k=p>0 then δ_1 and $\beta_i \gamma_i$ (for all i) are in the prime subfield $F_p \subset k$

Remark: conditions 2) and 3) can be expressed in terms of 1-form Z(T) $\frac{dT}{T^2}$:

- 2. all its poles are simple except, possibly, at T=0
- 3. All its residues are in F_p

★ Examples:

1) $\alpha = 1, 1, 1, 1, ...$ Thus $Z(T) = \frac{1}{1 - T}$ and α has an abelian realization over any field. 2) $\alpha = 1, 2, 3, 4, 5, ...$ Thus $Z(T) = \frac{1}{(1 - T)^2}$ and α has no abelian realization over any field 3) $\alpha = 1, 2, 1, 2, 1, 2, ...$ Thus $Z(T) = \frac{1 + 2T}{1 - T^2} = \frac{\frac{3}{2}}{1 - T} + \frac{-\frac{1}{2}}{1 + T}$, so α has an abelian realization over any field of characteristic not 2. 4) $\alpha = 1, 1, 2, 3, 5, 8, 13, ...$ Thus $Z(T) = \frac{1}{1 - T - T^2}$

 α has an abelian realization: p=0,11,19,29,31,41,

 α has no abelian realization: p=2,3,5,7,13,17,23,37

Note that: α =-1,2,1,3,4,7,11,... has an abelian realization over any field.

 Remark: abelian realization in characteristic p>0 implies a realization with C=Vec. This is NOT the case in characteristic 0. Deligne categories (like Rep(S_t)) of super-exponential growth are needed.

Example:

1)
$$\alpha = 1, 2, 1, 2, 1, 2, ...$$
 so $Z(T) = \frac{\frac{3}{2}}{1 - T} + \frac{-\frac{1}{2}}{1 + T}$; realization of α
requires Rep (S_t) with t=3/2 and t=1/2.
2) $\alpha = 3, 1, 3, 1, 3, 1, ...$ Here $Z(T) = \frac{2}{1 - T} + \frac{1}{1 + T}$; realization of α requires Rep (S_{-1}) .

Answer 4 (well known?) Assume p=0 and Z(T)= $\delta_0 + \delta_1 T$ + $\sum_i \frac{\beta_i}{1 - \gamma_i T}$

Sequence α admits an abelian realization of exponential growth if and only if δ_1 is an integer and $\beta_i \gamma_i$ (for all i) are integers >0.

This implies a realization with C=sVec.

Sequence α admits an realization with C=Vec if and only if $\delta_{i}\gamma_{i}$ an integer >1 and $\beta_{i}\gamma_{i}$ (for all i) are integers >0.

 Crucial tool: quotients by negligible morphisms ("gligible" quotients) aka "semisimplifications".

Theorem of Andre-Kahn (abstract version of Jannsen theorem) implies:

<u>Corollary</u>: α admits an abelian realization if and only if the gligible quotient of Cob_2(α) is semisimple.

Important computation: compute semisimplifications of $Cob_2(\alpha)$.

★ Results (k algebraically closed):

1) if Z(T)=sum of partial fractions then the gligible quotient is a product of quotients for each summand.

Thus if Z(T)= $\delta_0 + \delta_1 T + \sum_i \frac{\beta_i}{1 - \gamma_i T}$ we need to consider only the following cases:

2) If $Z(T) = \frac{\beta}{1 - \gamma T}$ then the semisimplification of Cob_2(α) is semisimplification of Rep(S_t) with $t = \beta \gamma$ (exceptional values of t: non-negative integers) 3) if $Z(T) = \delta_0 + \delta_1 T$ with $\delta_1 \neq 0$ then the semisimplification of Cob_2(α) is semisimplification of Rep(O_t) with $t = \delta_1 - 2$ (exceptional values of t: integers) 4) if $Z(T) = \delta_0$ then the semisimplification of Cob_2(α) is Rep(osp(1|2)) or, in characteristic p, a semisimplification Example: Z(T)=1+2T. In characteristic $\neq 2$ we get C=Vec and A=k[x]/x². In characteristic 2 we get C=Z/2Z-graded vector spaces and A=k[x]/($k_{F}^{2} - (1)$).

Exercise: Repeat the story above for d=1.

Exercise*: Same with d=3.