Bernstein components for p-adic groups

Maarten Solleveld
Radboud Universiteit Nijmegen

14 October 2020
G : reductive group over a non-archimedean local field F $\operatorname{Rep}(G)$: category of smooth complex G-representations

Bernstein decomposition

Direct product of categories $\operatorname{Rep}(G)=\prod_{\mathfrak{s}} \operatorname{Rep}(G)^{\mathfrak{s}}$
where \mathfrak{s} is determined by a supercuspidal representation σ of a Levi subgroup M of G

We suppose that M and σ are given
Questions

- What does $\operatorname{Rep}(G)^{5}$ look like? Is it the module category of an explicit algebra?
- Can one classify $\operatorname{Irr}(G)^{\mathfrak{s}}=\operatorname{Irr}(G) \cap \operatorname{Rep}(G)^{\mathfrak{s}}$?
- Can one describe tempered/unitary/square-integrable representations in $\operatorname{Rep}(G)^{5}$?
G : reductive group over a non-archimedean local field F $\operatorname{Rep}(G)$: category of smooth complex G-representations

Bernstein decomposition
Direct product of categories $\operatorname{Rep}(G)=\prod_{\mathfrak{s}} \operatorname{Rep}(G)^{\mathfrak{s}}$
where \mathfrak{s} is determined by a supercuspidal representation σ of a Levi subgroup M of G

We suppose that M and σ are given
Questions

- What does $\operatorname{Rep}(G)^{5}$ look like? Is it the module category of an explicit algebra?
- Can one classify $\operatorname{Irr}(G)^{\mathfrak{s}}=\operatorname{Irr}(G) \cap \operatorname{Rep}(G)^{\mathfrak{s}}$?
- Can one describe tempered/unitary/square-integrable representations in $\operatorname{Rep}(G)^{5}$?
G : reductive group over a non-archimedean local field F $\operatorname{Rep}(G)$: category of smooth complex G-representations

Bernstein decomposition

Direct product of categories $\operatorname{Rep}(G)=\prod_{\mathfrak{s}} \operatorname{Rep}(G)^{\mathfrak{s}}$
where \mathfrak{s} is determined by a supercuspidal representation σ of a Levi subgroup M of G

We suppose that M and σ are given

Questions

- What does $\operatorname{Rep}(G)^{\mathfrak{s}}$ look like? Is it the module category of an explicit algebra?
- Can one classify $\operatorname{Irr}(G)^{\mathfrak{s}}=\operatorname{Irr}(G) \cap \operatorname{Rep}(G)^{\mathfrak{s}}$?
- Can one describe tempered/unitary/square-integrable representations in $\operatorname{Rep}(G)^{s}$?

I. Bernstein components and a rough version of the new results

Bernstein components

$P=M U$: parabolic subgroup of G with Levi factor M
$I_{P}^{G}: \operatorname{Rep}(M) \rightarrow \operatorname{Rep}(P) \rightarrow \operatorname{Rep}(G):$ normalized parabolic induction

Definition

For $\pi \in \operatorname{Irr}(G)$:

- π is supercuspidal if it does not occur in $I_{P}^{G}(\sigma)$ for any proper parabolic subgroup P of G and any $\sigma \in \operatorname{Irr}(M)$
- Supercuspidal support $\operatorname{Sc}(\pi)$: a pair (M, σ) with $\sigma \in \operatorname{Irr}(M)$, such that π is a constituent of $I_{P}^{G}(\sigma)$ and M is minimal for this property
$X_{\mathrm{nr}}(M)$: group of unramified characters $M \rightarrow \mathbb{C}^{\times}$
$\mathcal{O} \subset \operatorname{Irr}(M):$ an $X_{\mathrm{nr}}(M)$-orbit of supercuspidal irreps
$\mathfrak{s}=[M, \mathcal{O}]: G$-association class of (M, \mathcal{O})

Definition

$\operatorname{Irr}(G)^{\mathfrak{s}}=\{\pi \in \operatorname{Irr}(G): \operatorname{Sc}(\pi) \in[M, \mathcal{O}]\}$
$\operatorname{Rep}(G)^{\mathfrak{s}}=\left\{\pi \in \operatorname{Rep}(G):\right.$ all irreducible subquotients of π lie in $\left.\operatorname{Irr}(G)^{\mathfrak{s}}\right\}$

Bernstein components

$P=M U$: parabolic subgroup of G with Levi factor M
$I_{P}^{G}: \operatorname{Rep}(M) \rightarrow \operatorname{Rep}(P) \rightarrow \operatorname{Rep}(G):$ normalized parabolic induction

Definition

For $\pi \in \operatorname{Irr}(G)$:

- π is supercuspidal if it does not occur in $I_{P}^{G}(\sigma)$ for any proper parabolic subgroup P of G and any $\sigma \in \operatorname{Irr}(M)$
- Supercuspidal support $\operatorname{Sc}(\pi)$: a pair (M, σ) with $\sigma \in \operatorname{Irr}(M)$, such that π is a constituent of $I_{P}^{G}(\sigma)$ and M is minimal for this property

```
Xnr}(M): group of unramified characters M ->\mathbb{C
O}\subset\operatorname{Irr}(M): an X Xr (M)-orbit of supercuspidal irrep
s}=[M,\mathcal{O}]:G\mathrm{ -association class of (M,O)
Definition
Irr(G)
Rep(G)
```


Bernstein components

$P=M U$: parabolic subgroup of G with Levi factor M
$I_{P}^{G}: \operatorname{Rep}(M) \rightarrow \operatorname{Rep}(P) \rightarrow \operatorname{Rep}(G):$ normalized parabolic induction

Definition

For $\pi \in \operatorname{Irr}(G)$:

- π is supercuspidal if it does not occur in $I_{P}^{G}(\sigma)$ for any proper parabolic subgroup P of G and any $\sigma \in \operatorname{Irr}(M)$
- Supercuspidal support $\operatorname{Sc}(\pi)$: a pair (M, σ) with $\sigma \in \operatorname{Irr}(M)$, such that π is a constituent of $I_{P}^{G}(\sigma)$ and M is minimal for this property
$X_{\mathrm{nr}}(M)$: group of unramified characters $M \rightarrow \mathbb{C}^{\times}$
$\mathcal{O} \subset \operatorname{Irr}(M)$: an $X_{\mathrm{nr}}(M)$-orbit of supercuspidal irreps
$\mathfrak{s}=[M, \mathcal{O}]: G$-association class of (M, \mathcal{O})
Definition
$\operatorname{Irr}(G)^{\mathfrak{s}}=\{\pi \in \operatorname{Irr}(G): \operatorname{Sc}(\pi) \in[M, \mathcal{O}]\}$
$\operatorname{Rep}(G)^{\mathfrak{s}}=\left\{\pi \in \operatorname{Rep}(G):\right.$ all irreducible subquotients of π lie in $\left.\operatorname{Irr}(G)^{\mathfrak{s}}\right\}$

Bernstein components

$P=M U$: parabolic subgroup of G with Levi factor M
$I_{P}^{G}: \operatorname{Rep}(M) \rightarrow \operatorname{Rep}(P) \rightarrow \operatorname{Rep}(G):$ normalized parabolic induction

Definition

For $\pi \in \operatorname{Irr}(G)$:

- π is supercuspidal if it does not occur in $I_{P}^{G}(\sigma)$ for any proper parabolic subgroup P of G and any $\sigma \in \operatorname{Irr}(M)$
- Supercuspidal support $\operatorname{Sc}(\pi)$: a pair (M, σ) with $\sigma \in \operatorname{Irr}(M)$, such that π is a constituent of $I_{P}^{G}(\sigma)$ and M is minimal for this property
$X_{\mathrm{nr}}(M)$: group of unramified characters $M \rightarrow \mathbb{C}^{\times}$
$\mathcal{O} \subset \operatorname{Irr}(M)$: an $X_{\mathrm{nr}}(M)$-orbit of supercuspidal irreps
$\mathfrak{s}=[M, \mathcal{O}]: G$-association class of (M, \mathcal{O})

Definition

$\operatorname{Irr}(G)^{\mathfrak{s}}=\{\pi \in \operatorname{Irr}(G): \operatorname{Sc}(\pi) \in[M, \mathcal{O}]\}$
$\operatorname{Rep}(G)^{\mathfrak{s}}=\left\{\pi \in \operatorname{Rep}(G)\right.$: all irreducible subquotients of π lie $\left.\operatorname{in} \operatorname{Irr}(G)^{\mathfrak{s}}\right\}$

Iwahori-spherical component

I: an Iwahori subgroup of G

$$
\operatorname{Rep}(G)^{\prime}=\left\{(\pi, V) \in \operatorname{Rep}(G): V \text { is generated by } V^{\prime}\right\}
$$

The foremost example of a Bernstein component, for $\mathfrak{s}=\left[M, X_{\mathrm{nr}}(M)\right]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris)
$\mathcal{H}(G, I):=C_{c}(I \backslash G / I)$ with the convolution product

- $\operatorname{Rep}(G)^{\prime}$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G, I))$
- $\mathcal{H}(G, I)$ is isomorphic with an affine Hecke algebra

When G is F-split, $M=T$ and these affine Hecke algebras are understood very well from Kazhdan-Lusztig

Iwahori-spherical component

I: an Iwahori subgroup of G

$$
\operatorname{Rep}(G)^{\prime}=\left\{(\pi, V) \in \operatorname{Rep}(G): V \text { is generated by } V^{\prime}\right\}
$$

The foremost example of a Bernstein component, for $\mathfrak{s}=\left[M, X_{\mathrm{nr}}(M)\right]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris) $\mathcal{H}(G, I):=C_{c}(I \backslash G / I)$ with the convolution product

- $\operatorname{Rep}(G)^{\prime}$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G, I))$
- $\mathcal{H}(G, I)$ is isomorphic with an affine Hecke algebra

When G is F-split, $M=T$ and these affine Hecke algebras are understood very well from Kazhdan-Lusztig

Iwahori-spherical component

I: an Iwahori subgroup of G

$$
\operatorname{Rep}(G)^{\prime}=\left\{(\pi, V) \in \operatorname{Rep}(G): V \text { is generated by } V^{\prime}\right\}
$$

The foremost example of a Bernstein component, for $\mathfrak{s}=\left[M, X_{\mathrm{nr}}(M)\right]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris)
$\mathcal{H}(G, I):=C_{c}(I \backslash G / I)$ with the convolution product

- $\operatorname{Rep}(G)^{\prime}$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G, I))$
- $\mathcal{H}(G, I)$ is isomorphic with an affine Hecke algebra

When G is F-split, $M=T$ and these affine Hecke algebras are understood very well from Kazhdan-Lusztig

Iwahori-spherical component

I: an Iwahori subgroup of G

$$
\operatorname{Rep}(G)^{\prime}=\left\{(\pi, V) \in \operatorname{Rep}(G): V \text { is generated by } V^{\prime}\right\}
$$

The foremost example of a Bernstein component, for $\mathfrak{s}=\left[M, X_{\mathrm{nr}}(M)\right]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris)
$\mathcal{H}(G, I):=C_{c}(I \backslash G / I)$ with the convolution product

- $\operatorname{Rep}(G)^{\prime}$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G, I))$
- $\mathcal{H}(G, I)$ is isomorphic with an affine Hecke algebra

When G is F-split, $M=T$ and these affine Hecke algebras are understood very well from Kazhdan-Lusztig

Centre of a Bernstein component

$N_{G}(M)$ acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m)=\sigma\left(g^{-1} m g\right)$

$$
W(M, \mathcal{O})=\left\{g \in N_{G}(M): g \text { stabilizes } \mathcal{O}\right\} / M
$$

$\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus \mathcal{O}
Theorem (Bernstein, 1984)
The centre of $\operatorname{Rep}(G)^{\mathfrak{s}}$ is $\mathbb{C}[\mathcal{O}]^{W(M, \mathcal{O})}$
$\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]:=\mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M, \mathcal{O})]$ with multiplication from $W(M, \mathcal{O})$-action on \mathcal{O} :

$$
(f \otimes w)\left(f^{\prime} \otimes w^{\prime}\right)=f w\left(f^{\prime}\right) \otimes w w^{\prime}
$$

Main result (first rough version)
$\operatorname{Rep}(G)^{5}$ looks like $\operatorname{Mod}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})])$

Centre of a Bernstein component

$N_{G}(M)$ acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m)=\sigma\left(g^{-1} m g\right)$

$$
W(M, \mathcal{O})=\left\{g \in N_{G}(M): g \text { stabilizes } \mathcal{O}\right\} / M
$$

$\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus \mathcal{O}
Theorem (Bernstein, 1984)
The centre of $\operatorname{Rep}(G)^{\mathfrak{s}}$ is $\mathbb{C}[\mathcal{O}]^{W(M, \mathcal{O})}$
$\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]:=\mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M, \mathcal{O})]$ with multiplication from $W(M, \mathcal{O})$-action on \mathcal{O} :

$$
(f \otimes w)\left(f^{\prime} \otimes w^{\prime}\right)=f w\left(f^{\prime}\right) \otimes w w^{\prime}
$$

Main result (first rough version)
$\operatorname{Rep}(G)^{\mathfrak{s}}$ looks like $\operatorname{Mod}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})])$

Centre of a Bernstein component

$N_{G}(M)$ acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m)=\sigma\left(g^{-1} m g\right)$

$$
W(M, \mathcal{O})=\left\{g \in N_{G}(M): g \text { stabilizes } \mathcal{O}\right\} / M
$$

$\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus \mathcal{O}
Theorem (Bernstein, 1984)
The centre of $\operatorname{Rep}(G)^{5}$ is $\mathbb{C}[\mathcal{O}]^{W(M, \mathcal{O})}$
$\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]:=\mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M, \mathcal{O})]$ with multiplication from $W(M, \mathcal{O})$-action on \mathcal{O} :

$$
(f \otimes w)\left(f^{\prime} \otimes w^{\prime}\right)=f w\left(f^{\prime}\right) \otimes w w^{\prime}
$$

Main result (first rough version)

$\operatorname{Rep}(G)^{\mathfrak{s}}$ looks like $\operatorname{Mod}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})])$

Centre of a Bernstein component

$N_{G}(M)$ acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m)=\sigma\left(g^{-1} m g\right)$

$$
W(M, \mathcal{O})=\left\{g \in N_{G}(M): g \text { stabilizes } \mathcal{O}\right\} / M
$$

$\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus \mathcal{O}
Theorem (Bernstein, 1984)
The centre of $\operatorname{Rep}(G)^{\mathfrak{s}}$ is $\mathbb{C}[\mathcal{O}]^{W(M, \mathcal{O})}$
$\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]:=\mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M, \mathcal{O})]$ with multiplication from $W(M, \mathcal{O})$-action on \mathcal{O} :

$$
(f \otimes w)\left(f^{\prime} \otimes w^{\prime}\right)=f w\left(f^{\prime}\right) \otimes w w^{\prime}
$$

Main result (first rough version)
$\operatorname{Rep}(G)^{\mathfrak{s}}$ looks like $\operatorname{Mod}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})])$

Approach with progenerators

Π : progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$
so $\Pi \in \operatorname{Rep}(G)^{5}$ is finitely generated, projective and $\operatorname{Hom}_{G}(\Pi, \rho) \neq 0$ for every $\rho \in \operatorname{Rep}(G)^{\mathfrak{s}} \backslash\{0\}$

Lemma (from category theory)

is an equivalence of categories

```
Setup of talk
Investigate the structure and the representation theory of End }\mp@subsup{E}{G}{}(\Pi)\mathrm{ ,
for a suitable progenerator \Pi of Rep(G)s
Draw consequences for Rep(G)
```


Approach with progenerators

П: progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$
so $\Pi \in \operatorname{Rep}(G)^{5}$ is finitely generated, projective and $\operatorname{Hom}_{G}(\Pi, \rho) \neq 0$ for every $\rho \in \operatorname{Rep}(G)^{\mathfrak{s}} \backslash\{0\}$

Lemma (from category theory)

$\operatorname{Rep}(G)^{5}$	\longrightarrow	$\operatorname{End}_{G}(\Pi)-\operatorname{Mod}$
ρ	\mapsto	$\operatorname{Hom}_{G}(\Pi, \rho)$
$V \otimes_{\operatorname{End}_{G}(\Pi)} \Pi$	\longmapsto	V

is an equivalence of categories

```
Setup of talk
Investigate the structure and the representation theory of End G}(\Pi)\mathrm{ ,
for a suitable progenerator \Pi of Rep(G)s
Draw consequences for Rep(G)s
```


Approach with progenerators

Π : progenerator of $\operatorname{Rep}(G)^{5}$
so $\Pi \in \operatorname{Rep}(G)^{5}$ is finitely generated, projective and $\operatorname{Hom}_{G}(\Pi, \rho) \neq 0$ for every $\rho \in \operatorname{Rep}(G)^{\mathfrak{s}} \backslash\{0\}$

Lemma (from category theory)

$\operatorname{Rep}(G)^{s}$	\longrightarrow	$\operatorname{End}_{G}(\Pi)-\operatorname{Mod}$
ρ	\mapsto	$\operatorname{Hom}_{G}(\Pi, \rho)$
$V \otimes_{\operatorname{End}_{G}(\Pi)} \Pi$	\longleftrightarrow	V

is an equivalence of categories

Setup of talk

Investigate the structure and the representation theory of $\operatorname{End}_{G}(\Pi)$, for a suitable progenerator Π of $\operatorname{Rep}(G)^{\mathfrak{s}}$
Draw consequences for $\operatorname{Rep}(G)^{\mathfrak{s}}$

Comparison with types

$J \subset G$ compact open subgroup, $\quad \lambda \in \operatorname{Irr}(J)$
Suppose: (J, λ) is a \mathfrak{s}-type, so
$\operatorname{Rep}(G)^{5}=\{\pi \in \operatorname{Rep}(G): \pi$ is generated by its λ-isotypical component $\}$
Bushnell-Kutzko: $\operatorname{Rep}(G)^{5}$ is equivalent with $\mathcal{H}(G, J, \lambda)$-Mod

Consequences

- $\mathcal{H}(G, J, \lambda)$ and $\operatorname{End}_{G}(\Pi)$ are Morita equivalent
- In many cases $\operatorname{End}_{G}(\Pi)$ is Morita equivalent with an affine Hecke algebra

Problems:

- It is not known whether every Bernstein component admits a type
- Even if you have (J, λ), it can be difficult to analyse $\mathcal{H}(G, J, \lambda)$

Comparison with types

$J \subset G$ compact open subgroup, $\quad \lambda \in \operatorname{Irr}(J)$
Suppose: (J, λ) is a \mathfrak{s}-type, so
$\operatorname{Rep}(G)^{\mathfrak{s}}=\{\pi \in \operatorname{Rep}(G): \pi$ is generated by its λ-isotypical component $\}$
Bushnell-Kutzko: $\operatorname{Rep}(G)^{\mathfrak{s}}$ is equivalent with $\mathcal{H}(G, J, \lambda)$-Mod

Consequences

- $\mathcal{H}(G, J, \lambda)$ and $\operatorname{End}_{G}(\Pi)$ are Morita equivalent
- In many cases $\operatorname{End}_{G}(\Pi)$ is Morita equivalent with an affine Hecke algebra

Problems:

- It is not known whether every Bernstein component admits a type
- Even if you have (J, λ), it can be difficult to analyse $\mathcal{H}(G, J, \lambda)$

Comparison with types

$J \subset G$ compact open subgroup, $\quad \lambda \in \operatorname{Irr}(J)$
Suppose: (J, λ) is a \mathfrak{s}-type, so
$\operatorname{Rep}(G)^{\mathfrak{s}}=\{\pi \in \operatorname{Rep}(G): \pi$ is generated by its λ-isotypical component $\}$
Bushnell-Kutzko: $\operatorname{Rep}(G)^{\mathfrak{s}}$ is equivalent with $\mathcal{H}(G, J, \lambda)$-Mod

Consequences

- $\mathcal{H}(G, J, \lambda)$ and $\operatorname{End}_{G}(\Pi)$ are Morita equivalent
- In many cases $\operatorname{End}_{G}(\Pi)$ is Morita equivalent with an affine Hecke algebra

Problems:

- It is not known whether every Bernstein component admits a type
- Even if you have (J, λ), it can be difficult to analyse $\mathcal{H}(G, J, \lambda)$

II. The structure of supercuspidal Bernstein components

based on work of Roche

Underlying tori

$$
\begin{aligned}
& \sigma \in \operatorname{Irr}(G) \text { supercuspidal } \\
& \mathcal{O}=\left\{\sigma \otimes \chi: \chi \in X_{\mathrm{nr}}(G)\right\} \\
& \text { Covering } X_{\mathrm{nr}}(G) \rightarrow \mathcal{O}: \chi \mapsto \sigma \otimes \chi
\end{aligned}
$$

Example: $G L_{2}(F)$

χ_{-}: quadratic unramified character of $G L_{2}(F)$
It is possible that $\sigma \otimes \chi_{-} \cong \sigma$,
see the book of Bushnell-Henniart
Then $\mathbb{C}^{\times} \cong X_{\mathrm{nr}}(G) \rightarrow \mathcal{O}$ is a degree two covering

```
\(X_{\mathrm{nr}}(G, \sigma):=\left\{\chi \in X_{\mathrm{nr}}(G): \sigma \otimes \chi \cong \sigma\right\}\), a finite group
\(X_{\mathrm{nr}}(G) / X_{\mathrm{nr}}(G, \sigma) \rightarrow \mathcal{O}\) is bijective, this makes \(\mathcal{O}\) a complex algebraic
torus (as variety)
```


Underlying tori

$\sigma \in \operatorname{Irr}(G)$ supercuspidal
$\mathcal{O}=\left\{\sigma \otimes \chi: \chi \in X_{\mathrm{nr}}(G)\right\}$
Covering $X_{\mathrm{nr}}(G) \rightarrow \mathcal{O}: \chi \mapsto \sigma \otimes \chi$

Example: $G L_{2}(F)$
χ_{-}: quadratic unramified character of $G L_{2}(F)$
It is possible that $\sigma \otimes \chi_{-} \cong \sigma$,
see the book of Bushnell-Henniart
Then $\mathbb{C}^{\times} \cong X_{\mathrm{nr}}(G) \rightarrow \mathcal{O}$ is a degree two covering

```
Xnr}(G,\sigma):={\chi\in\mp@subsup{X}{\textrm{nr}}{(G):\sigma\otimes\chi\cong\sigma}, a finite group
Xnr}(G)/\mp@subsup{X}{\textrm{nr}}{}(G,\sigma)->\mathcal{O}\mathrm{ is bijective, this makes }\mathcal{O}\mathrm{ a complex algebraic
torus (as variety)
```


Underlying tori

$\sigma \in \operatorname{Irr}(G)$ supercuspidal
$\mathcal{O}=\left\{\sigma \otimes \chi: \chi \in X_{\mathrm{nr}}(G)\right\}$
Covering $X_{\mathrm{nr}}(G) \rightarrow \mathcal{O}: \chi \mapsto \sigma \otimes \chi$

Example: $G L_{2}(F)$
χ_{-}: quadratic unramified character of $G L_{2}(F)$
It is possible that $\sigma \otimes \chi_{-} \cong \sigma$,
see the book of Bushnell-Henniart
Then $\mathbb{C}^{\times} \cong X_{\mathrm{nr}}(G) \rightarrow \mathcal{O}$ is a degree two covering
$X_{\mathrm{nr}}(G, \sigma):=\left\{\chi \in X_{\mathrm{nr}}(G): \sigma \otimes \chi \cong \sigma\right\}$, a finite group $X_{\mathrm{nr}}(G) / X_{\mathrm{nr}}(G, \sigma) \rightarrow \mathcal{O}$ is bijective, this makes \mathcal{O} a complex algebraic torus (as variety)

A progenerator

G^{1} : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^{1}}^{G}(\operatorname{triv}, \mathbb{C})=\mathbb{C}\left[G / G^{1}\right] \cong \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal
$\operatorname{ind}_{G^{1}}^{G}(\sigma)=E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$
is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s}=[G, \mathcal{O}]=\left[G, X_{\mathrm{nr}}(G) \sigma\right]$

Some endomorphisms of $E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$

- $\mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \subset \operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$, by multiplication operators
in combination with translation by χ on $X_{\mathrm{nr}}(G)$ that gives a
\square

A progenerator

G^{1} : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^{1}}^{G}(\operatorname{triv}, \mathbb{C})=\mathbb{C}\left[G / G^{1}\right] \cong \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal
$\operatorname{ind}_{G^{1}}^{G}(\sigma)=E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$
is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s}=[G, \mathcal{O}]=\left[G, X_{\mathrm{nr}}(G) \sigma\right]$

Some endomorphisms of $E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$

- $\mathbb{C}\left[X_{n r}(G)\right] \subset \operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{n r}(G)\right]\right)$, by multiplication operators
in combination with translation by χ on $X_{\mathrm{nr}}(G)$ that gives a

A progenerator

G^{1} : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^{1}}^{G}(\operatorname{triv}, \mathbb{C})=\mathbb{C}\left[G / G^{1}\right] \cong \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal
$\operatorname{ind}_{G^{1}}^{G}(\sigma)=E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$
is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s}=[G, \mathcal{O}]=\left[G, X_{\mathrm{nr}}(G) \sigma\right]$

Some endomorphisms of $E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$

- $\mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \subset \operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$, by multiplication operators
- for $\chi \in X_{\mathrm{nr}}(G, \sigma): \sigma \cong \chi \otimes \sigma$
in combination with translation by χ on $X_{\mathrm{nr}}(G)$ that gives a
$\phi_{\chi} \in \operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$

A progenerator

G^{1} : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^{1}}^{G}(\operatorname{triv}, \mathbb{C})=\mathbb{C}\left[G / G^{1}\right] \cong \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal
$\operatorname{ind}_{G^{1}}^{G}(\sigma)=E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$
is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s}=[G, \mathcal{O}]=\left[G, X_{\mathrm{nr}}(G) \sigma\right]$

Some endomorphisms of $E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]$

- $\mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \subset \operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$, by multiplication operators
- for $\chi \in X_{\mathrm{nr}}(G, \sigma): \sigma \cong \chi \otimes \sigma$
in combination with translation by χ on $X_{\mathrm{nr}}(G)$ that gives a $\phi_{\chi} \in \operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$

Structure of endomorphism algebra

For $\chi, \chi^{\prime} \in X_{\mathrm{nr}}(G, \sigma)$ there exists $\mathfrak{h}\left(\chi, \chi^{\prime}\right) \in \mathbb{C}^{\times}$such that

$$
\phi_{\chi} \circ \phi_{\chi^{\prime}}=\mathfrak{h}\left(\chi, \chi^{\prime}\right) \phi_{\chi \chi^{\prime}}
$$

This gives a twisted group algebra $\mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma), \mathfrak{t}\right]$ inside $\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$

Theorem (Roche)

End $_{G}\left(E \otimes \mathbb{C} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right) \cong \mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \rtimes \mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma), G\right]$
As vector space: $\mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \otimes \mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma), \measuredangle\right]$, with multiplication

$$
\left(f \otimes \phi_{\chi}\right)\left(f^{\prime} \otimes \phi_{\chi^{\prime}}\right)=f\left(f^{\prime} \circ m_{\chi}^{-1}\right) \otimes \mathfrak{h}\left(\chi, \chi^{\prime}\right) \phi_{\chi \chi^{\prime}}
$$

Properties, from $\operatorname{Rep}(G)^{5}$

- $\operatorname{Irr}\left(\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)\right) \longleftrightarrow X_{\mathrm{nr}}(G) / X_{\mathrm{nr}}(G, \sigma) \longleftrightarrow \mathcal{O}$
- $Z\left(\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)\right) \cong \mathbb{C}[\mathcal{O}]$

Structure of endomorphism algebra

For $\chi, \chi^{\prime} \in X_{\mathrm{nr}}(G, \sigma)$ there exists $\mathfrak{b}\left(\chi, \chi^{\prime}\right) \in \mathbb{C}^{\times}$such that

$$
\phi_{\chi} \circ \phi_{\chi^{\prime}}=\mathrm{b}\left(\chi, \chi^{\prime}\right) \phi_{\chi \chi^{\prime}}
$$

This gives a twisted group algebra $\mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma)\right.$, , $]$ inside $\operatorname{End}_{G}\left(E \otimes \mathbb{C} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$

Theorem (Roche)
$\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right) \cong \mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \rtimes \mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma)\right.$, , $]$
As vector space: $\mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \otimes \mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma)\right.$, t$]$, with multiplication

$$
\left(f \otimes \phi_{\chi}\right)\left(f^{\prime} \otimes \phi_{\chi^{\prime}}\right)=f\left(f^{\prime} \circ m_{\chi}^{-1}\right) \otimes \mathfrak{b}\left(\chi, \chi^{\prime}\right) \phi_{\chi \chi^{\prime}}
$$

Properties, from $\operatorname{Rep}(G)^{5}$

```
- \(\operatorname{Irr}\left(\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)\right) \longleftrightarrow X_{\mathrm{nr}}(G) / X_{\mathrm{nr}}(G, \sigma) \longleftrightarrow \mathcal{O}\)
- \(Z\left(\operatorname{End}_{G}\left(E \otimes \mathbb{C} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)\right) \cong \mathbb{C}[\mathcal{O}]\)
```


Structure of endomorphism algebra

For $\chi, \chi^{\prime} \in X_{\mathrm{nr}}(G, \sigma)$ there exists $\mathrm{h}\left(\chi, \chi^{\prime}\right) \in \mathbb{C}^{\times}$such that

$$
\phi_{\chi} \circ \phi_{\chi^{\prime}}=\mathrm{b}\left(\chi, \chi^{\prime}\right) \phi_{\chi \chi^{\prime}}
$$

This gives a twisted group algebra $\mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma)\right.$, , $]$ inside $\operatorname{End}_{G}\left(E \otimes \mathbb{C} \mathbb{C}\left[X_{\text {nr }}(G)\right]\right)$

Theorem (Roche)
$\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right) \cong \mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \rtimes \mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma)\right.$, , $]$
As vector space: $\mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \otimes \mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma)\right.$, t$]$, with multiplication

$$
\left(f \otimes \phi_{\chi}\right)\left(f^{\prime} \otimes \phi_{\chi^{\prime}}\right)=f\left(f^{\prime} \circ m_{\chi}^{-1}\right) \otimes \mathfrak{b}\left(\chi, \chi^{\prime}\right) \phi_{\chi \chi^{\prime}}
$$

Properties, from $\operatorname{Rep}(G)^{5}$

- $\operatorname{Irr}\left(\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)\right) \longleftrightarrow X_{\mathrm{nr}}(G) / X_{\mathrm{nr}}(G, \sigma) \longleftrightarrow \mathcal{O}$
- $Z\left(\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)\right) \cong \mathbb{C}[\mathcal{O}]$

Structure of $\operatorname{Rep}(G)^{5}$

Theorem (Roche)

$\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right) \cong \mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \rtimes \mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma), দ\right]$
$\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)-\operatorname{Mod}$
Lemma (Roche, Heiermann)
If $\operatorname{Res}_{G^{1}}^{G}(\sigma)$ is multiplicity-free or \square is trivial, then $\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$ is Morita equivalent with the commutative algebra $\mathbb{C}[\mathcal{O}] \cong \mathbb{C}\left[X_{\mathrm{nr}}(G) / X_{\mathrm{nr}}(G, \sigma)\right]$

Questions

Maybe $\operatorname{Res}_{G^{1}}^{G}(\sigma)$ is always multiplicity-free?
Maybe $\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$ is always Morita equivalent with $\mathbb{C}[\mathcal{O}]$?

Structure of $\operatorname{Rep}(G)^{5}$

Theorem (Roche)

$\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right) \cong \mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \rtimes \mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma), দ\right]$
$\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)-\operatorname{Mod}$

Lemma (Roche, Heiermann)

If $\operatorname{Res}_{G^{1}}(\sigma)$ is multiplicity-free or \square is trivial, then $\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$ is Morita equivalent with the commutative algebra $\mathbb{C}[\mathcal{O}] \cong \mathbb{C}\left[X_{\mathrm{nr}}(G) / X_{\mathrm{nr}}(G, \sigma)\right]$

Questions
Maybe $\operatorname{Res}{ }_{G^{1}}^{G}(\sigma)$ is always multiplicity-free?
Maybe $\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$ is always Morita equivalent with $\mathbb{C}[\mathcal{O}]$?

Structure of $\operatorname{Rep}(G)^{5}$

Theorem (Roche)

$\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right) \cong \mathbb{C}\left[X_{\mathrm{nr}}(G)\right] \rtimes \mathbb{C}\left[X_{\mathrm{nr}}(G, \sigma)\right.$, , $]$
$\operatorname{Rep}(G)^{5} \cong \operatorname{End}_{G}\left(E \otimes \mathbb{C} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)-\mathrm{Mod}$

Lemma (Roche, Heiermann)

If $\operatorname{Res}_{G^{1}}^{G}(\sigma)$ is multiplicity-free or \hbar is trivial, then $\operatorname{End}_{G}\left(E \otimes \mathbb{C} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$ is Morita equivalent with the commutative algebra $\mathbb{C}[\mathcal{O}] \cong \mathbb{C}\left[X_{\mathrm{nr}}(G) / X_{\mathrm{nr}}(G, \sigma)\right]$

Questions

Maybe $\operatorname{Res}_{G^{1}}^{G}(\sigma)$ is always multiplicity-free?
Maybe $\operatorname{End}_{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(G)\right]\right)$ is always Morita equivalent with $\mathbb{C}[\mathcal{O}]$?

III. Structure of non-supercuspidal Bernstein components

Motivated by work of Heiermann for classical p-adic groups

A progenerator

$P=M U$: parabolic subgroup of $G,(\sigma, E) \in \operatorname{Irr}(M)$ supercuspidal
$\mathcal{O}=X_{\mathrm{nr}}(M) \sigma, \quad \mathfrak{s}=[M, \mathcal{O}]$
Theorem (Bernstein)
$\Pi:=I_{P}^{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(M)\right]\right)$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$
In particular $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}(\Pi)$-Mod
This is deep, it relies on second adjointness
$\operatorname{Via} I_{P}^{G}, \mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$ embeds in $\operatorname{End}_{G}(\Pi)$
Lemma
$\rho \in \operatorname{Irr}(G)^{\mathfrak{s}}$. Suppose that the $\operatorname{End}_{G}(\Pi)$-module $\operatorname{Hom}_{G}(\Pi, \rho)$ has a
$\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weight χ.
Then ρ has supercuspidal support $(M, \sigma \otimes \chi)$.

A progenerator

$P=M U$: parabolic subgroup of $G,(\sigma, E) \in \operatorname{Irr}(M)$ supercuspidal
$\mathcal{O}=X_{\mathrm{nr}}(M) \sigma, \quad \mathfrak{s}=[M, \mathcal{O}]$
Theorem (Bernstein)
$\Pi:=I_{P}^{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(M)\right]\right)$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$
In particular $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}(\Pi)$-Mod
This is deep, it relies on second adjointness
Via $I_{P}^{G}, \mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$ embeds in $\operatorname{End}_{G}(\Pi)$
Lemma
$\rho \in \operatorname{Irr}(G)^{\mathfrak{s}}$. Suppose that the $\operatorname{End}_{G}(\Pi)$-module $\operatorname{Hom}_{G}(\Pi, \rho)$ has a
$\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weight χ.
Then ρ has supercuspidal support $(M, \sigma \otimes \chi)$.

A progenerator

$P=M U$: parabolic subgroup of $G,(\sigma, E) \in \operatorname{Irr}(M)$ supercuspidal
$\mathcal{O}=X_{\mathrm{nr}}(M) \sigma, \quad \mathfrak{s}=[M, \mathcal{O}]$
Theorem (Bernstein)
$\Pi:=I_{P}^{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(M)\right]\right)$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$
In particular $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}(\Pi)$-Mod
This is deep, it relies on second adjointness
$\operatorname{Via} I_{P}^{G}, \mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$ embeds in $\operatorname{End}_{G}(\Pi)$
Lemma
$\rho \in \operatorname{Irr}(G)^{5}$. Suppose that the $\operatorname{End}_{G}(\Pi)$-module $\operatorname{Hom}_{G}(\Pi, \rho)$ has a
$\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weight χ.
Then ρ has supercuspidal support $(M, \sigma \otimes \chi)$.

A progenerator

$P=M U$: parabolic subgroup of $G,(\sigma, E) \in \operatorname{Irr}(M)$ supercuspidal
$\mathcal{O}=X_{\mathrm{nr}}(M) \sigma, \quad \mathfrak{s}=[M, \mathcal{O}]$
Theorem (Bernstein)
$\Pi:=I_{P}^{G}\left(E \otimes_{\mathbb{C}} \mathbb{C}\left[X_{\mathrm{nr}}(M)\right]\right)$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$
In particular $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}(\Pi)$-Mod
This is deep, it relies on second adjointness
$\operatorname{Via} I_{P}^{G}, \mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$ embeds in $\operatorname{End}_{G}(\Pi)$

Lemma

$\rho \in \operatorname{Irr}(G)^{5}$. Suppose that the $\operatorname{End}_{G}(\Pi)$-module $\operatorname{Hom}_{G}(\Pi, \rho)$ has a $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weight χ.
Then ρ has supercuspidal support $(M, \sigma \otimes \chi)$.

Example: $S L_{2}(F)$

$$
\begin{aligned}
& M=T, \sigma=\operatorname{triv}, \mathcal{O}=X_{\mathrm{nr}}(T) \cong \mathbb{C}^{\times} \\
& W(G, T)=\left\{1, s_{\alpha}\right\}
\end{aligned}
$$

Harish-Chandra's intertwining operator

$$
I_{s_{\alpha}}(\chi): I_{P}^{G}(\chi) \rightarrow I_{P}^{G}\left(\chi^{-1}\right), \quad f \mapsto\left[g \mapsto \int_{U_{-\alpha}} f\left(u s_{\alpha} g\right) d u\right]
$$

rational as function of $\chi \in X_{\mathrm{nr}}(T)$

$$
\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}\left[X_{\mathrm{nr}}(T)\right]}{\otimes} \mathbb{C}\left(X_{\mathrm{nr}}(T)\right)=\mathbb{C}\left(X_{\mathrm{nr}}(T)\right) \rtimes \mathbb{C}\left[1, J_{S_{\alpha}}\right]
$$

where $J_{s_{\alpha}}$ comes from $I_{s_{\alpha}}$, acting as $\chi \mapsto \chi^{-1}$ on $X_{\mathrm{nr}}(T), J_{s_{\alpha}}^{2}=1$

Singularities of $J_{s_{\alpha}}$

at $\chi \in X_{\mathrm{nr}}(T)$ with $\chi\left(\alpha^{\vee}(\right.$ uniformizer of $\left.F)\right)=q_{F}^{ \pm 1}$
For these $\chi: I_{P}^{G}(\chi)$ is reducible

Example: $S L_{2}(F)$

$$
\begin{aligned}
& M=T, \sigma=\operatorname{triv}, \mathcal{O}=X_{\mathrm{nr}}(T) \cong \mathbb{C}^{\times} \\
& W(G, T)=\left\{1, s_{\alpha}\right\}
\end{aligned}
$$

Harish-Chandra's intertwining operator

$$
I_{s_{\alpha}}(\chi): I_{P}^{G}(\chi) \rightarrow I_{P}^{G}\left(\chi^{-1}\right), \quad f \mapsto\left[g \mapsto \int_{U_{-\alpha}} f\left(u s_{\alpha} g\right) \mathrm{d} u\right]
$$

rational as function of $\chi \in X_{\mathrm{nr}}(T)$

$$
\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}\left[X_{\mathrm{nr}}(T)\right]}{\otimes} \mathbb{C}\left(X_{\mathrm{nr}}(T)\right)=\mathbb{C}\left(X_{\mathrm{nr}}(T)\right) \rtimes \mathbb{C}\left[1, J_{S_{\alpha}}\right]
$$

where $J_{s_{\alpha}}$ comes from $I_{s_{\alpha}}$, acting as $\chi \mapsto \chi^{-1}$ on $X_{\mathrm{nr}}(T), J_{s_{\alpha}}^{2}=1$

Singularities of $J_{s_{\alpha}}$

at $\chi \in X_{\mathrm{nr}}(T)$ with $\chi\left(\alpha^{\vee}(\right.$ uniformizer of $\left.F)\right)=q_{F}^{ \pm 1}$
For these $\chi: I_{P}^{G}(\chi)$ is reducible

Example: $S L_{2}(F)$

$$
\begin{aligned}
& M=T, \sigma=\operatorname{triv}, \mathcal{O}=X_{\mathrm{nr}}(T) \cong \mathbb{C}^{\times} \\
& W(G, T)=\left\{1, s_{\alpha}\right\}
\end{aligned}
$$

Harish-Chandra's intertwining operator

$$
I_{s_{\alpha}}(\chi): I_{P}^{G}(\chi) \rightarrow I_{P}^{G}\left(\chi^{-1}\right), \quad f \mapsto\left[g \mapsto \int_{U_{-\alpha}} f\left(u s_{\alpha} g\right) \mathrm{d} u\right]
$$

rational as function of $\chi \in X_{\mathrm{nr}}(T)$
$\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}\left[X_{\mathrm{nr}}(T)\right]}{\otimes} \mathbb{C}\left(X_{\mathrm{nr}}(T)\right)=\mathbb{C}\left(X_{\mathrm{nr}}(T)\right) \rtimes \mathbb{C}\left[1, J_{s_{\alpha}}\right]$ where $J_{s_{\alpha}}$ comes from $I_{s_{\alpha}}$, acting as $\chi \mapsto \chi^{-1}$ on $X_{\mathrm{nr}}(T), J_{s_{\alpha}}^{2}=1$

Singularities of $J_{s_{\alpha}}$

at $\chi \in X_{\mathrm{nr}}(T)$ with $\chi\left(\alpha^{\vee}(\right.$ uniformizer of $\left.F)\right)=q_{F}^{ \pm 1}$
For these $\chi: I_{P}^{G}(\chi)$ is reducible

Example: $S L_{2}(F)$

$$
\begin{aligned}
& M=T, \sigma=\operatorname{triv}, \mathcal{O}=X_{\mathrm{nr}}(T) \cong \mathbb{C}^{\times} \\
& W(G, T)=\left\{1, s_{\alpha}\right\}
\end{aligned}
$$

Harish-Chandra's intertwining operator

$$
I_{s_{\alpha}}(\chi): I_{P}^{G}(\chi) \rightarrow I_{P}^{G}\left(\chi^{-1}\right), \quad f \mapsto\left[g \mapsto \int_{U_{-\alpha}} f\left(u s_{\alpha} g\right) \mathrm{d} u\right]
$$

rational as function of $\chi \in X_{\mathrm{nr}}(T)$
$\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}\left[X_{\mathrm{nr}}(T)\right]}{\otimes} \mathbb{C}\left(X_{\mathrm{nr}}(T)\right)=\mathbb{C}\left(X_{\mathrm{nr}}(T)\right) \rtimes \mathbb{C}\left[1, J_{s_{\alpha}}\right]$ where $J_{s_{\alpha}}$ comes from $I_{s_{\alpha}}$, acting as $\chi \mapsto \chi^{-1}$ on $X_{\mathrm{nr}}(T), J_{s_{\alpha}}^{2}=1$

Singularities of $J_{S_{\alpha}}$
at $\chi \in X_{\mathrm{nr}}(T)$ with $\chi\left(\alpha^{\vee}(\right.$ uniformizer of $\left.F)\right)=q_{F}^{ \pm 1}$
For these $\chi: I_{P}^{G}(\chi)$ is reducible

Finite groups related to (M, \mathcal{O}) and $\operatorname{End}_{G}(\Pi)$

- $X_{\mathrm{nr}}(M, \sigma)$, acting on $X_{\mathrm{nr}}(M)$
- $W(M, \mathcal{O})=\left\{g \in N_{G}(M): g\right.$ stabilizes $\left.\mathcal{O}\right\} / M$, acting on \mathcal{O} Every $w \in W(M, \mathcal{O})$ lifts to a $\mathfrak{w} \in \operatorname{Autalg.var.~}\left(X_{\mathrm{nr}}(M)\right)$

Lemma

There exists a group $W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) \subset$ Autalg.var. $\left(X_{\mathrm{nr}}(M)\right)$ with

$$
1 \rightarrow X_{\mathrm{nr}}(M, \sigma) \rightarrow W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) \rightarrow W(M, \mathcal{O}) \rightarrow 1
$$

Example

$G=G L_{6}(F), M=G L_{2}(F)^{3}, \sigma=\tau^{\boxtimes 3}$, then $X_{\operatorname{nr}}(M) \cong\left(\mathbb{C}^{\times}\right)^{3}$ and

$$
\begin{aligned}
& \text { either } W\left(M, \sigma, X_{\mathrm{nr}}(M)\right)=W(M, \mathcal{O}) \cong S_{3} \\
& \text { or } \quad W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{3} \rtimes S_{3}
\end{aligned}
$$

Finite groups related to (M, \mathcal{O}) and $\operatorname{End}_{G}(\Pi)$

- $X_{\mathrm{nr}}(M, \sigma)$, acting on $X_{\mathrm{nr}}(M)$
- $W(M, \mathcal{O})=\left\{g \in N_{G}(M): g\right.$ stabilizes $\left.\mathcal{O}\right\} / M, \quad$ acting on \mathcal{O} Every $w \in W(M, \mathcal{O})$ lifts to a $\mathfrak{w} \in \operatorname{Aut}_{\text {alg.var. }}\left(X_{\mathrm{nr}}(M)\right)$

Lemma

There exists a group $W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) \subset \operatorname{Aut}_{\text {alg.var. }}\left(X_{\mathrm{nr}}(M)\right)$ with

$$
1 \rightarrow X_{\mathrm{nr}}(M, \sigma) \rightarrow W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) \rightarrow W(M, \mathcal{O}) \rightarrow 1
$$

Example

$G=G L_{6}(F), M=G L_{2}(F)^{3}, \sigma=\tau^{\boxtimes 3}$, then $X_{\text {nr }}(M) \cong\left(\mathbb{C}^{\times}\right)^{3}$ and

$$
\begin{aligned}
& \text { either } W\left(M, \sigma, X_{\mathrm{nr}}(M)\right)=W(M, \mathcal{O}) \cong S_{3} \\
& \text { or } \quad W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{3} \rtimes S_{3}
\end{aligned}
$$

Finite groups related to (M, \mathcal{O}) and $\operatorname{End}_{G}(\Pi)$

- $X_{\mathrm{nr}}(M, \sigma)$, acting on $X_{\mathrm{nr}}(M)$
- $W(M, \mathcal{O})=\left\{g \in N_{G}(M): g\right.$ stabilizes $\left.\mathcal{O}\right\} / M$, acting on \mathcal{O} Every $w \in W(M, \mathcal{O})$ lifts to a $\mathfrak{w} \in A u t_{\text {alg.var. }}\left(X_{\mathrm{nr}}(M)\right)$

Lemma

There exists a group $W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) \subset$ Autalg.var. $\left(X_{\mathrm{nr}}(M)\right)$ with

$$
1 \rightarrow X_{\mathrm{nr}}(M, \sigma) \rightarrow W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) \rightarrow W(M, \mathcal{O}) \rightarrow 1
$$

Example

$G=G L_{6}(F), M=G L_{2}(F)^{3}, \sigma=\tau^{\boxtimes 3}$, then $X_{\mathrm{nr}}(M) \cong\left(\mathbb{C}^{\times}\right)^{3}$ and

$$
\begin{aligned}
& \text { either } W\left(M, \sigma, X_{\mathrm{nr}}(M)\right)=W(M, \mathcal{O}) \cong S_{3} \\
& \text { or } \quad W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{3} \rtimes S_{3}
\end{aligned}
$$

Structure of $\operatorname{End}_{G}(\Pi)$

$\mathbb{C}\left(X_{\mathrm{nr}}(M)\right)$: quotient field of $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$, rational functions on $X_{\mathrm{nr}}(M)$

Main result (precise but weak version)

There exist a 2-cocycle \hbar of $W\left(M, \sigma, X_{n r}(M)\right)$ and an algebra isomorphism
$\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]}{\otimes} \mathbb{C}\left(X_{\mathrm{nr}}(M)\right) \cong \mathbb{C}\left(X_{\mathrm{nr}}(M)\right) \rtimes \mathbb{C}\left[W\left(M, \sigma, X_{\mathrm{nr}}(M)\right), দ\right]$

In some examples \ddagger is nontrivial
This result only says something about $\operatorname{Rep}(G)^{\mathfrak{s}} \cong \operatorname{End}_{G}(\Pi)-M o d$ outside the tricky points of the cuspidal support variety \mathcal{O}

Structure of $\operatorname{End}_{G}(\Pi)$

$\mathbb{C}\left(X_{\mathrm{nr}}(M)\right)$: quotient field of $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$, rational functions on $X_{\mathrm{nr}}(M)$
Main result (precise but weak version)
There exist a 2-cocycle \ddagger of $W\left(M, \sigma, X_{\mathrm{nr}}(M)\right)$ and an algebra isomorphism
$\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]}{\otimes} \mathbb{C}\left(X_{\mathrm{nr}}(M)\right) \cong \mathbb{C}\left(X_{\mathrm{nr}}(M)\right) \rtimes \mathbb{C}\left[W\left(M, \sigma, X_{\mathrm{nr}}(M)\right)\right.$, t]

In some examples \bigsqcup is nontrivial
This result only says something about $\operatorname{Rep}(G)^{s} \cong \operatorname{End}_{G}(\Pi)-\operatorname{Mod}$ outside the tricky points of the cuspidal support variety \mathcal{O}

Structure of $\operatorname{End}_{G}(\Pi)$

$\mathbb{C}\left(X_{\mathrm{nr}}(M)\right)$: quotient field of $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$, rational functions on $X_{\mathrm{nr}}(M)$
Main result (precise but weak version)
There exist a 2-cocycle \ddagger of $W\left(M, \sigma, X_{\mathrm{nr}}(M)\right)$ and an algebra isomorphism

$$
\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]}{\otimes} \mathbb{C}\left(X_{\mathrm{nr}}(M)\right) \cong \mathbb{C}\left(X_{\mathrm{nr}}(M)\right) \rtimes \mathbb{C}\left[W\left(M, \sigma, X_{\mathrm{nr}}(M)\right), \text {, }\right]
$$

In some examples \bigsqcup is nontrivial
This result only says something about $\operatorname{Rep}(G)^{5} \cong \operatorname{End}_{G}(\Pi)$-Mod outside the tricky points of the cuspidal support variety \mathcal{O}

IV. Links with affine Hecke algebras

Sketch of an extended affine Hecke algebra

- Start with $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$
- $W(M, \mathcal{O})$ contains a normal reflection subgroup $W\left(\Sigma_{\mathcal{O}}\right)$
- Twist the multiplication in $\mathbb{C}[W(M, \mathcal{O})]$ by a 2-cocycle \tilde{E} of $W(M, \mathcal{O}) / W\left(\Sigma_{\mathcal{O}}\right)$
- For every simple reflection $s_{\alpha} \in W\left(\Sigma_{\mathcal{O}}\right)$, replace the relation

$$
\begin{aligned}
& \left(s_{\alpha}+1\right)\left(s_{\alpha}-1\right)=0 \text { in } \mathbb{C}[W(M, \mathcal{O})] \text { by } \\
& \quad\left(T_{s_{\alpha}}+1\right)\left(T_{s_{\alpha}}-q_{F}^{\lambda(\alpha)}\right)=0 \quad \text { for some } \lambda(\alpha) \in \mathbb{R}_{\geq 0}
\end{aligned}
$$

- Adjust the multiplication relations between $\mathbb{C}[\mathcal{O}]$ and the $T_{s_{\alpha}}$
- This gives an algebra $\tilde{\mathcal{H}}(\mathcal{O})$ with the same underlying vector space $\mathbb{C}[\mathcal{O}] \otimes \mathbb{C}[W(M, \mathcal{O})], \quad \mathbb{C}[\mathcal{O}]$ is still a subalgebra

Sketch of an extended affine Hecke algebra

- Start with $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$
- $W(M, \mathcal{O})$ contains a normal reflection subgroup $W\left(\Sigma_{\mathcal{O}}\right)$
- Twist the multiplication in $\mathbb{C}[W(M, \mathcal{O})]$ by a 2-cocycle \tilde{G} of $W(M, \mathcal{O}) / W\left(\Sigma_{\mathcal{O}}\right)$
- For every simple reflection $s_{\alpha} \in W\left(\Sigma_{\mathcal{O}}\right)$, replace the relation $\left(s_{\alpha}+1\right)\left(s_{\alpha}-1\right)=0$ in $\mathbb{C}[W(M, \mathcal{O})]$ by

$$
\left(T_{s_{\alpha}}+1\right)\left(T_{s_{\alpha}}-q_{F}^{\lambda(\alpha)}\right)=0 \quad \text { for some } \lambda(\alpha) \in \mathbb{R}_{\geq 0}
$$

- Adjust the multiplication relations between $\mathbb{C}[\mathcal{O}]$ and the $T_{s_{\alpha}}$
- This gives an algebra $\tilde{\mathcal{H}}(\mathcal{O})$ with the same underlying vector space $\mathbb{C}[\mathcal{O}] \otimes \mathbb{C}[W(M, \mathcal{O})], \quad \mathbb{C}[\mathcal{O}]$ is still a subalgebra

Sketch of an extended affine Hecke algebra

- Start with $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$
- $W(M, \mathcal{O})$ contains a normal reflection subgroup $W\left(\Sigma_{\mathcal{O}}\right)$
- Twist the multiplication in $\mathbb{C}[W(M, \mathcal{O})]$ by a 2-cocycle $\tilde{\square}$ of $W(M, \mathcal{O}) / W\left(\Sigma_{\mathcal{O}}\right)$
- For every simple reflection $s_{\alpha} \in W\left(\Sigma_{\mathcal{O}}\right)$, replace the relation

$$
\begin{aligned}
& \left(s_{\alpha}+1\right)\left(s_{\alpha}-1\right)=0 \text { in } \mathbb{C}[W(M, \mathcal{O})] \text { by } \\
& \quad\left(T_{s_{\alpha}}+1\right)\left(T_{s_{\alpha}}-q_{F}^{\lambda(\alpha)}\right)=0 \quad \text { for some } \lambda(\alpha) \in \mathbb{R}_{\geq 0}
\end{aligned}
$$

- Adjust the multiplication relations between $\mathbb{C}[\mathcal{O}]$ and the $T_{s_{\alpha}}$
- This gives an algebra $\tilde{\mathcal{H}}(\mathcal{O})$ with the same underlying vector space $\mathbb{C}[\mathcal{O}] \otimes \mathbb{C}[W(M, \mathcal{O})], \quad \mathbb{C}[\mathcal{O}]$ is still a subalgebra

Localization

We analyse the category of those $\operatorname{End}_{G}(\Pi)$-modules, all whose $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weights lie in a specified subset $U \subset X_{\mathrm{nr}}(M)$
These are related to $\tilde{\mathcal{H}}(\mathcal{O})$-modules with $\mathbb{C}[\mathcal{O}]$-weights in $\{\sigma \otimes \chi: \chi \in U\}$
Polar decomposition

$$
\begin{aligned}
X_{\mathrm{nr}}(M)=\operatorname{Hom}\left(M / M^{1}, \mathbb{C}^{\times}\right) & =\operatorname{Hom}\left(M / M^{1}, S^{1}\right) \times \operatorname{Hom}\left(M / M^{1}, \mathbb{R}_{>0}\right) \\
& =\quad X_{\mathrm{unr}}(M) \times \quad X_{\mathrm{nr}}^{+}(M)
\end{aligned}
$$

Fix any $u \in \operatorname{Hom}\left(M / M^{1}, S^{1}\right)$ and define

$$
\begin{aligned}
& U=W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) u X_{\mathrm{nr}}^{+}(M) \\
& \tilde{U}=\text { image of } U \text { in } \mathcal{O}=W(M, \mathcal{O})\left\{\sigma \otimes u \chi: \chi \in X_{\mathrm{nr}}^{+}(M)\right\}
\end{aligned}
$$

Localization

We analyse the category of those $\operatorname{End}_{G}(\Pi)$-modules, all whose $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weights lie in a specified subset $U \subset X_{\mathrm{nr}}(M)$
These are related to $\tilde{\mathcal{H}}(\mathcal{O})$-modules with $\mathbb{C}[\mathcal{O}]$-weights in $\{\sigma \otimes \chi: \chi \in U\}$
Polar decomposition

$$
\begin{aligned}
X_{\mathrm{nr}}(M)=\operatorname{Hom}\left(M / M^{1}, \mathbb{C}^{\times}\right) & =\operatorname{Hom}\left(M / M^{1}, S^{1}\right) \times \operatorname{Hom}\left(M / M^{1}, \mathbb{R}_{>0}\right) \\
& =\quad X_{\mathrm{unr}}(M) \times \quad X_{\mathrm{nr}}^{+}(M)
\end{aligned}
$$

Fix any $u \in \operatorname{Hom}\left(M / M^{1}, S^{1}\right)$ and define

$$
\begin{aligned}
& U=W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) u X_{\mathrm{nr}}^{+}(M) \\
& \tilde{U}=\text { image of } U \text { in } \mathcal{O}=W(M, \mathcal{O})\left\{\sigma \otimes u \chi: \chi \in X_{\mathrm{nr}}^{+}(M)\right\}
\end{aligned}
$$

Localization

We analyse the category of those $\operatorname{End}_{G}(\Pi)$-modules, all whose $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weights lie in a specified subset $U \subset X_{\mathrm{nr}}(M)$
These are related to $\tilde{\mathcal{H}}(\mathcal{O})$-modules with $\mathbb{C}[\mathcal{O}]$-weights in $\{\sigma \otimes \chi: \chi \in U\}$
Polar decomposition

$$
\begin{aligned}
X_{\mathrm{nr}}(M)=\operatorname{Hom}\left(M / M^{1}, \mathbb{C}^{\times}\right) & =\operatorname{Hom}\left(M / M^{1}, S^{1}\right) \times \operatorname{Hom}\left(M / M^{1}, \mathbb{R}_{>0}\right) \\
& =\quad X_{\mathrm{unr}}(M) \times \quad X_{\mathrm{nr}}^{+}(M)
\end{aligned}
$$

Fix any $u \in \operatorname{Hom}\left(M / M^{1}, S^{1}\right)$ and define

$$
\begin{aligned}
& U=W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) u X_{\mathrm{nr}}^{+}(M) \\
& \tilde{U}=\text { image of } U \text { in } \mathcal{O}=W(M, \mathcal{O})\left\{\sigma \otimes u \chi: \chi \in X_{\mathrm{nr}}^{+}(M)\right\}
\end{aligned}
$$

Main result

G : reductive p-adic group
$\mathcal{O}=\left\{\sigma \otimes \chi: \chi \in X_{\mathrm{nr}}(M)\right\}, \mathfrak{s}=[M, \mathcal{O}]$
Π : progenerator of Bernstein block $\operatorname{Rep}(G)^{\mathfrak{s}}$
$\tilde{\mathcal{H}}(\mathcal{O})$ constructed by modification of $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$ (with certain specific parameters $q_{F}^{\lambda(\alpha)}$)
$u \in \operatorname{Hom}\left(M / M^{1}, S^{1}\right), U=W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) u X_{\mathrm{nr}}^{+}(M)$
\tilde{U} : image of U in \mathcal{O}

Theorem
There are equivalences between the following categories

- $\left\{\pi \in \operatorname{Rep}_{\mathrm{ff}}(G)^{s}: \operatorname{Sc}(\pi) \subset(M, \tilde{U})\right\} \quad$ (fl : finite length)
- $\left\{V \in \operatorname{End}_{G}(\Pi)-\operatorname{Mod}_{\mathrm{fl}}\right.$: all $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weights of V in $\left.U\right\}$
- $\left\{\tilde{V} \in \tilde{\mathcal{H}}(\mathcal{O})-\operatorname{Mod}_{\mathrm{f}}\right.$: all $\mathbb{C}[\mathcal{O}]$-weights of \tilde{V} in $\left.\tilde{U}\right\}$

Main result

G : reductive p-adic group
$\mathcal{O}=\left\{\sigma \otimes \chi: \chi \in X_{\mathrm{nr}}(M)\right\}, \mathfrak{s}=[M, \mathcal{O}]$
Π : progenerator of Bernstein block $\operatorname{Rep}(G)^{\mathfrak{s}}$
$\tilde{\mathcal{H}}(\mathcal{O})$ constructed by modification of $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$ (with certain specific parameters $q_{F}^{\lambda(\alpha)}$)
$u \in \operatorname{Hom}\left(M / M^{1}, S^{1}\right), U=W\left(M, \sigma, X_{\mathrm{nr}}(M)\right) u X_{\mathrm{nr}}^{+}(M)$
\tilde{U} : image of U in \mathcal{O}

Theorem

There are equivalences between the following categories

- $\left\{\pi \in \operatorname{Rep}_{\mathrm{f}}(G)^{\mathfrak{s}}: \operatorname{Sc}(\pi) \subset(M, \tilde{U})\right\} \quad$ (fl : finite length)
- $\left\{V \in \operatorname{End}_{G}(\Pi)-\operatorname{Mod}_{f}\right.$: all $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weights of V in $\left.U\right\}$
- $\left\{\tilde{V} \in \tilde{\mathcal{H}}(\mathcal{O})-\operatorname{Mod}_{\mathrm{fl}}\right.$: all $\mathbb{C}[\mathcal{O}]$-weights of \tilde{V} in $\left.\tilde{U}\right\}$

Main result

Theorem

There are equivalences between the following categories

- $\left\{\pi \in \operatorname{Rep}_{f}(G)^{s}: \operatorname{Sc}(\pi) \subset \tilde{U}\right\} \quad$ (fl : finite length)
- $\left\{V \in \operatorname{End}_{G}(\Pi)-\operatorname{Mod}_{\mathrm{fl}}:\right.$ all $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weights of V in $\left.U\right\}$
- $\left\{\tilde{V} \in \tilde{\mathcal{H}}(\mathcal{O})-\operatorname{Mod}_{\mathrm{fl}}\right.$: all $\mathbb{C}[\mathcal{O}]$-weights of \tilde{V} in $\left.\tilde{U}\right\}$

Under a mild condition on the 2-cocycle $\tilde{\square}$ involved in $\tilde{\mathcal{H}}(\mathcal{O})$ (conjecturally always fulfilled):

Corollary
There is an equivalence of categories between

$$
\operatorname{Rep}_{\mathrm{fl}}(G)^{5} \quad \text { and } \quad \tilde{\mathcal{H}}(\mathcal{O})-\operatorname{Mod}_{\mathrm{fl}}
$$

Extras
The above equivalences of categories respect parabolic induction, temperedness and square-integrability of representations

Main result

Theorem

There are equivalences between the following categories

- $\left\{\pi \in \operatorname{Rep}_{f}(G)^{s}: \operatorname{Sc}(\pi) \subset \tilde{U}\right\} \quad$ (fl : finite length)
- $\left\{V \in \operatorname{End}_{G}(\Pi)-\operatorname{Mod}_{f}:\right.$ all $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weights of V in $\left.U\right\}$
- $\left\{\tilde{V} \in \tilde{\mathcal{H}}(\mathcal{O})-\operatorname{Mod}_{\mathrm{fl}}\right.$: all $\mathbb{C}[\mathcal{O}]$-weights of \tilde{V} in $\left.\tilde{U}\right\}$

Under a mild condition on the 2-cocycle $\tilde{\square}$ involved in $\tilde{\mathcal{H}}(\mathcal{O})$ (conjecturally always fulfilled):

Corollary

There is an equivalence of categories between

$$
\operatorname{Rep}_{f 1}(G)^{\mathfrak{s}} \quad \text { and } \quad \tilde{\mathcal{H}}(\mathcal{O})-\operatorname{Mod}_{f f}
$$

Extras

The above equivalences of categories respect parabolic induction, temperedness and square-integrability of representations

Main result

Theorem

There are equivalences between the following categories

- $\left\{\pi \in \operatorname{Rep}_{\mathrm{f}}(G)^{\mathfrak{s}}: \operatorname{Sc}(\pi) \subset \tilde{U}\right\} \quad$ (fl : finite length)
- $\left\{V \in \operatorname{End}_{G}(\Pi)-\operatorname{Mod}_{\mathrm{fl}}:\right.$ all $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$-weights of V in $\left.U\right\}$
- $\left\{\tilde{V} \in \tilde{\mathcal{H}}(\mathcal{O})-\operatorname{Mod}_{\mathrm{fl}}\right.$: all $\mathbb{C}[\mathcal{O}]$-weights of \tilde{V} in $\left.\tilde{U}\right\}$

Under a mild condition on the 2-cocycle \tilde{G} involved in $\tilde{\mathcal{H}}(\mathcal{O})$ (conjecturally always fulfilled):

Corollary

There is an equivalence of categories between

$$
\operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}} \text { and } \tilde{\mathcal{H}}(\mathcal{O})-\operatorname{Mod}_{f l}
$$

Extras

The above equivalences of categories respect parabolic induction, temperedness and square-integrability of representations

V. Classification of irreducible representations in $\operatorname{Rep}(G)^{5}$

Representations of affine Hecke algebras

- From the equivalence $\operatorname{Rep}_{f f}(G)^{\mathfrak{s}} \cong \tilde{\mathcal{H}}(\mathcal{O})-\operatorname{Mod}_{\mathrm{f}}$, $\operatorname{Irr}(G)^{5}$ can be determined in terms of affine Hecke algebras
- The irreps of an affine Hecke algebra are known in principle, but their classification is involved

Replacing q_{F} by 1 in affine Hecke algebras

- $q_{F}=1$-version of $\tilde{\mathcal{H}}(\mathcal{O}): \quad \mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{A}]$
- Its representation theory is easy, with Clifford theory

Representations of affine Hecke algebras

- From the equivalence $\operatorname{Rep}_{f(}(G)^{\mathfrak{s}} \cong \tilde{\mathcal{H}}(\mathcal{O})-\operatorname{Mod}_{\mathrm{f}}$, $\operatorname{Irr}(G)^{5}$ can be determined in terms of affine Hecke algebras
- The irreps of an affine Hecke algebra are known in principle, but their classification is involved

Replacing q_{F} by 1 in affine Hecke algebras

- $q_{F}=1$-version of $\tilde{\mathcal{H}}(\mathcal{O}): \quad \mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\text { un }}]$
- Its representation theory is easy, with Clifford theory

Classification of tempered irreps

Assume that $\sigma \otimes u \in \operatorname{Irr}(M)$ is supercuspidal and unitary/tempered

Theorem

There exist canonical bijections between the following sets

- $\left\{\pi \in \operatorname{Irr}(G)^{\mathfrak{s}}: \pi\right.$ tempered, $\left.\operatorname{Sc}(\pi) \in\left(M, \sigma \otimes u X_{\mathrm{nr}}^{+}(M)\right)\right\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})): \tilde{V}$ tempered, \tilde{V} has a $\mathbb{C}[\mathcal{O}]$-weight in $\left.\sigma \otimes u X_{\mathrm{nr}}^{+}(M)\right\}$
- $\{V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, O), \tilde{q}]): V$ tempered, with a $\mathbb{C}[\mathcal{O}]$-weight
- $\operatorname{Irr}\left(\mathbb{C}\left[W(M, \mathcal{O})_{\sigma \otimes u}, \tilde{t}\right]\right)$

```
W(M,\mathcal{O}\mp@subsup{)}{\sigma\otimesu}{}\mathrm{ embeds in W(M, },\mp@subsup{,}{~}{nr}(M))
\tilde{4}}\mp@subsup{W}{(M,O}{(M\otimesu
```


Classification of tempered irreps

Assume that $\sigma \otimes u \in \operatorname{Irr}(M)$ is supercuspidal and unitary/tempered
Theorem
There exist canonical bijections between the following sets

- $\left\{\pi \in \operatorname{Irr}(G)^{\mathfrak{s}}: \pi\right.$ tempered, $\left.\operatorname{Sc}(\pi) \in\left(M, \sigma \otimes u X_{\mathrm{nr}}^{+}(M)\right)\right\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})): \tilde{V}$ tempered, \tilde{V} has a $\mathbb{C}[\mathcal{O}]$-weight in $\left.\sigma \otimes u X_{\mathrm{nr}}^{+}(M)\right\}$
- $\{V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{t}]): V$ tempered, with a $\mathbb{C}[\mathcal{O}]$-weight $\sigma \otimes u\}$
- $\operatorname{Irr}\left(\mathbb{C}\left[W(M, \mathcal{O})_{\sigma \otimes u}, \tilde{q}\right]\right)$

```
W(M,O)
\tilde{b}}\mp@subsup{W}{(M,O)}{\sigma\otimesu
```


Classification of tempered irreps

Assume that $\sigma \otimes u \in \operatorname{Irr}(M)$ is supercuspidal and unitary/tempered

Theorem

There exist canonical bijections between the following sets

- $\left\{\pi \in \operatorname{Irr}(G)^{\mathfrak{s}}: \pi\right.$ tempered, $\left.\operatorname{Sc}(\pi) \in\left(M, \sigma \otimes u X_{\mathrm{nr}}^{+}(M)\right)\right\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})): \tilde{V}$ tempered, \tilde{V} has a $\mathbb{C}[\mathcal{O}]$-weight in $\left.\sigma \otimes u X_{\mathrm{nr}}^{+}(M)\right\}$
- $\{V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{t}]): V$ tempered, with a $\mathbb{C}[\mathcal{O}]$-weight $\sigma \otimes u\}$
- $\operatorname{Irr}\left(\mathbb{C}\left[W(M, \mathcal{O})_{\sigma \otimes u}, \tilde{t}\right]\right)$

```
W(M,O)
\tilde{b}}\mp@subsup{W}{(M,O)}{\sigma\otimesu
```


Classification of tempered irreps

Assume that $\sigma \otimes u \in \operatorname{Irr}(M)$ is supercuspidal and unitary/tempered

Theorem

There exist canonical bijections between the following sets

- $\left\{\pi \in \operatorname{Irr}(G)^{\mathfrak{s}}: \pi\right.$ tempered, $\left.\operatorname{Sc}(\pi) \in\left(M, \sigma \otimes u X_{\mathrm{nr}}^{+}(M)\right)\right\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})): \tilde{V}$ tempered, \tilde{V} has a $\mathbb{C}[\mathcal{O}]$-weight in $\left.\sigma \otimes u X_{\mathrm{nr}}^{+}(M)\right\}$
- $\{V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{t}]): V$ tempered, with a $\mathbb{C}[\mathcal{O}]$-weight $\sigma \otimes u\}$
- $\operatorname{Irr}\left(\mathbb{C}\left[W(M, \mathcal{O})_{\sigma \otimes u}, \tilde{t}\right]\right)$
$W(M, \mathcal{O})_{\sigma \otimes u}$ embeds in $W\left(M, \sigma, X_{\mathrm{nr}}(M)\right)$
$\left.\tilde{\square}\right|_{W(M, \mathcal{O})_{\sigma \otimes u}}$ comes from the 2-cocycle \ddagger of $W\left(M, \sigma, X_{\mathrm{nr}}(M)\right)$

Classification of irreducible representations

Theorem
There exist canonical bijections between the following sets

- $\operatorname{Irr}(G)^{5}$
- $\operatorname{Irr}\left(\mathbb{C}\left[X_{\mathrm{nr}}(M)\right] \rtimes \mathbb{C}\left[W\left(M, \sigma, X_{\mathrm{nr}}(M)\right), দ\right]\right)$
- $\operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{f}])$
- $\left\{\left(\sigma^{\prime}, \rho\right): \sigma^{\prime} \in \mathcal{O}, \rho \in \operatorname{Irr}\left(\mathbb{C}\left[W(M, \mathcal{O})_{\sigma^{\prime}}, \tilde{f}\right]\right)\right\} / W(M, \mathcal{O})$

The last item is also known as a twisted extended quotient

$$
(\mathcal{O} / / W(M, O))_{t}
$$

The bijection between that and $\operatorname{Irr}(G)^{5}$ was conjectured by ABPS

Classification of irreducible representations

Theorem

There exist canonical bijections between the following sets

- $\operatorname{Irr}(G)^{5}$
- $\left.\operatorname{Irr}\left(\mathbb{C}\left[X_{\mathrm{nr}}(M)\right] \rtimes \mathbb{C}\left[W\left(M, \sigma, X_{\mathrm{nr}}(M)\right), ~, ~\right]\right]\right)$
- $\operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{G}])$
- $\left\{\left(\sigma^{\prime}, \rho\right): \sigma^{\prime} \in \mathcal{O}, \rho \in \operatorname{Irr}\left(\mathbb{C}\left[W(M, \mathcal{O})_{\sigma^{\prime}}, \tilde{\tilde{G}}\right]\right)\right\} / W(M, \mathcal{O})$

The last item is also known as a twisted extended quotient

$$
(\mathcal{O} / / W(M, \mathcal{O}))_{\natural}
$$

The bijection between that and $\operatorname{Irr}(G)^{5}$ was conjectured by ABPS

Summary

For an arbitrary Bernstein block $\operatorname{Rep}(G)^{5}$ of a reductive p-adic group G :

- $\operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}}$ is equivalent with the category of finite length modules of an extended affine Hecke algebra $\tilde{\mathcal{H}}(\mathcal{O})$, whose $q_{F}=1$-form is $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{G}]$
- Upon tensoring with $\mathbb{C}\left(X_{\mathrm{nr}}(M)\right)$ over $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$, or upon taking irreducible representations, $\operatorname{Rep}(G)^{\mathfrak{s}}$ becomes equivalent with $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right] \rtimes \mathbb{C}\left[W\left(M, \sigma, X_{\mathrm{nr}}(M)\right), দ\right]-\operatorname{Mod}$

Questions / open problems

- Can one use the above to study unitarity of G-representations?
- Can the parameters $q_{F}^{\lambda(\alpha)}$ of $\tilde{\mathcal{H}}(\mathcal{O})$ be described in terms of σ or \mathcal{O} ? Are the $\lambda(\alpha)$ integers?
- How to determine the 2-cocycles \ddagger of $W\left(M, \sigma, X_{\mathrm{nr}}(M)\right)$?

Summary

For an arbitrary Bernstein block $\operatorname{Rep}(G)^{5}$ of a reductive p-adic group G :

- $\operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}}$ is equivalent with the category of finite length modules of an extended affine Hecke algebra $\tilde{\mathcal{H}}(\mathcal{O})$, whose $q_{F}=1$-form is $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{G}]$
- Upon tensoring with $\mathbb{C}\left(X_{\mathrm{nr}}(M)\right)$ over $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$, or upon taking irreducible representations, $\operatorname{Rep}(G)^{\mathfrak{s}}$ becomes equivalent with $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right] \rtimes \mathbb{C}\left[W\left(M, \sigma, X_{\mathrm{nr}}(M)\right), 七\right]-\operatorname{Mod}$

Questions / open problems

- Can one use the above to study unitarity of G-representations?
- Can the parameters $q_{F}^{\lambda(\alpha)}$ of $\tilde{\mathcal{H}}(\mathcal{O})$ be described in terms of σ or \mathcal{O} ? Are the $\lambda(\alpha)$ integers?
- How to determine the 2-cocycles \ddagger of $W\left(M, \sigma, X_{\mathrm{nr}}(M)\right)$?

Summary

For an arbitrary Bernstein block $\operatorname{Rep}(G)^{5}$ of a reductive p-adic group G :

- $\operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}}$ is equivalent with the category of finite length modules of an extended affine Hecke algebra $\tilde{\mathcal{H}}(\mathcal{O})$, whose $q_{F}=1$-form is $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{G}]$
- Upon tensoring with $\mathbb{C}\left(X_{\mathrm{nr}}(M)\right)$ over $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right]$, or upon taking irreducible representations, $\operatorname{Rep}(G)^{\mathfrak{s}}$ becomes equivalent with $\mathbb{C}\left[X_{\mathrm{nr}}(M)\right] \rtimes \mathbb{C}\left[W\left(M, \sigma, X_{\mathrm{nr}}(M)\right), 七\right]-\operatorname{Mod}$

Questions / open problems

- Can one use the above to study unitarity of G-representations?
- Can the parameters $q_{F}^{\lambda(\alpha)}$ of $\tilde{\mathcal{H}}(\mathcal{O})$ be described in terms of σ or \mathcal{O} ? Are the $\lambda(\alpha)$ integers?
- How to determine the 2-cocycles \ddagger of $W\left(M, \sigma, X_{\mathrm{nr}}(M)\right)$?

