Kac-Moody superalgebras and Duflo-Serganova functors

Maria Gorelik, Weizmann Institute of Science

May 19, 2021

Maria Gorelik, Weizmann Institute of Science Kac-Moody superalgebras and Duflo-Serganova functors

→ E → < E →</p>

The base field is \mathbb{C} . $\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$; parity: $p(x) = \overline{i}$ for $x \in \mathfrak{g}_{\overline{i}}$. Axioms: anticommutativity and Jacobi identity: $[a, b] + (-1)^{p(a)p(b)}[b, a] = 0$; $[a, [b, c]] = [[a, b], c] + (-1)^{p(a)p(b)}[b, [a, c]]$. $\mathfrak{g}_{\overline{0}}$ is a Lie algebra; $\mathfrak{g}_{\overline{1}}$ is a $\mathfrak{g}_{\overline{0}}$ -module.

 $\mathfrak{gl}(m|n)$: $(m+n) \times (m+n)$ block matrices

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad p(\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}) = \overline{0}, \quad p(\begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}) = \overline{1}$$

 $\mathfrak{sl}(m|n) = \{X \in \mathfrak{gl}(m|n) | \text{ Tr } A = \text{ Tr } D\}, \mathfrak{psl}(n|n) = \mathfrak{sl}(n|n)/\mathbb{C} \text{ Id}.$

ヘロン 人間 とくほ とくほ とう

(FIN): $\mathfrak{gl}(m|n), \mathfrak{osp}(M|N)$ and exceptional D(2|1; a), F(4), G(3);

Maria Gorelik, Weizmann Institute of Science Kac-Moody superalgebras and Duflo-Serganova functors

(FIN): $\mathfrak{gl}(m|n), \mathfrak{osp}(M|N)$ and exceptional D(2|1; a), F(4), G(3);

(AFF): $\mathfrak{gl}(m|n)^{(1)}, \mathfrak{osp}(M|N)^{(1)}$ and $D(2|1; a)^{(1)}, F(4)^{(1)}, G(3)^{(1)}$ and their twisted versions.

(FIN): $\mathfrak{gl}(m|n), \mathfrak{osp}(M|N)$ and exceptional D(2|1; a), F(4), G(3);

(AFF): $\mathfrak{gl}(m|n)^{(1)}, \mathfrak{osp}(M|N)^{(1)}$ and $D(2|1; a)^{(1)}, F(4)^{(1)}, G(3)^{(1)}$ and their twisted versions.

For (FIN) \mathfrak{g}_0 is reductive and

 $\mathfrak{gl}(m|0) = \mathfrak{gl}_m, \ \mathfrak{osp}(M|0) = \mathfrak{o}_M, \ \mathfrak{osp}(0|N) = \mathfrak{sp}_N.$

(FIN): $\mathfrak{gl}(m|n), \mathfrak{osp}(M|N)$ and exceptional D(2|1; a), F(4), G(3);

(AFF): $\mathfrak{gl}(m|n)^{(1)}, \mathfrak{osp}(M|N)^{(1)}$ and $D(2|1; a)^{(1)}, F(4)^{(1)}, G(3)^{(1)}$ and their twisted versions.

For (FIN) \mathfrak{g}_0 is reductive and

$$\mathfrak{gl}(m|0) = \mathfrak{gl}_m, \ \mathfrak{osp}(M|0) = \mathfrak{o}_M, \ \mathfrak{osp}(0|N) = \mathfrak{sp}_N.$$

By contrast with semisimple Lie algebras, fin.-dim. modules are not completely reducible and the characters are not given by Weyl character formula. These works only for so-called typical modules.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

lso-sets

Let \mathfrak{g} be any superalgebra which contains a max. fin.-dim. commutative subalgebra \mathfrak{h} of \mathfrak{g}_0 which acts diagonally in the adjoint representation of \mathfrak{g} .

The multisets of even and odd roots: $\Delta_0, \Delta_1 \subset \mathfrak{h}^* \setminus \{0\}$. We write each $a \in \mathfrak{g}_i$ (for i = 0, 1) in the form

$$a = \sum_{lpha \in \mathsf{supp}(a)} a_{lpha}, \hspace{0.2cm} ext{where} \hspace{0.2cm} a_{lpha} \in \mathfrak{g}_{lpha} \setminus \{0\}, \hspace{0.2cm} ext{supp}(a) \subset \Delta_i \cup \{0\}.$$

<u>Definition</u> We say that $S \subset \Delta_1$ is an <u>iso-set</u> if the elements of S are linearly independent and for each $\alpha, \beta \in \Delta_1 \cap (S \cup (-S))$ one has $\alpha + \beta \notin \Delta_0$.

For (FIN): $S \subset \Delta_1$ is an iso-set iff (S|S) = 0 and S is linearly independent;

For (AFF): $S \subset \Delta_1$ is an iso-set iff (S|S) = 0 and S is linearly independent modulo $\mathbb{C}\delta$, where δ is the minimal imaginary root.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Example: $\mathfrak{g} := \mathfrak{gl}(m|n), \mathfrak{g}_{\overline{1}} = \mathfrak{gl}_m \times \mathfrak{gl}_n$ with

 $\Delta(\mathfrak{gl}_m) = \{\varepsilon_i - \varepsilon_j\}, \ \Delta(\mathfrak{gl}_n) = \{\delta_i - \delta_j\}, \ \Delta(\mathfrak{g}_{\overline{1}} = \{\pm(\varepsilon_i - \delta_j)\}.$

The form: $(\varepsilon_i | \varepsilon_j) = -(\delta_i | \delta_j) = \delta_{ij}$. $S_s := \{\varepsilon_i - \delta_i\}_{i=1}^s; S_{\min(m,n)}$ is maximal.

For (FIN), (AFF): The defect of \mathfrak{g} is the cardinality of the maximal iso-set.

Example: defect of $\mathfrak{gl}(m|n)$ is $\min(m, n)$. Remark: for the "strange" superalgebras $\mathfrak{p}_n, \mathfrak{q}_n$ the above definition give *defect*(\mathfrak{p}_n) = n and *defect*(\mathfrak{q}_n) = $[\frac{n}{2}]$.

・ロト ・ 理 ト ・ ヨ ト ・

э.

<u>Remark.</u> If S_{λ} is empty, this gives $\nu \in W_{\lambda}\lambda$.

<u>Remark.</u> If S_{λ} is empty, this gives $\nu \in W_{\lambda}\lambda$.

Definition. The atypicality of $L(\lambda - \rho)$ is the cardinality of S_{λ} .

<u>Remark.</u> If S_{λ} is empty, this gives $\nu \in W_{\lambda}\lambda$.

Definition. The atypicality of $L(\lambda - \rho)$ is the cardinality of S_{λ} .

(FIN)+ q_n : The Dulfo-Musson Theorem allows to extend the notion of atypicality to central characters and thus to all simple g-modules.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Notation: $\lambda \sim \nu$ if $L(\lambda - \rho)$, $L(\nu - \rho)$ have the same central character.

For s/s Lie algebras $HC : Z(\mathfrak{g}) \to S(\mathfrak{h})^W$ gives $\lambda' \sim \lambda$ iff $\lambda' \in W\lambda$. Writing $\lambda = \sum_{i=1}^m a_i \varepsilon_i$ we have $\lambda \sim \lambda'$ iff $\mathfrak{gl}_m : \{a_i\}_{i=1}^m = \{a'_i\}_{i=1}^m, \mathfrak{o}_{2m+1}, \mathfrak{sp}_{2m} : \{|a_i|\}_{i=1}^m = \{|a'_i|\}_{i=1}^m.$

Maria Gorelik, Weizmann Institute of Science Kac-Moody superalgebras and Duflo-Serganova functors

Notation: $\lambda \sim \nu$ if $L(\lambda - \rho)$, $L(\nu - \rho)$ have the same central character.

For s/s Lie algebras $HC : Z(\mathfrak{g}) \to S(\mathfrak{h})^W$ gives $\lambda' \sim \lambda$ iff $\lambda' \in W\lambda$. Writing $\lambda = \sum_{i=1}^m a_i \varepsilon_i$ we have $\lambda \sim \lambda'$ iff $\mathfrak{gl}_m : \{a_i\}_{i=1}^m = \{a'_i\}_{i=1}^m, \mathfrak{o}_{2m+1}, \mathfrak{sp}_{2m} : \{|a_i|\}_{i=1}^m = \{|a'_i|\}_{i=1}^m.$

 $\mathfrak{gl}(m|n): \lambda = \sum_{i=1}^{m} a_i \varepsilon_i - \sum_{i=1}^{n} \delta_i$ Let *Core*(λ) be the multiset obtained from $\{a_i\}_{i=1}^{m} \coprod \{b_j\}_{j=1}^{n}$ by deleting the maximal number of pairs satisfying $a_i = b_j$. Example: $\lambda = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 - \delta_1 - 2\delta_2 \ Core(\lambda) = \{1, 1\} \coprod \{2\}$. Then $\lambda \sim \lambda'$ iff $Core(\lambda) = Core(\lambda')$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 $\mathfrak{gl}(m|n)^{(1)}$: Set $k := (\lambda|\delta)$. Let $Core(\lambda)$ be the multiset obtained from $\{a_i\}_{i=1}^m \coprod \{b_j\}_{j=1}^n$ by deleting the maximal number of pairs satisfying $a_i - b_j \in \mathbb{Z}k$. We view the elements of the multiset $Core(\lambda)$ as elements in $\mathbb{C}/\mathbb{Z}k$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\mathfrak{gl}(m|n)^{(1)}$: Set $k := (\lambda|\delta)$. Let $Core(\lambda)$ be the multiset obtained from $\{a_i\}_{i=1}^m \coprod \{b_j\}_{j=1}^n$ by deleting the maximal number of pairs satisfying $a_i - b_j \in \mathbb{Z}k$. We view the elements of the multiset $Core(\lambda)$ as elements in $\mathbb{C}/\mathbb{Z}k$.

Slightly more complicated formulae for $\mathfrak{osp}(M|N)^{(1)}$ and the twisted cases.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

 $\mathfrak{gl}(m|n)^{(1)}$: Set $k := (\lambda|\delta)$. Let $Core(\lambda)$ be the multiset obtained from $\{a_i\}_{i=1}^m \coprod \{b_j\}_{j=1}^n$ by deleting the maximal number of pairs satisfying $a_i - b_j \in \mathbb{Z}k$. We view the elements of the multiset $Core(\lambda)$ as elements in $\mathbb{C}/\mathbb{Z}k$.

Slightly more complicated formulae for $\mathfrak{osp}(M|N)^{(1)}$ and the twisted cases.

<u>Theorem. (G., arXiv: 2010.05721)</u> $L(\nu - \rho), L(\lambda - \rho)$ are in the same (non-critical) block in \mathcal{O} , then $Core(\lambda) = Core(\nu)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The Dulfo-Serganova functors are tensor functors relating representations of different Lie superalgebras. These functor were introduced by Duflo and Serganova in "On associated variety for Lie superalgebras", arXiv:0507198; they studied these functors for (FIN). DS_x

REDUCES

- the defect of a superalgebra
- the atypicality of modules

by the same non-negative integer called the rank of *x*;

・ 同 ト ・ ヨ ト ・ ヨ ト

The Dulfo-Serganova functors are tensor functors relating representations of different Lie superalgebras. These functor were introduced by Duflo and Serganova in "On associated variety for Lie superalgebras", arXiv:0507198; they studied these functors for (FIN). DS_x

REDUCES

- the defect of a superalgebra
- the atypicality of modules

by the same non-negative integer called the rank of x; PRESERVES

- the dual Coxeter number and the type of the algebra: $DS_x(\mathfrak{gl}(m|n)) = \mathfrak{gl}(m - rank x|n - rank x)$, etc.
- the core of a highest weight module and of the central character (for the non-exceptional algebras).

Construction and first properties

Set $X(\mathfrak{g}) := \{x \in \mathfrak{g}_1 | [x, x] = 0\}$. **Definition**: For $x \in X(\mathfrak{g})$ we set $\mathsf{DS}_x(M) := M^x / xM$. Then $\mathfrak{g}_x := \mathsf{DS}_x(\mathfrak{g}) = \mathfrak{g}^x / [x, \mathfrak{g}]$ is a Lie superalgebra and

 $\mathsf{DS}_x : M \mapsto \mathsf{DS}_x(M)$

is a functor from the category of \mathfrak{g} -modules to the category of $\mathsf{DS}_x(\mathfrak{g})$ -modules.

Properties:

 $\mathsf{DS}_x(M) \otimes \mathsf{DS}_x(N) = \mathsf{DS}_x(M \otimes N), \ sdimN = sdim\,\mathsf{DS}_x(N)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Construction and first properties

Set $X(\mathfrak{g}) := \{x \in \mathfrak{g}_1 | [x, x] = 0\}$. **Definition**: For $x \in X(\mathfrak{g})$ we set $\mathsf{DS}_x(M) := M^x / xM$. Then $\mathfrak{g}_x := \mathsf{DS}_x(\mathfrak{g}) = \mathfrak{g}^x / [x, \mathfrak{g}]$ is a Lie superalgebra and

 $\mathsf{DS}_X : M \mapsto \mathsf{DS}_X(M)$

is a functor from the category of \mathfrak{g} -modules to the category of $\mathsf{DS}_x(\mathfrak{g})$ -modules.

Properties:

 $\mathsf{DS}_x(M) \otimes \mathsf{DS}_x(N) = \mathsf{DS}_x(M \otimes N), \ sdimN = sdim \mathsf{DS}_x(N)$

$$\begin{split} \mathsf{DS}_x(\mathfrak{gl}(m|n)) &\cong \mathfrak{gl}(m-r|n-r), \quad \mathsf{DS}_x(\mathfrak{q}_n) \cong \mathfrak{q}_{n-2r}; \\ \mathsf{DS}_x(\mathfrak{osp}(M|N)) &\cong \mathfrak{osp}(M-2r|N-2r), \\ \mathsf{DS}_x(D(2|1,a) = \mathbb{C}, \quad \mathsf{DS}_x(G(3)) = \mathfrak{sl}_2, \quad \mathsf{DS}_x(F(4)) = \mathfrak{sl}_3 \text{ for } x \neq 0. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$X_{iso}(\mathfrak{g})$

The situation is more complicated for affine case. Example: $\mathfrak{g}=\mathfrak{sl}(2|1)^{(1)}$

$$x \in \mathfrak{gl}_{\alpha}$$
 for odd α $\mathsf{DS}_{x}(\mathfrak{g}) = \mathbb{C}K \times \mathbb{C}d$,
If $y := x + xt$, then y is odd, $y^{2} = 0$ and
 $\mathsf{DS}_{y}(\mathfrak{g}) = \mathbb{C}K \times \mathfrak{t}$, $\mathfrak{t}_{0} = span(h, e)$, $\mathfrak{t}_{1} = spanF$

$$[e, F] = 0, \ [h, e] = e, \ [h, F] = -F.$$

so t is "non-symmetric".

・ 同 ト ・ ヨ ト ・ ヨ ト

$X_{iso}(\mathfrak{g})$

The situation is more complicated for affine case. Example: $\mathfrak{g}=\mathfrak{sl}(2|1)^{(1)}$

$$x \in \mathfrak{gl}_{\alpha} \text{ for odd } \alpha \ \mathsf{DS}_{x}(\mathfrak{g}) = \mathbb{C}K \times \mathbb{C}d,$$

If $y := x + xt$, then y is odd, $y^{2} = 0$ and
 $\mathsf{DS}_{y}(\mathfrak{g}) = \mathbb{C}K \times \mathfrak{t}, \ \mathfrak{t}_{0} = span(h, e), \ \mathfrak{t}_{1} = spanF$

$$[e, F] = 0, \ [h, e] = e, \ [h, F] = -F.$$

so t is "non-symmetric".

We set $X_{iso}(\mathfrak{g}) := \{x \in \mathfrak{g} | \operatorname{supp}(x) \text{ is an iso-set}\}.$ <u>Facts.</u> $X_{iso}(\mathfrak{g}) \subset X(\mathfrak{g});$ $\overline{X}(\mathfrak{g}) = X_{iso}(\mathfrak{g}) \text{ if } \mathfrak{g} \text{ is a fin.-dim. KM or } \mathfrak{p}_n, \mathfrak{q}_n, \mathfrak{sl}(n|n).$ $X(\mathfrak{g}) \neq X_{iso}(\mathfrak{g}) \text{ if } \mathfrak{g} \text{ is affine or } \mathfrak{g} = \mathfrak{pgl}(n|n), \mathfrak{psl}(n|n), \mathfrak{pq}_n \text{ etc.}$

< 回 > < 回 > < 回 > … 回

Maria Gorelik, Weizmann Institute of Science Kac-Moody superalgebras and Duflo-Serganova functors

◆□ > ◆□ > ◆豆 > ◆豆 >

₹ 990

We introduce $\text{depth}(\mathfrak{g})\in\mathbb{N}\cup\{\infty\}$ by the formula

$$\mathsf{depth}(\mathfrak{g}) = \left\{ \begin{array}{ll} 0 & \text{if } X_{iso}(\mathfrak{g}) = 0 \\ 1 + \max_{x \in X_{iso} \setminus \{0\}} \mathsf{depth}(\mathfrak{g}_x) & \text{if } X_{iso}(\mathfrak{g}) \neq \emptyset. \end{array} \right.$$

For $x \in X$ we define rank $x := \text{depth}(\mathfrak{g}) - \text{depth}(\mathfrak{g}_x)$ and then introduce depth(N) in a similar fashion; for a full subcategory of \mathfrak{g} -modules \mathcal{C} we define $\text{depth}(\mathcal{C})$ as the maximum of depth(N)for $N \in \mathcal{C}$.

One has depth $\mathfrak{g} \geq$ defect \mathfrak{g} where defect is the maximal cardinality of an iso-set.

$$depth(N' \oplus N'') = max(depth(N')), depth(N'')), depth(N'') = min(depth(N')), depth(N'')).$$

Maria Gorelik, Weizmann Institute of Science Kac-Moody superalgebras and Duflo-Serganova functors

◆□ > ◆□ > ◆豆 > ◆豆 >

₹ 990

If supp(x) is an iso-set of cardinality r, then rank $x \ge r$; for (FIN), (AFF) and q_n : rank x = r and depth g = defectg.

<u>Example.</u> For (FIN)+ q_n , (AFF) or q_n : depth of a block in $\mathcal{O}(\mathfrak{g})$ is equal to the atypicality. This allows to define atypicality for other modules in (AFF).

<u>Theorem (Serganova, 2011)</u> if \mathfrak{g} is (FIN) and *L* is a fin.-dim. simple module, then depth(*L*) = *atyp*(*L*).

This does not hold for q_n , but the depth of a block in $Fin(q_n)$ is equal to the atypicality.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Maria Gorelik, Weizmann Institute of Science Kac-Moody superalgebras and Duflo-Serganova functors

◆□ > ◆□ > ◆豆 > ◆豆 >

E 990

Let \mathfrak{g} be any fin.-dim. superalgebra and $\mathfrak{g}_{\chi} := \mathsf{DS}_{\chi}(\mathfrak{g})$. The map

$$U(\mathfrak{g})^{\operatorname{ad} x} o U(\mathfrak{g})^{\operatorname{ad} x}/[x, U(\mathfrak{g})] = \mathsf{DS}_x(U(\mathfrak{g})) = U(\mathfrak{g}_x)$$

induces an algebra homomorphism

$$heta_x: Z(\mathfrak{g}) = U(\mathfrak{g})^{\operatorname{\mathsf{ad}}\mathfrak{g}} o U(\mathfrak{g}_x)^{\operatorname{\mathsf{ad}}\mathfrak{g}_x} = Z(\mathfrak{g}_x).$$

The equality of the dual Coxeter numbers follows from $\theta_x(Cas(\mathfrak{g})) = Cas(\mathfrak{g}_x)$. If *N* is a \mathfrak{g} -module with the central character χ , then $DS_x(N)$ is a \mathfrak{g}_x -module with the central characters in $(\theta_x^*)^{-1}(\chi)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Corollary.

View *N* as a \mathfrak{g}^{x} -module (or as a \mathfrak{g}_{x} -module if \mathfrak{g}_{x} "can be embedded to \mathfrak{g}''). If *L'* is a simple \mathfrak{g}^{x} (resp., \mathfrak{g}_{x})-module with the central character not in $(\theta_{x}^{*})^{-1}(\chi)$, then

$$[N:L']=[N:\Pi(L')].$$

<u>Proof.</u> We have \mathfrak{g}^x -isomorphisms $N^x/xN \cong DS_x(N)$ and $N/N^x \cong \Pi(xN)$ (given by the action of x). Hence in the Grothedieck group of \mathfrak{g}^x -modules

$$[N] = [N^{x}] + [\Pi(xN)] = [\mathsf{DS}_{x}(N)] + +[xN] + [\Pi(xN)]$$

which gives

 $[N:L'] - [N:\Pi(L')] = [\mathsf{DS}_x(N):L'] - [\mathsf{DS}_x(N):\Pi(L')].$

Take $x \in X(\mathfrak{g})$ such that $\operatorname{supp}(x) \subset (-\Sigma \cup \Sigma)$ (then $x \in X_{iso}$). Then \mathfrak{g}_x is "of the same type" as \mathfrak{g} with $h^{\vee}(\mathfrak{g}) = h^{\vee}(\mathfrak{g}_x)$.

<u>Theorem (G., arXiv: 2010.05721)</u> Assume that $L(\lambda - \rho)$ is "non-critical" (i.e., $(\lambda | \delta) \neq 0$) and $[DS_x(L(\lambda - \rho)) : L_{g_x}(\nu - \rho)] \neq 0$.

- "DS_x reduces the atypicality by rank x": for λ, ν as above, atyp ν = atyp λ − r;
- For the non-exceptional cases $Core(\lambda) = Core(\nu)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Duflo-Serganova results for $\theta_x : Z(\mathfrak{g}) \to Z(\mathfrak{g}_x)$ (for (FIN)+ \mathfrak{q}_n):

• θ_x is surjective for $\mathfrak{g} \neq \mathfrak{osp}(2m|2n), D(2|1, a), F(4);$ $Im \ \theta_x = Z(\mathfrak{g}_x)^{\sigma}$, for an outer involution σ of \mathfrak{g}_x in the remaining cases.

Duflo-Serganova results for $\theta_x : Z(\mathfrak{g}) \to Z(\mathfrak{g}_x)$ (for (FIN)+ \mathfrak{q}_n):

- θ_x is surjective for $\mathfrak{g} \neq \mathfrak{osp}(2m|2n), D(2|1, a), F(4);$ $Im \ \theta_x = Z(\mathfrak{g}_x)^{\sigma}$, for an outer involution σ of \mathfrak{g}_x in the remaining cases.
- The map θ^{*}_x increases atypicality by rank x, so DS_x reduces the atypicality by rank x;
- the image of θ^{*}_x consists of the central charatcers of atypicality ≥ rank x;

Duflo-Serganova results for $\theta_x : Z(\mathfrak{g}) \to Z(\mathfrak{g}_x)$ (for (FIN)+ \mathfrak{q}_n):

- θ_x is surjective for $\mathfrak{g} \neq \mathfrak{osp}(2m|2n), D(2|1, a), F(4);$ $Im \ \theta_x = Z(\mathfrak{g}_x)^{\sigma}$, for an outer involution σ of \mathfrak{g}_x in the remaining cases.
- The map θ^{*}_x increases atypicality by rank x, so DS_x reduces the atypicality by rank x;
- the image of θ^{*}_x consists of the central charatcers of atypicality ≥ rank x;
- the fibers of θ_x^* coincide are the σ -orbits in $SpecZ(\mathfrak{g}_x)$;
- the map θ_X^* preserves the cores of central characters.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Maria Gorelik, Weizmann Institute of Science Kac-Moody superalgebras and Duflo-Serganova functors

◆□ > ◆□ > ◆豆 > ◆豆 >

E 990

Let *L* be a simple fin.-dim. module.

Maria Gorelik, Weizmann Institute of Science Kac-Moody superalgebras and Duflo-Serganova functors

イロト イポト イヨト イヨト

Let *L* be a simple fin.-dim. module. $\mathfrak{gl}(m|n)$: arXiv:1406.0321 T. Heidersdorf, R. Weissauer; \mathfrak{p}_n : arXiv:1910.02294 I. Entova-Aizenbud, V. Serganova; $\mathfrak{osp}(m|n)$: arXiv: 2010.14975 M. Gorelik, T. Heidersdorf; exceptional: arXiv: 2010.12817; \mathfrak{q}_n : G., preprint

(同) (正) (正)

Let *L* be a simple fin.-dim. module. $\mathfrak{gl}(m|n)$: arXiv:1406.0321 T. Heidersdorf, R. Weissauer; \mathfrak{p}_n : arXiv:1910.02294 I. Entova-Aizenbud, V. Serganova; $\mathfrak{osp}(m|n)$: arXiv: 2010.14975 M. Gorelik, T. Heidersdorf; exceptional: arXiv: 2010.12817; \mathfrak{q}_n : G., preprint

- The multiplicities of irreducibles in DS₁(L) are at most 2 (at most 1 for type I)
- For non-exceptional cases these multiplicities are given in terms of so-called "arc diagrams".

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *L* be a simple fin.-dim. module. $\mathfrak{gl}(m|n)$: arXiv:1406.0321 T. Heidersdorf, R. Weissauer; \mathfrak{p}_n : arXiv:1910.02294 I. Entova-Aizenbud, V. Serganova; $\mathfrak{osp}(m|n)$: arXiv: 2010.14975 M. Gorelik, T. Heidersdorf; exceptional: arXiv: 2010.12817; \mathfrak{q}_n : G., preprint

- The multiplicities of irreducibles in DS₁(L) are at most 2 (at most 1 for type I)
- For non-exceptional cases these multiplicities are given in terms of so-called "arc diagrams".
- For $\mathfrak{g} \neq \mathfrak{p}_n$: if $L' \ncong L''$ are subquotients of $\mathsf{DS}_1(L)$, then $\mathsf{Ext}^1(L', L'') = 0$.
- For $\mathfrak{g} \neq \mathfrak{p}_n, \mathfrak{q}_n$: DS_x(L) is completely reducible and DS₁(DS₁(...(DS₁(L...)) \cong DS_s(L).

Similar results for the integrable $\mathfrak{gl}(1|n)^{(1)}$ -modules in M. Gorelik, V. Serganova, Comm. Math. Phys. **364** (2018).

Let *N* be a g-module and *L'* be a simple g_x -module. By above, $|[N : L'] - [N : \Pi(L')]| \le 2$ and = 0 if $atypL' \ne atypN - rankx$ or $core(L') \ne core(N)$.

For instance, for a typical $\mathfrak{gl}(m|n)$ -module N $[N : L'] = [N : \Pi(L')]$ for each $\mathfrak{gl}(m-1|n-1)$ -module L' (for a "special" copies of $\mathfrak{gl}(m-1|n-1)$ in $\mathfrak{gl}(m|n)$).

Maria Gorelik, Weizmann Institute of Science Kac-Moody superalgebras and Duflo-Serganova functors

◆□ > ◆□ > ◆豆 > ◆豆 >

E 990

M. Gorelik, V. Serganova, <u>On DS-functor for affine Lie</u> superalgebras, arXiv:1711.10149.

・ 同 ト ・ ヨ ト ・ ヨ ト