Bernstein components for *p*-adic groups

Maarten Solleveld Radboud Universiteit Nijmegen

14 October 2020

Maarten Solleveld, Radboud Universiteit Bernstein components for *p*-adic groups

G: reductive group over a non-archimedean local field FRep(*G*): category of smooth complex *G*-representations

Bernstein decomposition

Direct product of categories $\operatorname{Rep}(G) = \prod_{\mathfrak{s}} \operatorname{Rep}(G)^{\mathfrak{s}}$ where \mathfrak{s} is determined by a supercuspidal representation σ of a Levi subgroup M of G

We suppose that M and σ are given

Questions

- What does Rep(G)^{\$} look like? Is it the module category of an explicit algebra?
- Can one classify $Irr(G)^{\mathfrak{s}} = Irr(G) \cap Rep(G)^{\mathfrak{s}}$?
- Can one describe tempered/unitary/square-integrable representations in Rep(G)⁵?

< □ > < □ > < □ > < □ > < □ > < □ >

G: reductive group over a non-archimedean local field FRep(*G*): category of smooth complex *G*-representations

Bernstein decomposition

Direct product of categories $\operatorname{Rep}(G) = \prod_{\mathfrak{s}} \operatorname{Rep}(G)^{\mathfrak{s}}$ where \mathfrak{s} is determined by a supercuspidal representation σ of a Levi subgroup M of G

We suppose that M and σ are given

Questions

- What does Rep(G)⁵ look like? Is it the module category of an explicit algebra?
- Can one classify $Irr(G)^{\mathfrak{s}} = Irr(G) \cap Rep(G)^{\mathfrak{s}}$?
- Can one describe tempered/unitary/square-integrable representations in Rep(G)⁵?

< □ > < □ > < □ > < □ > < □ > < □ >

G: reductive group over a non-archimedean local field FRep(*G*): category of smooth complex *G*-representations

Bernstein decomposition

Direct product of categories $\operatorname{Rep}(G) = \prod_{\mathfrak{s}} \operatorname{Rep}(G)^{\mathfrak{s}}$ where \mathfrak{s} is determined by a supercuspidal representation σ of a Levi subgroup M of G

We suppose that M and σ are given

Questions

- What does Rep(G)^{\$} look like? Is it the module category of an explicit algebra?
- Can one classify $Irr(G)^{\mathfrak{s}} = Irr(G) \cap Rep(G)^{\mathfrak{s}}$?
- Can one describe tempered/unitary/square-integrable representations in Rep(G)⁵?

・ロト ・ 同ト ・ ヨト ・ ヨト

I. Bernstein components and a rough version of the new results

- P = MU: parabolic subgroup of G with Levi factor M
- $I_P^G : \operatorname{Rep}(M) \to \operatorname{Rep}(P) \to \operatorname{Rep}(G)$: normalized parabolic induction

Definition

For $\pi \in \operatorname{Irr}(G)$:

- π is supercuspidal if it does not occur in I^G_P(σ) for any proper parabolic subgroup P of G and any σ ∈ Irr(M)
- Supercuspidal support Sc(π): a pair (M, σ) with σ ∈ Irr(M), such that π is a constituent of I_P^G(σ) and M is minimal for this property

 $X_{\mathrm{nr}}(M)$: group of unramified characters $M \to \mathbb{C}^{\times}$ $\mathcal{O} \subset \mathrm{Irr}(M)$: an $X_{\mathrm{nr}}(M)$ -orbit of supercuspidal irreps $\mathfrak{s} = [M, \mathcal{O}]$: *G*-association class of (M, \mathcal{O})

Definition

 $Irr(G)^{\mathfrak{s}} = \{\pi \in Irr(G) : Sc(\pi) \in [M, \mathcal{O}]\}$ Rep(G)^{\$} = { $\pi \in Rep(G)$: all irreducible subquotients of π lie in $Irr(G)^{\mathfrak{s}}$ }

- P = MU: parabolic subgroup of G with Levi factor M
- $I_P^G : \operatorname{Rep}(M) \to \operatorname{Rep}(P) \to \operatorname{Rep}(G)$: normalized parabolic induction

Definition

For $\pi \in \operatorname{Irr}(G)$:

- π is supercuspidal if it does not occur in I^G_P(σ) for any proper parabolic subgroup P of G and any σ ∈ Irr(M)
- Supercuspidal support Sc(π): a pair (M, σ) with σ ∈ Irr(M), such that π is a constituent of I_P^G(σ) and M is minimal for this property

 $X_{\mathrm{nr}}(M)$: group of unramified characters $M \to \mathbb{C}^{\times}$ $\mathcal{O} \subset \mathrm{Irr}(M)$: an $X_{\mathrm{nr}}(M)$ -orbit of supercuspidal irreps $\mathfrak{s} = [M, \mathcal{O}]$: *G*-association class of (M, \mathcal{O})

Definition

 $Irr(G)^{\mathfrak{s}} = \{\pi \in Irr(G) : Sc(\pi) \in [M, \mathcal{O}]\}$ Rep(G)^{\$} = { $\pi \in Rep(G)$: all irreducible subquotients of π lie in $Irr(G)^{\mathfrak{s}}$ }

- P = MU: parabolic subgroup of G with Levi factor M
- $I_P^G : \operatorname{Rep}(M) \to \operatorname{Rep}(P) \to \operatorname{Rep}(G)$: normalized parabolic induction

Definition

For $\pi \in \operatorname{Irr}(G)$:

- π is supercuspidal if it does not occur in I^G_P(σ) for any proper parabolic subgroup P of G and any σ ∈ Irr(M)
- Supercuspidal support Sc(π): a pair (M, σ) with σ ∈ Irr(M), such that π is a constituent of I_P^G(σ) and M is minimal for this property

 $X_{\mathrm{nr}}(M)$: group of unramified characters $M \to \mathbb{C}^{\times}$ $\mathcal{O} \subset \mathrm{Irr}(M)$: an $X_{\mathrm{nr}}(M)$ -orbit of supercuspidal irreps $\mathfrak{s} = [M, \mathcal{O}]$: *G*-association class of (M, \mathcal{O})

Definition

 $Irr(G)^{\mathfrak{s}} = \{\pi \in Irr(G) : Sc(\pi) \in [M, \mathcal{O}]\}$ Rep(G)^{\$} = { $\pi \in Rep(G)$: all irreducible subquotients of π lie in $Irr(G)^{\mathfrak{s}}$ }

- P = MU: parabolic subgroup of G with Levi factor M
- $I_P^G : \operatorname{Rep}(M) \to \operatorname{Rep}(P) \to \operatorname{Rep}(G)$: normalized parabolic induction

Definition

For $\pi \in \operatorname{Irr}(G)$:

- π is supercuspidal if it does not occur in I^G_P(σ) for any proper parabolic subgroup P of G and any σ ∈ Irr(M)
- Supercuspidal support Sc(π): a pair (M, σ) with σ ∈ Irr(M), such that π is a constituent of I_P^G(σ) and M is minimal for this property

$$X_{\mathrm{nr}}(M)$$
: group of unramified characters $M \to \mathbb{C}^{\times}$
 $\mathcal{O} \subset \mathrm{Irr}(M)$: an $X_{\mathrm{nr}}(M)$ -orbit of supercuspidal irreps
 $\mathfrak{s} = [M, \mathcal{O}]$: *G*-association class of (M, \mathcal{O})

Definition

 $Irr(G)^{\mathfrak{s}} = \{\pi \in Irr(G) : Sc(\pi) \in [M, \mathcal{O}]\}$ Rep(G)^{\mathbf{s}} = \{\pi \in \mathbf{Rep}(G) : all irreducible subquotients of \pi lie in Irr(G)^\mathbf{s}\}

I: an Iwahori subgroup of G

$$\operatorname{Rep}(G)' = \left\{ (\pi, V) \in \operatorname{Rep}(G) : V \text{ is generated by } V' \right\}$$

The foremost example of a Bernstein component, for $\mathfrak{s} = [M, X_{nr}(M)]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris)

 $\mathcal{H}(G, I) := C_c(I \setminus G/I)$ with the convolution product

- $\operatorname{Rep}(G)^{I}$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G, I))$
- $\mathcal{H}(G, I)$ is isomorphic with an affine Hecke algebra

When G is F-split, M = T and these affine Hecke algebras are understood very well from Kazhdan–Lusztig

A (10) A (10) A (10)

I: an Iwahori subgroup of G

$$\operatorname{Rep}(G)^{\prime} = \left\{ (\pi, V) \in \operatorname{Rep}(G) : V \text{ is generated by } V^{\prime} \right\}$$

The foremost example of a Bernstein component, for $\mathfrak{s} = [M, X_{nr}(M)]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris)

 $\mathcal{H}(G,I) := C_c(I \setminus G/I)$ with the convolution product

- $\operatorname{Rep}(G)^{I}$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G, I))$
- $\mathcal{H}(G, I)$ is isomorphic with an affine Hecke algebra

When G is F-split, M = T and these affine Hecke algebras are understood very well from Kazhdan–Lusztig

< 回 > < 三 > < 三 >

I: an Iwahori subgroup of G

$$\operatorname{Rep}(G)^{\prime} = \left\{ (\pi, V) \in \operatorname{Rep}(G) : V \text{ is generated by } V^{\prime} \right\}$$

The foremost example of a Bernstein component, for $\mathfrak{s} = [M, X_{nr}(M)]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris)

 $\mathcal{H}(G, I) := C_c(I \setminus G/I)$ with the convolution product

- $\operatorname{Rep}(G)^{I}$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G, I))$
- $\mathcal{H}(G, I)$ is isomorphic with an affine Hecke algebra

When G is F-split, M = T and these affine Hecke algebras are understood very well from Kazhdan–Lusztig

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

I: an Iwahori subgroup of G

$$\operatorname{Rep}(G)^{\prime} = \left\{ (\pi, V) \in \operatorname{Rep}(G) : V \text{ is generated by } V^{\prime} \right\}$$

The foremost example of a Bernstein component, for $\mathfrak{s} = [M, X_{nr}(M)]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris)

 $\mathcal{H}(G, I) := C_c(I \setminus G/I)$ with the convolution product

- $\operatorname{Rep}(G)^{I}$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G, I))$
- $\mathcal{H}(G, I)$ is isomorphic with an affine Hecke algebra

When G is F-split, M = T and these affine Hecke algebras are understood very well from Kazhdan–Lusztig

$$N_G(M)$$
 acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m) = \sigma(g^{-1}mg)$
 $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$

 $\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus $\mathcal O$

Theorem (Bernstein, 1984)

The centre of $\operatorname{Rep}(G)^{\mathfrak{s}}$ is $\mathbb{C}[\mathcal{O}]^{W(M,\mathcal{O})}$

 $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})] := \mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M, \mathcal{O})]$ with multiplication from $W(M, \mathcal{O})$ -action on \mathcal{O} :

$$(f \otimes w)(f' \otimes w') = f w(f') \otimes ww'$$

Main result (first rough version)

 $\operatorname{Rep}(G)^{\mathfrak{s}}$ looks like $\operatorname{Mod}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})])$

$$N_G(M)$$
 acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m) = \sigma(g^{-1}mg)$
 $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$

 $\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus $\mathcal O$

Theorem (Bernstein, 1984)

The centre of $\operatorname{Rep}(G)^{\mathfrak{s}}$ is $\mathbb{C}[\mathcal{O}]^{W(M,\mathcal{O})}$

 $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})] := \mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M, \mathcal{O})]$ with multiplication from $W(M, \mathcal{O})$ -action on \mathcal{O} :

 $(f \otimes w)(f' \otimes w') = f w(f') \otimes ww'$

Main result (first rough version) Rep(G)^{\$} looks like $Mod(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})])$

< 回 > < 三 > < 三 >

$$N_G(M)$$
 acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m) = \sigma(g^{-1}mg)$
 $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$

 $\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus $\mathcal O$

Theorem (Bernstein, 1984)

The centre of $\operatorname{Rep}(G)^{\mathfrak{s}}$ is $\mathbb{C}[\mathcal{O}]^{W(M,\mathcal{O})}$

 $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})] := \mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M, \mathcal{O})]$ with multiplication from $W(M, \mathcal{O})$ -action on \mathcal{O} :

$$(f \otimes w)(f' \otimes w') = f w(f') \otimes ww'$$

Main result (first rough version) $\operatorname{Rep}(G)^{\mathfrak{s}}$ looks like $\operatorname{Mod}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})])$

$$N_G(M)$$
 acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m) = \sigma(g^{-1}mg)$
 $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$

 $\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus $\mathcal O$

Theorem (Bernstein, 1984)

The centre of $\operatorname{Rep}(G)^{\mathfrak{s}}$ is $\mathbb{C}[\mathcal{O}]^{W(M,\mathcal{O})}$

 $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})] := \mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M, \mathcal{O})]$ with multiplication from $W(M, \mathcal{O})$ -action on \mathcal{O} :

$$(f \otimes w)(f' \otimes w') = f w(f') \otimes ww'$$

Main result (first rough version)

 $\operatorname{Rep}(G)^{\mathfrak{s}}$ looks like $\operatorname{Mod}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})])$

Approach with progenerators

 $\begin{array}{l} \Pi: \mbox{ progenerator of } \operatorname{Rep}({\mathcal G})^{\mathfrak s} \\ \mbox{ so } \Pi \in \operatorname{Rep}({\mathcal G})^{\mathfrak s} \mbox{ is finitely generated, projective and } \operatorname{Hom}_{\mathcal G}(\Pi,\rho) \neq 0 \mbox{ for every } \rho \in \operatorname{Rep}({\mathcal G})^{\mathfrak s} \setminus \{0\} \end{array}$

Setup of talk

Investigate the structure and the representation theory of $\operatorname{End}_{G}(\Pi)$, for a suitable progenerator Π of $\operatorname{Rep}(G)^{\mathfrak{s}}$ Draw consequences for $\operatorname{Rep}(G)^{\mathfrak{s}}$

Approach with progenerators

 $\begin{array}{l} \Pi: \mbox{ progenerator of } \operatorname{Rep}({\mathcal G})^{\mathfrak s} \\ \mbox{ so } \Pi \in \operatorname{Rep}({\mathcal G})^{\mathfrak s} \mbox{ is finitely generated, projective and } \operatorname{Hom}_{\mathcal G}(\Pi,\rho) \neq 0 \mbox{ for every } \rho \in \operatorname{Rep}({\mathcal G})^{\mathfrak s} \setminus \{0\} \end{array}$

Setup of talk

Investigate the structure and the representation theory of $\operatorname{End}_{G}(\Pi)$, for a suitable progenerator Π of $\operatorname{Rep}(G)^{s}$ Draw consequences for $\operatorname{Rep}(G)^{s}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approach with progenerators

 $\begin{array}{l} \Pi: \mbox{ progenerator of } \operatorname{Rep}({\mathcal G})^{\mathfrak s} \\ \mbox{ so } \Pi \in \operatorname{Rep}({\mathcal G})^{\mathfrak s} \mbox{ is finitely generated, projective and } \operatorname{Hom}_{\mathcal G}(\Pi,\rho) \neq 0 \mbox{ for every } \rho \in \operatorname{Rep}({\mathcal G})^{\mathfrak s} \setminus \{0\} \end{array}$

Setup of talk

Investigate the structure and the representation theory of $\operatorname{End}_{G}(\Pi)$, for a suitable progenerator Π of $\operatorname{Rep}(G)^{\mathfrak{s}}$ Draw consequences for $\operatorname{Rep}(G)^{\mathfrak{s}}$

イロト 不得 トイヨト イヨト 二日

Comparison with types

 $J \subset G$ compact open subgroup, $\lambda \in Irr(J)$ Suppose: (J, λ) is a s-type, so $\operatorname{Rep}(G)^{s} = \{\pi \in \operatorname{Rep}(G) : \pi \text{ is generated by its } \lambda \text{-isotypical component}\}$

Bushnell–Kutzko: $\operatorname{Rep}(G)^{\mathfrak{s}}$ is equivalent with $\mathcal{H}(G, J, \lambda)$ -Mod

Consequences

- $\mathcal{H}(G, J, \lambda)$ and $\operatorname{End}_{G}(\Pi)$ are Morita equivalent
- In many cases $\operatorname{End}_G(\Pi)$ is Morita equivalent with an affine Hecke algebra

Problems:

- It is not known whether every Bernstein component admits a type
- Even if you have (J, λ) , it can be difficult to analyse $\mathcal{H}(G, J, \lambda)$

イロト 不得 トイラト イラト 一日

Comparison with types

 $J \subset G$ compact open subgroup, $\lambda \in Irr(J)$ Suppose: (J, λ) is a s-type, so $\operatorname{Rep}(G)^{s} = \{\pi \in \operatorname{Rep}(G) : \pi \text{ is generated by its } \lambda \text{-isotypical component}\}$

Bushnell–Kutzko: $\operatorname{Rep}(G)^{\mathfrak{s}}$ is equivalent with $\mathcal{H}(G, J, \lambda)$ -Mod

Consequences

- $\mathcal{H}(G, J, \lambda)$ and $\operatorname{End}_{G}(\Pi)$ are Morita equivalent
- \bullet In many cases $\operatorname{End}_{{\mathcal G}}(\Pi)$ is Morita equivalent with an affine Hecke algebra

Problems:

- It is not known whether every Bernstein component admits a type
- Even if you have (J, λ) , it can be difficult to analyse $\mathcal{H}(G, J, \lambda)$

イロト イヨト イヨト イヨト 三日

Comparison with types

 $J \subset G$ compact open subgroup, $\lambda \in Irr(J)$ Suppose: (J, λ) is a s-type, so $\operatorname{Rep}(G)^{s} = \{\pi \in \operatorname{Rep}(G) : \pi \text{ is generated by its } \lambda \text{-isotypical component}\}$

Bushnell–Kutzko: $\operatorname{Rep}(G)^{\mathfrak{s}}$ is equivalent with $\mathcal{H}(G, J, \lambda)$ -Mod

Consequences

- $\mathcal{H}(G, J, \lambda)$ and $\operatorname{End}_{G}(\Pi)$ are Morita equivalent
- \bullet In many cases $\operatorname{End}_{{\mathcal G}}(\Pi)$ is Morita equivalent with an affine Hecke algebra

Problems:

- It is not known whether every Bernstein component admits a type
- Even if you have (J, λ) , it can be difficult to analyse $\mathcal{H}(G, J, \lambda)$

<ロト <部ト <注入 < 注入 = 二 =

II. The structure of supercuspidal Bernstein components

based on work of Roche

Underlying tori

$$\begin{split} &\sigma \in \operatorname{Irr}(\mathcal{G}) \text{ supercuspidal} \\ &\mathcal{O} = \{ \sigma \otimes \chi : \chi \in X_{\operatorname{nr}}(\mathcal{G}) \} \\ &\operatorname{Covering} X_{\operatorname{nr}}(\mathcal{G}) \to \mathcal{O} : \chi \mapsto \sigma \otimes \chi \end{split}$$

Example: $GL_2(F)$

 χ_{-} : quadratic unramified character of $GL_2(F)$ It is possible that $\sigma \otimes \chi_{-} \cong \sigma$, see the book of Bushnell–Henniart Then $\mathbb{C}^{\times} \cong X_{\mathrm{nr}}(G) \to \mathcal{O}$ is a degree two covering

 $X_{\mathrm{nr}}(G,\sigma) := \{\chi \in X_{\mathrm{nr}}(G) : \sigma \otimes \chi \cong \sigma\}$, a finite group $X_{\mathrm{nr}}(G)/X_{\mathrm{nr}}(G,\sigma) \to \mathcal{O}$ is bijective, this makes \mathcal{O} a complex algebraic torus (as variety)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Underlying tori

$$\begin{split} &\sigma \in \operatorname{Irr}(\mathcal{G}) \text{ supercuspidal} \\ &\mathcal{O} = \{ \sigma \otimes \chi : \chi \in X_{\operatorname{nr}}(\mathcal{G}) \} \\ &\operatorname{Covering} X_{\operatorname{nr}}(\mathcal{G}) \to \mathcal{O} : \chi \mapsto \sigma \otimes \chi \end{split}$$

Example: $GL_2(F)$

 χ_{-} : quadratic unramified character of $GL_2(F)$ It is possible that $\sigma \otimes \chi_{-} \cong \sigma$, see the book of Bushnell–Henniart Then $\mathbb{C}^{\times} \cong X_{nr}(G) \to \mathcal{O}$ is a degree two covering

 $X_{nr}(G,\sigma) := \{\chi \in X_{nr}(G) : \sigma \otimes \chi \cong \sigma\}$, a finite group $X_{nr}(G)/X_{nr}(G,\sigma) \to \mathcal{O}$ is bijective, this makes \mathcal{O} a complex algebraic torus (as variety)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Underlying tori

$$\begin{split} &\sigma \in \operatorname{Irr}(\mathcal{G}) \text{ supercuspidal} \\ &\mathcal{O} = \{ \sigma \otimes \chi : \chi \in X_{\operatorname{nr}}(\mathcal{G}) \} \\ &\operatorname{Covering} X_{\operatorname{nr}}(\mathcal{G}) \to \mathcal{O} : \chi \mapsto \sigma \otimes \chi \end{split}$$

Example: $GL_2(F)$

 χ_{-} : quadratic unramified character of $GL_2(F)$ It is possible that $\sigma \otimes \chi_{-} \cong \sigma$, see the book of Bushnell–Henniart Then $\mathbb{C}^{\times} \cong X_{nr}(G) \to \mathcal{O}$ is a degree two covering

 $X_{\mathrm{nr}}(G,\sigma) := \{\chi \in X_{\mathrm{nr}}(G) : \sigma \otimes \chi \cong \sigma\}$, a finite group $X_{\mathrm{nr}}(G)/X_{\mathrm{nr}}(G,\sigma) \to \mathcal{O}$ is bijective, this makes \mathcal{O} a complex algebraic torus (as variety)

 G^1 : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^1}^G(\operatorname{triv}, \mathbb{C}) = \mathbb{C}[G/G^1] \cong \mathbb{C}[X_{\operatorname{nr}}(G)]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal $\operatorname{ind}_{G^1}^G(\sigma) = E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s} = [G, \mathcal{O}] = [G, X_{\operatorname{nr}}(G)\sigma]$

Some endomorphisms of $E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)]$

• $\mathbb{C}[X_{\mathrm{nr}}(G)] \subset \operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$, by multiplication operators

• for $\chi \in X_{nr}(G, \sigma)$: $\sigma \cong \chi \otimes \sigma$ in combination with translation by χ on $X_{nr}(G)$ that gives a $\phi_{\chi} \in \operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{nr}(G)])$

- 3

< □ > < □ > < □ > < □ > < □ > < □ >

 G^1 : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^1}^G(\operatorname{triv}, \mathbb{C}) = \mathbb{C}[G/G^1] \cong \mathbb{C}[X_{\operatorname{nr}}(G)]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal $\operatorname{ind}_{G^1}^G(\sigma) = E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s} = [G, \mathcal{O}] = [G, X_{\operatorname{nr}}(G)\sigma]$

Some endomorphisms of $E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)]$

• $\mathbb{C}[X_{\mathrm{nr}}(G)] \subset \operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$, by multiplication operators

• for $\chi \in X_{nr}(G, \sigma)$: $\sigma \cong \chi \otimes \sigma$ in combination with translation by χ on $X_{nr}(G)$ that gives a $\phi_{\chi} \in \operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{nr}(G)])$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 G^1 : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^1}^G(\operatorname{triv}, \mathbb{C}) = \mathbb{C}[G/G^1] \cong \mathbb{C}[X_{\operatorname{nr}}(G)]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal $\operatorname{ind}_{G^1}^G(\sigma) = E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s} = [G, \mathcal{O}] = [G, X_{\operatorname{nr}}(G)\sigma]$

Some endomorphisms of $E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)]$

• $\mathbb{C}[X_{\mathrm{nr}}(G)] \subset \mathrm{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$, by multiplication operators

for χ ∈ X_{nr}(G, σ): σ ≅ χ ⊗ σ
 in combination with translation by χ on X_{nr}(G) that gives a
 φ_χ ∈ End_G(E ⊗_C C[X_{nr}(G)])

イロト 不得 トイヨト イヨト 二日

 G^1 : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^1}^G(\operatorname{triv}, \mathbb{C}) = \mathbb{C}[G/G^1] \cong \mathbb{C}[X_{\operatorname{nr}}(G)]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal $\operatorname{ind}_{G^1}^G(\sigma) = E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s} = [G, \mathcal{O}] = [G, X_{\operatorname{nr}}(G)\sigma]$

Some endomorphisms of $E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)]$

• $\mathbb{C}[X_{\mathrm{nr}}(G)] \subset \mathrm{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$, by multiplication operators

for χ ∈ X_{nr}(G, σ): σ ≅ χ ⊗ σ
 in combination with translation by χ on X_{nr}(G) that gives a
 φ_χ ∈ End_G(E ⊗_C C[X_{nr}(G)])

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Structure of endomorphism algebra

For $\chi,\chi'\in X_{\mathrm{nr}}(\mathcal{G},\sigma)$ there exists $\natural(\chi,\chi')\in\mathbb{C}^{ imes}$ such that

 $\phi_{\chi} \circ \phi_{\chi'} = \natural(\chi, \chi') \phi_{\chi\chi'}$

This gives a twisted group algebra $\mathbb{C}[X_{\mathrm{nr}}(G,\sigma),\natural]$ inside $\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$

Theorem (Roche)

 $\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma),\natural]$

As vector space: $\mathbb{C}[X_{\mathrm{nr}}(G)] \otimes \mathbb{C}[X_{\mathrm{nr}}(G,\sigma),\natural]$, with multiplication $(f \otimes \phi_{\chi})(f' \otimes \phi_{\chi'}) = f(f' \circ m_{\chi}^{-1}) \otimes \natural(\chi,\chi')\phi_{\chi\chi'}$

Properties, from $\operatorname{Rep}(G)^{\mathfrak{s}}$

• $\operatorname{Irr}(\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \longleftrightarrow X_{\operatorname{nr}}(G)/X_{\operatorname{nr}}(G,\sigma) \longleftrightarrow \mathcal{O}$ • $Z(\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \cong \mathbb{C}[\mathcal{O}]$

Structure of endomorphism algebra

For $\chi,\chi'\in X_{\mathrm{nr}}(\mathcal{G},\sigma)$ there exists $\natural(\chi,\chi')\in\mathbb{C}^{ imes}$ such that

 $\phi_{\chi} \circ \phi_{\chi'} = \natural(\chi, \chi') \phi_{\chi\chi'}$

This gives a twisted group algebra $\mathbb{C}[X_{\mathrm{nr}}(G,\sigma),\natural]$ inside $\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$

Theorem (Roche)

 $\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma),\natural]$

As vector space: $\mathbb{C}[X_{\mathrm{nr}}(G)] \otimes \mathbb{C}[X_{\mathrm{nr}}(G,\sigma), \natural]$, with multiplication $(f \otimes \phi_{\chi})(f' \otimes \phi_{\chi'}) = f(f' \circ m_{\chi}^{-1}) \otimes \natural(\chi, \chi')\phi_{\chi\chi'}$

Properties, from $\operatorname{Rep}(G)^{\mathfrak{s}}$

• $\operatorname{Irr}(\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \longleftrightarrow X_{\operatorname{nr}}(G)/X_{\operatorname{nr}}(G,\sigma) \longleftrightarrow \mathcal{O}$

• $Z(\operatorname{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \cong \mathbb{C}[\mathcal{O}]$

Structure of endomorphism algebra

For $\chi,\chi'\in X_{\mathrm{nr}}(\mathcal{G},\sigma)$ there exists $\natural(\chi,\chi')\in\mathbb{C}^{ imes}$ such that

 $\phi_{\chi} \circ \phi_{\chi'} = \natural(\chi, \chi') \phi_{\chi\chi'}$

This gives a twisted group algebra $\mathbb{C}[X_{\mathrm{nr}}(G,\sigma),\natural]$ inside $\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$

Theorem (Roche)

 $\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma),\natural]$

As vector space: $\mathbb{C}[X_{\mathrm{nr}}(G)] \otimes \mathbb{C}[X_{\mathrm{nr}}(G,\sigma),\natural]$, with multiplication $(f \otimes \phi_{\chi})(f' \otimes \phi_{\chi'}) = f(f' \circ m_{\chi}^{-1}) \otimes \natural(\chi,\chi')\phi_{\chi\chi'}$

Properties, from $\operatorname{Rep}(G)^{\mathfrak{s}}$

• $\operatorname{Irr}(\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \longleftrightarrow X_{\operatorname{nr}}(G)/X_{\operatorname{nr}}(G,\sigma) \longleftrightarrow \mathcal{O}$ • $Z(\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \cong \mathbb{C}[\mathcal{O}]$

Structure of $\operatorname{Rep}(G)^{\mathfrak{s}}$

Theorem (Roche)

 $\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma),\natural]$

 $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])$ -Mod

Lemma (Roche, Heiermann)

If $\operatorname{Res}_{G^1}^{\mathcal{G}}(\sigma)$ is multiplicity-free or \natural is trivial, then $\operatorname{End}_{\mathcal{G}}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})])$ is Morita equivalent with the commutative algebra $\mathbb{C}[\mathcal{O}] \cong \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})/X_{\operatorname{nr}}(\mathcal{G},\sigma)]$

Questions

Maybe $\operatorname{Res}_{G^1}^{\mathcal{G}}(\sigma)$ is always multiplicity-free? Maybe $\operatorname{End}_{\mathcal{G}}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})])$ is always Morita equivalent with $\mathbb{C}[\mathcal{O}]$?

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Structure of $\operatorname{Rep}(G)^{\mathfrak{s}}$

Theorem (Roche)

 $\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma),\natural]$

 $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])$ -Mod

Lemma (Roche, Heiermann)

If $\operatorname{Res}_{G^1}^{\mathcal{G}}(\sigma)$ is multiplicity-free or \natural is trivial, then $\operatorname{End}_{\mathcal{G}}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})])$ is Morita equivalent with the commutative algebra $\mathbb{C}[\mathcal{O}] \cong \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})/X_{\operatorname{nr}}(\mathcal{G},\sigma)]$

Questions

Maybe $\operatorname{Res}_{G^1}^{\mathcal{G}}(\sigma)$ is always multiplicity-free? Maybe $\operatorname{End}_{\mathcal{G}}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})])$ is always Morita equivalent with $\mathbb{C}[\mathcal{O}]$?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Structure of $\operatorname{Rep}(G)^{\mathfrak{s}}$

Theorem (Roche)

 $\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma),\natural]$

 $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])$ -Mod

Lemma (Roche, Heiermann)

If $\operatorname{Res}_{G^1}^{\mathcal{G}}(\sigma)$ is multiplicity-free or \natural is trivial, then $\operatorname{End}_{\mathcal{G}}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})])$ is Morita equivalent with the commutative algebra $\mathbb{C}[\mathcal{O}] \cong \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})/X_{\operatorname{nr}}(\mathcal{G},\sigma)]$

Questions

Maybe $\operatorname{Res}_{G^1}^{\mathcal{G}}(\sigma)$ is always multiplicity-free? Maybe $\operatorname{End}_{\mathcal{G}}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})])$ is always Morita equivalent with $\mathbb{C}[\mathcal{O}]$?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

III. Structure of non-supercuspidal Bernstein components

Motivated by work of Heiermann for classical p-adic groups

14 / 28

P = MU: parabolic subgroup of G, $(\sigma, E) \in Irr(M)$ supercuspidal $\mathcal{O} = X_{nr}(M)\sigma$, $\mathfrak{s} = [M, \mathcal{O}]$

Theorem (Bernstein)

 $\Pi := I_P^G (E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(M)]) \text{ is a progenerator of } \operatorname{Rep}(G)^{\mathfrak{s}}$ In particular $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_G(\Pi)$ -Mod

This is deep, it relies on second adjointness

Via I_P^G , $\mathbb{C}[X_{\mathrm{nr}}(M)]$ embeds in $\mathrm{End}_G(\Pi)$

Lemma

 $\rho \in \operatorname{Irr}(G)^{\mathfrak{s}}$. Suppose that the $\operatorname{End}_{G}(\Pi)$ -module $\operatorname{Hom}_{G}(\Pi, \rho)$ has a $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weight χ . Then ρ has supercuspidal support $(M, \sigma \otimes \chi)$.

P = MU: parabolic subgroup of G, $(\sigma, E) \in Irr(M)$ supercuspidal $\mathcal{O} = X_{nr}(M)\sigma$, $\mathfrak{s} = [M, \mathcal{O}]$

Theorem (Bernstein)

 $\Pi := I_{\mathcal{P}}^{\mathcal{G}} \big(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(M)] \big) \text{ is a progenerator of } \operatorname{Rep}(\mathcal{G})^{\mathfrak{s}}$ In particular $\operatorname{Rep}(\mathcal{G})^{\mathfrak{s}} \cong \operatorname{End}_{\mathcal{G}}(\Pi)$ -Mod

This is deep, it relies on second adjointness

Via I_P^G , $\mathbb{C}[X_{\mathrm{nr}}(M)]$ embeds in $\mathrm{End}_G(\Pi)$

Lemma

 $\rho \in \operatorname{Irr}(G)^{\mathfrak{s}}$. Suppose that the $\operatorname{End}_{G}(\Pi)$ -module $\operatorname{Hom}_{G}(\Pi, \rho)$ has a $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weight χ . Then ρ has supercuspidal support $(M, \sigma \otimes \chi)$.

P = MU: parabolic subgroup of G, $(\sigma, E) \in Irr(M)$ supercuspidal $\mathcal{O} = X_{nr}(M)\sigma$, $\mathfrak{s} = [M, \mathcal{O}]$

Theorem (Bernstein)

 $\Pi := I_{\mathcal{P}}^{\mathcal{G}} \big(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(M)] \big) \text{ is a progenerator of } \operatorname{Rep}(\mathcal{G})^{\mathfrak{s}}$ In particular $\operatorname{Rep}(\mathcal{G})^{\mathfrak{s}} \cong \operatorname{End}_{\mathcal{G}}(\Pi)$ -Mod

This is deep, it relies on second adjointness

Via I_P^G , $\mathbb{C}[X_{\mathrm{nr}}(M)]$ embeds in $\mathrm{End}_G(\Pi)$

Lemma

 $\rho \in \operatorname{Irr}(G)^{\mathfrak{s}}$. Suppose that the $\operatorname{End}_{G}(\Pi)$ -module $\operatorname{Hom}_{G}(\Pi, \rho)$ has a $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weight χ . Then ρ has supercuspidal support $(M, \sigma \otimes \chi)$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

P = MU: parabolic subgroup of G, $(\sigma, E) \in Irr(M)$ supercuspidal $\mathcal{O} = X_{nr}(M)\sigma$, $\mathfrak{s} = [M, \mathcal{O}]$

Theorem (Bernstein)

 $\Pi := I_{\mathcal{P}}^{\mathcal{G}} \big(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(M)] \big) \text{ is a progenerator of } \operatorname{Rep}(\mathcal{G})^{\mathfrak{s}}$ In particular $\operatorname{Rep}(\mathcal{G})^{\mathfrak{s}} \cong \operatorname{End}_{\mathcal{G}}(\Pi)$ -Mod

This is deep, it relies on second adjointness

Via I_P^G , $\mathbb{C}[X_{\mathrm{nr}}(M)]$ embeds in $\mathrm{End}_G(\Pi)$

Lemma

 $\rho \in \operatorname{Irr}(G)^{\mathfrak{s}}$. Suppose that the $\operatorname{End}_{G}(\Pi)$ -module $\operatorname{Hom}_{G}(\Pi, \rho)$ has a $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weight χ . Then ρ has supercuspidal support $(M, \sigma \otimes \chi)$.

Example:
$$SL_2(F)$$

 $M = T, \sigma = \text{triv}, \mathcal{O} = X_{nr}(T) \cong \mathbb{C}^{\times}$
 $W(G, T) = \{1, s_{\alpha}\}$

Harish-Chandra's intertwining operator

 $I_{s_{\alpha}}(\chi): I_{P}^{G}(\chi) \to I_{P}^{G}(\chi^{-1}), \quad f \mapsto \left[g \mapsto \int_{U_{-\alpha}} f(us_{\alpha}g) du\right]$ rational as function of $\chi \in X_{\mathrm{nr}}(T)$

$$\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}[X_{\operatorname{nr}}(T)]}{\otimes} \mathbb{C}(X_{\operatorname{nr}}(T)) = \mathbb{C}(X_{\operatorname{nr}}(T)) \rtimes \mathbb{C}[1, J_{s_{\alpha}}]$$

where $J_{s_{\alpha}}$ comes from $I_{s_{\alpha}}$, acting as $\chi \mapsto \chi^{-1}$ on $X_{\operatorname{nr}}(T)$, $J_{s_{\alpha}}^{2} = 1$

Singularities of $J_{s_{\alpha}}$

at $\chi \in X_{\mathrm{nr}}(T)$ with $\chi(\alpha^{\vee}(\text{uniformizer of } F)) = q_F^{\pm 1}$ For these χ : $I_P^G(\chi)$ is reducible

Maarten Solleveld, Radboud Universiteit

イロト イロト イヨト

Example: $SL_2(F)$

$$egin{aligned} \mathcal{M} = \mathcal{T}, \sigma = \mathsf{triv}, \ \mathcal{O} = X_{\mathrm{nr}}(\mathcal{T}) \cong \mathbb{C}^{ imes} \ \mathcal{W}(\mathcal{G},\mathcal{T}) = \{1, s_{lpha}\} \end{aligned}$$

Harish-Chandra's intertwining operator

 $I_{s_{\alpha}}(\chi): I_{P}^{G}(\chi) \to I_{P}^{G}(\chi^{-1}), \quad f \mapsto \left[g \mapsto \int_{U_{-\alpha}} f(us_{\alpha}g) du\right]$ rational as function of $\chi \in X_{\mathrm{nr}}(T)$

$$\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}[X_{\operatorname{nr}}(T)]}{\otimes} \mathbb{C}(X_{\operatorname{nr}}(T)) = \mathbb{C}(X_{\operatorname{nr}}(T)) \rtimes \mathbb{C}[1, J_{s_{\alpha}}]$$

where $J_{s_{\alpha}}$ comes from $I_{s_{\alpha}}$, acting as $\chi \mapsto \chi^{-1}$ on $X_{\operatorname{nr}}(T)$, $J_{s_{\alpha}}^{2} = 1$

Singularities of $J_{s_{\alpha}}$

at $\chi \in X_{nr}(T)$ with $\chi(\alpha^{\vee}(\text{uniformizer of } F)) = q_F^{\pm 1}$ For these χ : $I_P^G(\chi)$ is reducible

Example: $SL_2(F)$ $M = T, \sigma = triv, \ \mathcal{O} = X_{nr}(T) \cong \mathbb{C}^{\times}$

$$W(G,T) = \{1, s_{\alpha}\}$$

Harish-Chandra's intertwining operator

 $I_{s_{\alpha}}(\chi): I_{P}^{G}(\chi) \to I_{P}^{G}(\chi^{-1}), \quad f \mapsto \left[g \mapsto \int_{U_{-\alpha}} f(us_{\alpha}g) du\right]$ rational as function of $\chi \in X_{\mathrm{nr}}(T)$

$$\begin{split} & \operatorname{End}_{\mathcal{G}}(\mathsf{\Pi}) \underset{\mathbb{C}[X_{\mathrm{nr}}(\mathcal{T})]}{\otimes} \mathbb{C}(X_{\mathrm{nr}}(\mathcal{T})) = \mathbb{C}(X_{\mathrm{nr}}(\mathcal{T})) \rtimes \mathbb{C}[1, J_{s_{\alpha}}] \\ & \text{where } J_{s_{\alpha}} \text{ comes from } I_{s_{\alpha}}, \text{ acting as } \chi \mapsto \chi^{-1} \text{ on } X_{\mathrm{nr}}(\mathcal{T}), J_{s_{\alpha}}^{2} = 1 \end{split}$$

Singularities of $J_{s_{\alpha}}$

v

at $\chi \in X_{\mathrm{nr}}(T)$ with $\chi(\alpha^{\vee}(\text{uniformizer of } F)) = q_F^{\pm 1}$ For these χ : $I_P^G(\chi)$ is reducible

・ロト ・四ト ・ヨト ・ ヨト

Example: $SL_2(F)$ $M = T, \sigma = triv, O = X_{nr}(T) \cong \mathbb{C}^{\times}$

$$W(G,T) = \{1, s_{\alpha}\}$$

Harish-Chandra's intertwining operator

$$\begin{split} & I_{s_{\alpha}}(\chi): I_{P}^{\mathcal{G}}(\chi) \to I_{P}^{\mathcal{G}}(\chi^{-1}), \quad f \mapsto \left[g \mapsto \int_{U_{-\alpha}} f(\mathit{us}_{\alpha}g) \, \mathrm{d}u\right] \\ \text{rational as function of } \chi \in X_{\mathrm{nr}}(\mathcal{T}) \end{split}$$

$$\begin{split} & \operatorname{End}_{G}(\Pi) \underset{\mathbb{C}[X_{\mathrm{nr}}(\mathcal{T})]}{\otimes} \mathbb{C}(X_{\mathrm{nr}}(\mathcal{T})) = \mathbb{C}(X_{\mathrm{nr}}(\mathcal{T})) \rtimes \mathbb{C}[1, J_{s_{\alpha}}] \\ & \text{where } J_{s_{\alpha}} \text{ comes from } I_{s_{\alpha}}, \text{ acting as } \chi \mapsto \chi^{-1} \text{ on } X_{\mathrm{nr}}(\mathcal{T}), \ J_{s_{\alpha}}^{2} = 1 \end{split}$$

Singularities of $J_{s_{\alpha}}$

at
$$\chi \in X_{nr}(T)$$
 with $\chi(\alpha^{\vee}(\text{uniformizer of } F)) = q_F^{\pm 1}$
For these χ : $I_P^G(\chi)$ is reducible

Maarten Solleveld, Radboud Universiteit

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Finite groups related to (M, \mathcal{O}) and $\operatorname{End}_{G}(\Pi)$

•
$$X_{
m nr}(M,\sigma)$$
, acting on $X_{
m nr}(M)$

• $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$, acting on \mathcal{O}

Every $w \in W(M, \mathcal{O})$ lifts to a $\mathfrak{w} \in \operatorname{Aut}_{\operatorname{alg.var.}}(X_{\operatorname{nr}}(M))$

Lemma

There exists a group $W(M, \sigma, X_{nr}(M)) \subset \operatorname{Aut}_{\operatorname{alg.var.}}(X_{nr}(M))$ with $1 \to X_{nr}(M, \sigma) \to W(M, \sigma, X_{nr}(M)) \to W(M, \mathcal{O}) \to 1$

Example

$$G = GL_6(F), M = GL_2(F)^3, \sigma = \tau^{\boxtimes 3}$$
, then $X_{nr}(M) \cong (\mathbb{C}^{\times})^3$ and
either $W(M, \sigma, X_{nr}(M)) = W(M, \mathcal{O}) \cong S_3$
or $W(M, \sigma, X_{nr}(M)) \cong (\mathbb{Z}/2\mathbb{Z})^3 \rtimes S_3$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finite groups related to (M, \mathcal{O}) and $\operatorname{End}_{G}(\Pi)$

•
$$X_{
m nr}(M,\sigma)$$
, acting on $X_{
m nr}(M)$

• $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$, acting on \mathcal{O}

Every $w \in W(M, \mathcal{O})$ lifts to a $\mathfrak{w} \in \operatorname{Aut}_{\operatorname{alg.var.}}(X_{\operatorname{nr}}(M))$

Lemma

There exists a group $W(M, \sigma, X_{\mathrm{nr}}(M)) \subset \operatorname{Aut}_{\mathrm{alg.var.}}(X_{\mathrm{nr}}(M))$ with $1 \to X_{\mathrm{nr}}(M, \sigma) \to W(M, \sigma, X_{\mathrm{nr}}(M)) \to W(M, \mathcal{O}) \to 1$

Example

$$G = GL_6(F), M = GL_2(F)^3, \sigma = \tau^{\boxtimes 3}$$
, then $X_{nr}(M) \cong (\mathbb{C}^{\times})^3$ and
either $W(M, \sigma, X_{nr}(M)) = W(M, \mathcal{O}) \cong S_3$
or $W(M, \sigma, X_{nr}(M)) \cong (\mathbb{Z}/2\mathbb{Z})^3 \rtimes S_3$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finite groups related to (M, \mathcal{O}) and $\operatorname{End}_{G}(\Pi)$

•
$$X_{
m nr}(M,\sigma)$$
, acting on $X_{
m nr}(M)$

• $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$, acting on \mathcal{O}

Every $w \in W(M, \mathcal{O})$ lifts to a $\mathfrak{w} \in \operatorname{Aut}_{\operatorname{alg.var.}}(X_{\operatorname{nr}}(M))$

Lemma

There exists a group $W(M, \sigma, X_{\mathrm{nr}}(M)) \subset \operatorname{Aut}_{\mathrm{alg.var.}}(X_{\mathrm{nr}}(M))$ with $1 \to X_{\mathrm{nr}}(M, \sigma) \to W(M, \sigma, X_{\mathrm{nr}}(M)) \to W(M, \mathcal{O}) \to 1$

Example

$$G = GL_6(F), M = GL_2(F)^3, \sigma = \tau^{\boxtimes 3}$$
, then $X_{nr}(M) \cong (\mathbb{C}^{\times})^3$ and
either $W(M, \sigma, X_{nr}(M)) = W(M, \mathcal{O}) \cong S_3$
or $W(M, \sigma, X_{nr}(M)) \cong (\mathbb{Z}/2\mathbb{Z})^3 \rtimes S_3$

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Structure of $\operatorname{End}_{\mathcal{G}}(\Pi)$

 $\mathbb{C}(X_{\mathrm{nr}}(M))$: quotient field of $\mathbb{C}[X_{\mathrm{nr}}(M)]$, rational functions on $X_{\mathrm{nr}}(M)$

Main result (precise but weak version)

There exist a 2-cocycle \natural of $W(M, \sigma, X_{nr}(M))$ and an algebra isomorphism

 $\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}[X_{\operatorname{nr}}(M)]}{\otimes} \mathbb{C}(X_{\operatorname{nr}}(M)) \cong \mathbb{C}(X_{\operatorname{nr}}(M)) \rtimes \mathbb{C}[W(M, \sigma, X_{\operatorname{nr}}(M)), \natural]$

In some examples atual is nontrivial

This result only says something about $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}(\Pi)$ -Mod outside the tricky points of the cuspidal support variety \mathcal{O}

< 同 > < 三 > < 三 >

Structure of $\operatorname{End}_{\mathcal{G}}(\Pi)$

 $\mathbb{C}(X_{\mathrm{nr}}(M))$: quotient field of $\mathbb{C}[X_{\mathrm{nr}}(M)]$, rational functions on $X_{\mathrm{nr}}(M)$

Main result (precise but weak version)

There exist a 2-cocycle \natural of $W(M, \sigma, X_{nr}(M))$ and an algebra isomorphism

 $\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}[X_{\operatorname{nr}}(M)]}{\otimes} \mathbb{C}(X_{\operatorname{nr}}(M)) \cong \mathbb{C}(X_{\operatorname{nr}}(M)) \rtimes \mathbb{C}[W(M, \sigma, X_{\operatorname{nr}}(M)), \natural]$

In some examples atual is nontrivial

This result only says something about $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}(\Pi)$ -Mod outside the tricky points of the cuspidal support variety \mathcal{O}

Structure of $\operatorname{End}_{\mathcal{G}}(\Pi)$

 $\mathbb{C}(X_{\mathrm{nr}}(M))$: quotient field of $\mathbb{C}[X_{\mathrm{nr}}(M)]$, rational functions on $X_{\mathrm{nr}}(M)$

Main result (precise but weak version)

There exist a 2-cocycle \natural of $W(M, \sigma, X_{nr}(M))$ and an algebra isomorphism

 $\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}[X_{\operatorname{nr}}(M)]}{\otimes} \mathbb{C}(X_{\operatorname{nr}}(M)) \cong \mathbb{C}(X_{\operatorname{nr}}(M)) \rtimes \mathbb{C}[W(M, \sigma, X_{\operatorname{nr}}(M)), \natural]$

In some examples \natural is nontrivial

This result only says something about $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}(\Pi)$ -Mod outside the tricky points of the cuspidal support variety \mathcal{O}

IV. Links with affine Hecke algebras

< 1 k

э

Sketch of an extended affine Hecke algebra

- Start with $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$
- $W(M, \mathcal{O})$ contains a normal reflection subgroup $W(\Sigma_{\mathcal{O}})$
- Twist the multiplication in $\mathbb{C}[W(M, \mathcal{O})]$ by a 2-cocycle $\tilde{\xi}$ of $W(M, \mathcal{O})/W(\Sigma_{\mathcal{O}})$
- For every simple reflection $s_{\alpha} \in W(\Sigma_{\mathcal{O}})$, replace the relation $(s_{\alpha} + 1)(s_{\alpha} - 1) = 0$ in $\mathbb{C}[W(M, \mathcal{O})]$ by $(\mathcal{T}_{s_{\alpha}} + 1)(\mathcal{T}_{s_{\alpha}} - q_{F}^{\lambda(\alpha)}) = 0$ for some $\lambda(\alpha) \in \mathbb{R}_{\geq 0}$
- Adjust the multiplication relations between $\mathbb{C}[\mathcal{O}]$ and the $\mathcal{T}_{s_{lpha}}$
- This gives an algebra *H*(*O*) with the same underlying vector space C[*O*] ⊗ C[*W*(*M*, *O*)], C[*O*] is still a subalgebra

< 同 > < 三 > < 三 >

Sketch of an extended affine Hecke algebra

- Start with $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$
- $W(M, \mathcal{O})$ contains a normal reflection subgroup $W(\Sigma_{\mathcal{O}})$
- Twist the multiplication in C[W(M, O)] by a 2-cocycle ξ̃ of W(M, O)/W(Σ_O)
- For every simple reflection $s_{\alpha} \in W(\Sigma_{\mathcal{O}})$, replace the relation $(s_{\alpha} + 1)(s_{\alpha} 1) = 0$ in $\mathbb{C}[W(M, \mathcal{O})]$ by $(\mathcal{T}_{s_{\alpha}} + 1)(\mathcal{T}_{s_{\alpha}} q_{F}^{\lambda(\alpha)}) = 0$ for some $\lambda(\alpha) \in \mathbb{R}_{\geq 0}$
- Adjust the multiplication relations between $\mathbb{C}[\mathcal{O}]$ and the \mathcal{T}_{s_lpha}
- This gives an algebra *H*(*O*) with the same underlying vector space C[*O*] ⊗ C[*W*(*M*, *O*)], C[*O*] is still a subalgebra

不得 とう ほう とう とう

Sketch of an extended affine Hecke algebra

- Start with $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$
- $W(M, \mathcal{O})$ contains a normal reflection subgroup $W(\Sigma_{\mathcal{O}})$
- Twist the multiplication in $\mathbb{C}[W(M, \mathcal{O})]$ by a 2-cocycle $\tilde{\xi}$ of $W(M, \mathcal{O})/W(\Sigma_{\mathcal{O}})$
- For every simple reflection $s_{\alpha} \in W(\Sigma_{\mathcal{O}})$, replace the relation $(s_{\alpha} + 1)(s_{\alpha} 1) = 0$ in $\mathbb{C}[W(M, \mathcal{O})]$ by $(T_{s_{\alpha}} + 1)(T_{s_{\alpha}} q_{F}^{\lambda(\alpha)}) = 0$ for some $\lambda(\alpha) \in \mathbb{R}_{\geq 0}$
- Adjust the multiplication relations between $\mathbb{C}[\mathcal{O}]$ and the $\mathcal{T}_{s_{lpha}}$
- This gives an algebra $\tilde{\mathcal{H}}(\mathcal{O})$ with the same underlying vector space $\mathbb{C}[\mathcal{O}] \otimes \mathbb{C}[W(M, \mathcal{O})], \quad \mathbb{C}[\mathcal{O}]$ is still a subalgebra

Localization

We analyse the category of those $\operatorname{End}_{G}(\Pi)$ -modules, all whose $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weights lie in a specified subset $U \subset X_{\operatorname{nr}}(M)$ These are related to $\tilde{\mathcal{H}}(\mathcal{O})$ -modules with $\mathbb{C}[\mathcal{O}]$ -weights in $\{\sigma \otimes \chi : \chi \in U\}$

Polar decomposition

$$\begin{split} X_{\mathrm{nr}}(M) &= \mathrm{Hom}(M/M^1, \mathbb{C}^{\times}) = \mathrm{Hom}(M/M^1, S^1) \times \mathrm{Hom}(M/M^1, \mathbb{R}_{>0}) \\ &= X_{\mathrm{unr}}(M) \quad \times \quad X_{\mathrm{nr}}^+(M) \end{split}$$

Fix any $u \in \operatorname{Hom}(M/M^1, S^1)$ and define

$$egin{aligned} &U=W(M,\sigma,X_{
m nr}(M))\,u\,X_{
m nr}^+(M)\ & ilde{U}=\ {
m image}\ {
m of}\ U\ {
m in}\ \mathcal{O}=W(M,\mathcal{O})\{\sigma\otimes u\chi:\chi\in X_{
m nr}^+(M)\} \end{aligned}$$

Localization

We analyse the category of those $\operatorname{End}_{G}(\Pi)$ -modules, all whose $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weights lie in a specified subset $U \subset X_{\operatorname{nr}}(M)$ These are related to $\tilde{\mathcal{H}}(\mathcal{O})$ -modules with $\mathbb{C}[\mathcal{O}]$ -weights in $\{\sigma \otimes \chi : \chi \in U\}$

Polar decomposition

$$egin{aligned} X_{\mathrm{nr}}(M) &= \mathrm{Hom}(M/M^1,\mathbb{C}^{ imes}) = \mathrm{Hom}(M/M^1,S^1) imes \mathrm{Hom}(M/M^1,\mathbb{R}_{>0}) \ &= X_{\mathrm{unr}}(M) imes X_{\mathrm{nr}}^+(M) \end{aligned}$$

Fix any $u \in \operatorname{Hom}(M/M^1, S^1)$ and define

$$egin{aligned} &U=W(M,\sigma,X_{
m nr}(M))\,u\,X_{
m nr}^+(M)\ & ilde{U}=\ {
m image}\ {
m of}\ U\ {
m in}\ \mathcal{O}=W(M,\mathcal{O})\{\sigma\otimes u\chi:\chi\in X_{
m nr}^+(M)\} \end{aligned}$$

Localization

We analyse the category of those $\operatorname{End}_{G}(\Pi)$ -modules, all whose $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weights lie in a specified subset $U \subset X_{\operatorname{nr}}(M)$ These are related to $\tilde{\mathcal{H}}(\mathcal{O})$ -modules with $\mathbb{C}[\mathcal{O}]$ -weights in $\{\sigma \otimes \chi : \chi \in U\}$

Polar decomposition

$$egin{aligned} X_{\mathrm{nr}}(M) &= \mathrm{Hom}(M/M^1,\mathbb{C}^{ imes}) = \mathrm{Hom}(M/M^1,S^1) imes \mathrm{Hom}(M/M^1,\mathbb{R}_{>0}) \ &= X_{\mathrm{unr}}(M) imes X_{\mathrm{nr}}^+(M) \end{aligned}$$

Fix any $u \in \operatorname{Hom}(M/M^1, S^1)$ and define

$$egin{aligned} &U=W(M,\sigma,X_{
m nr}(M))\,u\,X_{
m nr}^+(M)\ & ilde{U}= \ ext{image of }U ext{ in }\mathcal{O}=W(M,\mathcal{O})\{\sigma\otimes u\chi:\chi\in X_{
m nr}^+(M)\} \end{aligned}$$

 $\begin{aligned} & {\mathcal{G}}: \text{ reductive } p\text{-adic group} \\ & {\mathcal{O}} = \{\sigma \otimes \chi : \chi \in X_{\mathrm{nr}}({\mathcal{M}})\}, \mathfrak{s} = [{\mathcal{M}}, {\mathcal{O}}] \end{aligned}$

 Π : progenerator of Bernstein block $\operatorname{Rep}(G)^{\mathfrak{s}}$

 $\tilde{\mathcal{H}}(\mathcal{O})$ constructed by modification of $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$ (with certain specific parameters $q_F^{\lambda(\alpha)}$)

 $\begin{array}{l} u \in \operatorname{Hom}(M/M^1,S^1), \ U = W(M,\sigma,X_{\operatorname{nr}}(M)) \, u \, X_{\operatorname{nr}}^+(M) \\ \tilde{U} : \text{ image of } U \text{ in } \mathcal{O} \end{array}$

Theorem

There are equivalences between the following categories

- $\{\pi \in \operatorname{Rep}_{\mathrm{fl}}(\mathcal{G})^{\mathfrak{s}} : \operatorname{Sc}(\pi) \subset (M, \widetilde{U})\}$ (fl : finite length)
- $\{V \in \operatorname{End}_{G}(\Pi) \operatorname{Mod}_{\mathrm{fl}} : \text{ all } \mathbb{C}[X_{\mathrm{nr}}(M)]\text{-weights of } V \text{ in } U\}$
- $\{\tilde{V} \in \tilde{\mathcal{H}}(\mathcal{O}) \operatorname{Mod}_{\mathrm{fl}} : \text{ all } \mathbb{C}[\mathcal{O}]\text{-weights of } \tilde{V} \text{ in } \tilde{U}\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\begin{aligned} & {\mathcal{G}} \colon \text{reductive p-adic group} \\ & {\mathcal{O}} = \{ \sigma \otimes \chi : \chi \in X_{\mathrm{nr}}({\mathcal{M}}) \}, \mathfrak{s} = [{\mathcal{M}}, {\mathcal{O}}] \end{aligned}$

 Π : progenerator of Bernstein block $\operatorname{Rep}(G)^{\mathfrak{s}}$

 $\tilde{\mathcal{H}}(\mathcal{O})$ constructed by modification of $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$ (with certain specific parameters $q_F^{\lambda(\alpha)}$)

 $u \in \operatorname{Hom}(M/M^1, S^1), \ U = W(M, \sigma, X_{\operatorname{nr}}(M)) \ u \ X_{\operatorname{nr}}^+(M)$ \widetilde{U} : image of U in \mathcal{O}

Theorem

There are equivalences between the following categories

- $\{\pi \in \operatorname{Rep}_{\mathrm{fl}}(\mathcal{G})^{\mathfrak{s}} : \operatorname{Sc}(\pi) \subset (M, \tilde{U})\}$ (fl : finite length)
- $\{V \in \operatorname{End}_{\mathcal{G}}(\Pi) \operatorname{Mod}_{\mathrm{fl}} : \text{ all } \mathbb{C}[X_{\mathrm{nr}}(M)]\text{-weights of } V \text{ in } U\}$
- $\{ ilde{V}\in ilde{\mathcal{H}}(\mathcal{O})-\mathrm{Mod}_{\mathrm{fl}}: ext{ all } \mathbb{C}[\mathcal{O}] ext{-weights of } ilde{V} ext{ in } ilde{U}\}$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem

There are equivalences between the following categories

•
$$\{\pi \in \operatorname{Rep}_{\mathrm{fl}}(\mathcal{G})^{\mathfrak{s}} : \operatorname{Sc}(\pi) \subset \tilde{U}\}$$
 (fl : finite length)

•
$$\{V \in \operatorname{End}_{G}(\Pi) - \operatorname{Mod}_{\mathrm{fl}} : \text{ all } \mathbb{C}[X_{\mathrm{nr}}(M)] \text{-weights of } V \text{ in } U\}$$

•
$$\{ ilde{V}\in ilde{\mathcal{H}}(\mathcal{O})-\mathrm{Mod}_{\mathrm{fl}}: ext{ all }\mathbb{C}[\mathcal{O}] ext{-weights of } ilde{V} ext{ in } ilde{U}\}$$

Under a mild condition on the 2-cocycle $\tilde{\xi}$ involved in $\tilde{\mathcal{H}}(\mathcal{O})$ (conjecturally always fulfilled):

Corollary

There is an equivalence of categories between $\operatorname{Rep}_{\mathrm{fl}}(\mathcal{G})^{\mathfrak{s}} \ \text{ and } \ \tilde{\mathcal{H}}(\mathcal{O}) - \operatorname{Mod}_{\mathrm{fl}}$

Extras

The above equivalences of categories respect parabolic induction, temperedness and square-integrability of representations

Theorem

There are equivalences between the following categories

•
$$\{\pi \in \operatorname{Rep}_{\mathrm{fl}}(\mathcal{G})^{\mathfrak{s}} : \operatorname{Sc}(\pi) \subset \tilde{U}\}$$
 (fl : finite length)

•
$$\{V \in \operatorname{End}_{G}(\Pi) - \operatorname{Mod}_{\mathrm{fl}} : \text{ all } \mathbb{C}[X_{\mathrm{nr}}(M)] \text{-weights of } V \text{ in } U\}$$

•
$$\{ ilde{V}\in ilde{\mathcal{H}}(\mathcal{O})-\mathrm{Mod}_{\mathrm{fl}}: ext{ all }\mathbb{C}[\mathcal{O}] ext{-weights of } ilde{V} ext{ in } ilde{U}\}$$

Under a mild condition on the 2-cocycle $\tilde{\xi}$ involved in $\tilde{\mathcal{H}}(\mathcal{O})$ (conjecturally always fulfilled):

Corollary

There is an equivalence of categories between

$$\operatorname{Rep}_{\mathrm{fl}}({\mathcal{G}})^{\mathfrak{s}}$$
 and $ilde{\mathcal{H}}({\mathcal{O}}) - \operatorname{Mod}_{\mathrm{fl}}$

Extras

The above equivalences of categories respect parabolic induction, temperedness and square-integrability of representations

Theorem

There are equivalences between the following categories

•
$$\{\pi \in \operatorname{Rep}_{\mathrm{fl}}(\mathcal{G})^{\mathfrak{s}} : \operatorname{Sc}(\pi) \subset \tilde{U}\}$$
 (fl : finite length)

•
$$\{V \in \operatorname{End}_{G}(\Pi) - \operatorname{Mod}_{\mathrm{fl}} : \text{ all } \mathbb{C}[X_{\mathrm{nr}}(M)] \text{-weights of } V \text{ in } U\}$$

•
$$\{ ilde{V}\in ilde{\mathcal{H}}(\mathcal{O})-\mathrm{Mod}_{\mathrm{fl}}: ext{ all }\mathbb{C}[\mathcal{O}] ext{-weights of } ilde{V} ext{ in } ilde{U}\}$$

Under a mild condition on the 2-cocycle $\tilde{\xi}$ involved in $\tilde{\mathcal{H}}(\mathcal{O})$ (conjecturally always fulfilled):

Corollary

There is an equivalence of categories between

$$\operatorname{Rep}_{\mathrm{fl}}({\mathcal{G}})^{\mathfrak{s}}$$
 and $ilde{\mathcal{H}}({\mathcal{O}}) - \operatorname{Mod}_{\mathrm{fl}}$

Extras

The above equivalences of categories respect parabolic induction, temperedness and square-integrability of representations

Maarten Solleveld, Radboud Universiteit

Bernstein components for *p*-adic groups

V. Classification of irreducible representations in $\operatorname{Rep}(G)^{\mathfrak{s}}$

Representations of affine Hecke algebras

- From the equivalence $\operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}} \cong \tilde{\mathcal{H}}(\mathcal{O}) \operatorname{Mod}_{\mathrm{fl}}$, $\operatorname{Irr}(G)^{\mathfrak{s}}$ can be determined in terms of affine Hecke algebras
- The irreps of an affine Hecke algebra are known in principle, but their classification is involved

Replacing q_F by 1 in affine Hecke algebras

- $q_F = 1$ -version of $\tilde{\mathcal{H}}(\mathcal{O})$: $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\natural}]$
- Its representation theory is easy, with Clifford theory

Representations of affine Hecke algebras

- From the equivalence $\operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}} \cong \tilde{\mathcal{H}}(\mathcal{O}) \operatorname{Mod}_{\mathrm{fl}}$, $\operatorname{Irr}(G)^{\mathfrak{s}}$ can be determined in terms of affine Hecke algebras
- The irreps of an affine Hecke algebra are known in principle, but their classification is involved

Replacing q_F by 1 in affine Hecke algebras

- $q_F = 1$ -version of $\tilde{\mathcal{H}}(\mathcal{O})$: $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\natural}]$
- Its representation theory is easy, with Clifford theory

Assume that $\sigma \otimes u \in Irr(M)$ is supercuspidal and unitary/tempered

Theorem

There exist canonical bijections between the following sets

- $\{\pi \in \operatorname{Irr}(G)^{\mathfrak{s}} : \pi \text{ tempered}, \operatorname{Sc}(\pi) \in (M, \sigma \otimes uX_{\operatorname{nr}}^{+}(M))\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})) : \tilde{V} \text{ tempered}, \tilde{V} \text{ has a } \mathbb{C}[\mathcal{O}]\text{-weight in } \sigma \otimes uX_{\operatorname{nr}}^+(\mathcal{M})\}$
- $\{ V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\xi}]) : V \text{ tempered, with a } \mathbb{C}[\mathcal{O}]\text{-weight} \sigma \otimes u \}$
- $\operatorname{Irr}(\mathbb{C}[W(M,\mathcal{O})_{\sigma\otimes u},\tilde{\natural}])$

$$\begin{split} & \mathcal{W}(M,\mathcal{O})_{\sigma\otimes u} \text{ embeds in } \mathcal{W}(M,\sigma,X_{\mathrm{nr}}(M)) \\ & \tilde{\natural}|_{\mathcal{W}(M,\mathcal{O})_{\sigma\otimes u}} \text{ comes from the 2-cocycle } \natural \text{ of } \mathcal{W}(M,\sigma,X_{\mathrm{nr}}(M)) \end{split}$$

イヨト イモト イモ

Assume that $\sigma \otimes u \in Irr(M)$ is supercuspidal and unitary/tempered

Theorem

There exist canonical bijections between the following sets

- $\left\{\pi \in \operatorname{Irr}(G)^{\mathfrak{s}} : \pi \text{ tempered}, \operatorname{Sc}(\pi) \in (M, \sigma \otimes uX_{\operatorname{nr}}^{+}(M))\right\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})) : \tilde{V} \text{ tempered}, \tilde{V} \text{ has a } \mathbb{C}[\mathcal{O}]\text{-weight in } \sigma \otimes uX_{\operatorname{nr}}^+(\mathcal{M})\}$
- $\{V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\xi}]) : V \text{ tempered, with a } \mathbb{C}[\mathcal{O}]\text{-weight} \sigma \otimes u\}$
- $\operatorname{Irr}(\mathbb{C}[W(M, \mathcal{O})_{\sigma \otimes u}, \tilde{\xi}])$

$$\begin{split} & \mathcal{W}(M,\mathcal{O})_{\sigma\otimes u} \text{ embeds in } \mathcal{W}(M,\sigma,X_{\mathrm{nr}}(M)) \\ & \tilde{\natural}|_{\mathcal{W}(M,\mathcal{O})_{\sigma\otimes u}} \text{ comes from the 2-cocycle } \natural \text{ of } \mathcal{W}(M,\sigma,X_{\mathrm{nr}}(M)) \end{split}$$

Assume that $\sigma \otimes u \in Irr(M)$ is supercuspidal and unitary/tempered

Theorem

There exist canonical bijections between the following sets

- $\left\{\pi \in \operatorname{Irr}(G)^{\mathfrak{s}} : \pi \text{ tempered}, \operatorname{Sc}(\pi) \in (M, \sigma \otimes uX_{\operatorname{nr}}^{+}(M))\right\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})) : \tilde{V} \text{ tempered}, \tilde{V} \text{ has a } \mathbb{C}[\mathcal{O}]\text{-weight in } \sigma \otimes uX_{\operatorname{nr}}^+(\mathcal{M})\}$
- $\{ V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\xi}]) : V \text{ tempered, with a } \mathbb{C}[\mathcal{O}]\text{-weight} \sigma \otimes u \}$
- $\operatorname{Irr}(\mathbb{C}[W(M, \mathcal{O})_{\sigma \otimes u}, \tilde{\natural}])$

$$\begin{split} & \mathcal{W}(M,\mathcal{O})_{\sigma\otimes u} \text{ embeds in } \mathcal{W}(M,\sigma,X_{\mathrm{nr}}(M)) \\ & \tilde{\natural}|_{\mathcal{W}(M,\mathcal{O})_{\sigma\otimes u}} \text{ comes from the 2-cocycle } \natural \text{ of } \mathcal{W}(M,\sigma,X_{\mathrm{nr}}(M)) \end{split}$$

Assume that $\sigma \otimes u \in Irr(M)$ is supercuspidal and unitary/tempered

Theorem

There exist canonical bijections between the following sets

- $\left\{\pi \in \operatorname{Irr}(G)^{\mathfrak{s}} : \pi \text{ tempered}, \operatorname{Sc}(\pi) \in (M, \sigma \otimes uX_{\operatorname{nr}}^{+}(M))\right\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})) : \tilde{V} \text{ tempered}, \tilde{V} \text{ has a } \mathbb{C}[\mathcal{O}]\text{-weight in } \sigma \otimes uX_{\operatorname{nr}}^+(\mathcal{M})\}$
- $\{ V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\natural}]) : V \text{ tempered, with a } \mathbb{C}[\mathcal{O}]\text{-weight} \sigma \otimes u \}$
- $\operatorname{Irr}(\mathbb{C}[W(M, \mathcal{O})_{\sigma \otimes u}, \tilde{\xi}])$

 $\begin{array}{l} W(M,\mathcal{O})_{\sigma\otimes u} \text{ embeds in } W(M,\sigma,X_{\mathrm{nr}}(M)) \\ \tilde{\natural}|_{W(M,\mathcal{O})_{\sigma\otimes u}} \text{ comes from the 2-cocycle } \natural \text{ of } W(M,\sigma,X_{\mathrm{nr}}(M)) \end{array}$

Classification of irreducible representations

Theorem

There exist canonical bijections between the following sets

•
$$\operatorname{Irr}(G)^{\mathfrak{s}}$$

• $\operatorname{Irr}\left(\mathbb{C}[X_{\mathrm{nr}}(M)] \rtimes \mathbb{C}[W(M, \sigma, X_{\mathrm{nr}}(M)), \natural]\right)$
• $\operatorname{Irr}\left(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\natural}]\right)$

•
$$\{(\sigma', \rho) : \sigma' \in \mathcal{O}, \rho \in \operatorname{Irr}(\mathbb{C}[W(M, \mathcal{O})_{\sigma'}, \tilde{\natural}])\}/W(M, \mathcal{C})$$

The last item is also known as a twisted extended quotient

 $(\mathcal{O}/\!/W(M,\mathcal{O}))_{\natural}$

The bijection between that and $Irr(G)^{\mathfrak{s}}$ was conjectured by ABPS

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Classification of irreducible representations

Theorem

There exist canonical bijections between the following sets

•
$$\operatorname{Irr}(G)^{\mathfrak{s}}$$

• $\operatorname{Irr}\left(\mathbb{C}[X_{\operatorname{nr}}(M)] \rtimes \mathbb{C}[W(M, \sigma, X_{\operatorname{nr}}(M)), \natural]\right)$
• $\operatorname{Irr}\left(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\natural}]\right)$

•
$$\{(\sigma',\rho): \sigma' \in \mathcal{O}, \rho \in \operatorname{Irr}(\mathbb{C}[W(M,\mathcal{O})_{\sigma'},\tilde{\natural}])\}/W(M,\mathcal{O})$$

The last item is also known as a twisted extended quotient

 $(\mathcal{O}/\!/W(M,\mathcal{O}))_{\natural}$

The bijection between that and $Irr(G)^{s}$ was conjectured by ABPS

Summary

For an arbitrary Bernstein block $\operatorname{Rep}(G)^{\mathfrak{s}}$ of a reductive *p*-adic group *G*:

- Rep_{fl}(G)^s is equivalent with the category of finite length modules of an extended affine Hecke algebra *H̃*(*O*), whose q_F = 1-form is C[*O*] ⋊ C[W(M, *O*), ξ̃]
- Upon tensoring with C(X_{nr}(M)) over C[X_{nr}(M)], or upon taking irreducible representations, Rep(G)⁵ becomes equivalent with C[X_{nr}(M)] ⋊ C[W(M, σ, X_{nr}(M)), μ] Mod

Questions / open problems

- Can one use the above to study unitarity of *G*-representations?
- Can the parameters q_F^{λ(α)} of *H*(*O*) be described in terms of σ or *O*? Are the λ(α) integers?
- How to determine the 2-cocycles \natural of $W(M, \sigma, X_{nr}(M))$?

3

< □ > < 同 > < 三 > < 三 >

Summary

For an arbitrary Bernstein block $\operatorname{Rep}(G)^{\mathfrak{s}}$ of a reductive *p*-adic group *G*:

- Rep_{fl}(G)^s is equivalent with the category of finite length modules of an extended affine Hecke algebra *H̃*(*O*), whose q_F = 1-form is C[*O*] ⋊ C[W(M, *O*), ξ̃]
- Upon tensoring with $\mathbb{C}(X_{\mathrm{nr}}(M))$ over $\mathbb{C}[X_{\mathrm{nr}}(M)]$, or upon taking irreducible representations, $\mathrm{Rep}(G)^{\mathfrak{s}}$ becomes equivalent with $\mathbb{C}[X_{\mathrm{nr}}(M)] \rtimes \mathbb{C}[W(M, \sigma, X_{\mathrm{nr}}(M)), \natural] \mathrm{Mod}$

Questions / open problems

- Can one use the above to study unitarity of *G*-representations?
- Can the parameters q_F^{λ(α)} of H
 (*O*) be described in terms of σ or *O*? Are the λ(α) integers?
- How to determine the 2-cocycles \natural of $W(M, \sigma, X_{nr}(M))$?

3

< □ > < □ > < □ > < □ > < □ > < □ >

Summary

For an arbitrary Bernstein block $\operatorname{Rep}(G)^{\mathfrak{s}}$ of a reductive *p*-adic group *G*:

- Rep_{fl}(G)^s is equivalent with the category of finite length modules of an extended affine Hecke algebra *H̃*(*O*), whose q_F = 1-form is C[*O*] ⋊ C[W(M, *O*), ξ̃]
- Upon tensoring with $\mathbb{C}(X_{\mathrm{nr}}(M))$ over $\mathbb{C}[X_{\mathrm{nr}}(M)]$, or upon taking irreducible representations, $\mathrm{Rep}(G)^{\mathfrak{s}}$ becomes equivalent with $\mathbb{C}[X_{\mathrm{nr}}(M)] \rtimes \mathbb{C}[W(M, \sigma, X_{\mathrm{nr}}(M)), \natural] \mathrm{Mod}$

Questions / open problems

- Can one use the above to study unitarity of G-representations?
- Can the parameters q_F^{λ(α)} of H̃(O) be described in terms of σ or O? Are the λ(α) integers?
- How to determine the 2-cocycles \natural of $W(M, \sigma, X_{nr}(M))$?

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A