Graded Lie algebras, character sheaves
\& representations of double affine Hecke algebras
March 17, 2021 MIT lie groups seminar
Joint with K. Vilonen \& partly with M. Grindery G reductive algebraic group $/ \mathbb{C}$
$\theta: G \rightarrow G$ semisimple automorphism, order m (finite) θ induces $\mathbb{Z} / m z$-grading on \quad Lie $G=G=\bigoplus_{i \in 2 / m} G_{i} \quad\left(\begin{array}{l}\text { graded Lie algebras arise } \\ \text { naturally from p-adic } \\ \text { gps via Moy-Prasad } \\ \text { filtration }\end{array}\right)$ (classified by kac, Vinberg, Reeder-Yu-levy - Gross)

Let $K=\left(G^{\theta}\right)^{0} \quad\left(\right.$ Lie $\left.k=g_{0}\right) \quad N=$ nip cone of G
Vinberg: invariant theory of $k \subset g_{i}$ parallel to $G \subset G$ ($m=2$: Kostant-Rallis: symmetric pairs (real gps)
In particular $k \subset \mathcal{N}_{i}:=g_{i} \cap N$ has finitely many orbits
Def character sheaves on G_{1}
$\operatorname{Char}(\xi, \theta):=\{$ simple k-equivariant perverse sheaves on S_{1} with nilpotent singular support $\}$ $=\left\{F_{\text {our }}(\operatorname{IC}(\theta, \varepsilon)) \mid 0<N_{-1} \quad k\right.$-orbit, ε ir by deffinton K-equiv local system on 0$\}$ (finite set) "anti-orrital comp heres"

Four: $\operatorname{Perv}_{k}\left(G_{-1}\right)_{\mathbb{C}^{*} \text {-conic }} \xrightarrow{\sim} \operatorname{Perv}_{k}\left(G_{1}\right) \mathbb{C}^{*}$-conic

$$
\stackrel{\cup}{\operatorname{Perv}_{k}\left(N_{-1}\right)}
$$

$g_{1} \cong g_{-1}^{*}$ (via
G-inv θ-inv nondeg
bilinear form on G)

Goal Describe the set $\operatorname{char}(9, \theta)$

$$
=\{I C(\text { support, local system })\}
$$

This can be viewed as a Springer theory for graded Lie algebras, hope to be useful for repps of p-adic gps

Rok 1) ungraded case $(m=1)$ Lusztig's generalised Springer correspondence ($G_{x \cdots} \times G_{:}$: θ permutes factors)
2) $\quad \theta=$ inner $G=G L(n) \quad$ Lusztig
$m=2(G, k)=\left(S_{2 n}, S_{p 2 n}\right) \quad G r i n b e r g$, Henderson, Lusztig
In 1) \& 2), character sheaves are associated to ire reps of Coxeter gps
3) θ involution $(m=2)$

Ginzburg, Grojnowski, general study of char. sheaves.
4) $\quad m=2(G, K)=\left(S L_{N}, S O_{N}\right)$ chen-Vilonen-X.
G classical : Vilonen $-X$.
irr. reps of (finite) Hecke algebras of Coxeter gps (with parameters ± 1) enter description of character sheaves.

Rely on geometric nearby cycle construction (Grinberg - Vilonen - X.) (The method goes back to Grinberg's thesis: microlocal geometry I stratified Morse theory) + counting argument (contribution from D. Stanton) We get a complete answer in this case.

Strategy for general θ (combinatorics I geometry more Complicated)

1) classify the cuspidal character sheaves, i.e. those that do not appear as (shifts of) direct summand of parabolic induction of character sheaves on θ-stable Levi subgroups contained in proper θ-stable parabolic subgroups.
2) Study parabolic induction of cuspidals on Levi's

From now on, we concentrate on cuspidal character sheaves

Ungraded case $/ \mathbb{Z}$-graded case (Lus2tig)
very few cuspidal character sheaves
"Fourier self-dual", nilpotent support, clean "bi-orbital"
More over, cuspidals on G_{1} in \mathbb{Z}-graded case
come from cuspidals on G
\#/mz-graded case: $m \gg 0$ similar to \mathbb{Z}-graded case (G_{1} is nilpotent)

In general, we expect the following:
a) nilpotent support cuspidal character sheaves are rare, they come from classical cuspidals on G.
b) many cuspidal char sheaves with non-nilpotent support. often full support, i.e. support $=g_{1}$

Moreover, they all arise from a geometric nearby cycle construction (+ variations)

Cuspidal charaiter sheaves Fawier trassorm commutes with parabolic indution
a) Lusztig-Yun
$\{$ simple k-equivariant perverse sheaves on $N-1\}$
$\leftrightarrow\{$ irs. reps of trigonometric DAHAS. $\}$
(Lusztig: \mathbb{Z}-graded case)
$D_{k}\left(N_{-1}\right)$ has a block decomposition.
The blocks are (roughly) indexed by ($M, C, F)$
where M is a psendo-Levi subgroup of (G, θ) and (C, \mathcal{F}) is a cuspidal pair for M (in the sense of (ungraded) Lusztig's generalised springer correspondence) We call them Lusztig-Yun block.
e.9. principal block contains all IC($0, \mathbb{C})$

Fix a LY block ξ, Lusitig-Yun associates a graded DAHA H_{c}^{ξ} with parameters $C=\left\{C_{i}\right\}$
[Same data as in Lusztig's "classification of unip repns of simple p-adic gps $I, \mathbb{I}^{\prime \prime}$

The (conjectured by Lusstig-Yun, proved by W. Lii)
$\left\{\right.$ simple perverse sheaves in $\left.D_{k}\left(N_{-1}\right)_{\xi}\right\}$
$\stackrel{\sim}{\longleftrightarrow}$ \{simple (integrable) $H_{c, \frac{1}{m}}^{\xi}$-modules $\}$ (with prescribed generalised eigenvalues of the polynomial part given by the grading).

Conj 1 theorem (Z. Mun, C-C Tai)
Under LY construction
\{cuspidal sheaves in $\left.D_{k}\left(N_{-1}\right)_{\xi}\right\} \stackrel{\sim}{\rightleftarrows}$ \{ finite dime irreps of (varying the gradings)

$$
\left.H_{c, \frac{1}{m}}^{\xi}\right\}
$$

b) Nearby cycle construction

Vinberg: \exists Cartan subspace $Q \subset G_{1}$

$$
\begin{aligned}
& \text { sit } \mathbb{C}\left[G_{1}\right]^{k} \cong \mathbb{C}[Q]^{W_{Q}} \leqslant \text { polynomial algebra } \\
& W_{a}=\frac{N_{k}(Q)}{Z_{k}(a)} \text { little Weyl group }
\end{aligned}
$$

In general, Wa is a complex reflection gp (classified by Shephard-Todd)
($m=2$, Wa is a Coxeter group)
We say $\operatorname{dim} a$ is the rank of G_{1}.
Grading that afford cuspidal char sheaves

1) ungraded $(m=1)$ Type $B_{n}: 2 n+1=$ square

Lusztig: e.g. classical C_{n} : $n=$ trigular number gps $\quad D_{n}: 2 n=$ square
2) $m=2$: G classical, (G, k) : split symmetric pair.
3) general θ
i) stable grading: in the sense of invariant theory $\exists x \in g_{1}^{\text {sis }}$ sit $Z_{k}(x)$ is finite

These have been classified by Reeder-Levy-Yu-Gross; indexed by regular elliptic numbers of $W \sigma$ ($\sigma=$ outer class of θ, they were motivated by repn theory of p-adic gps)
($m=2$ stable grading \longleftrightarrow split symmetric pair)
ii) rank 0 grading (eeg. \mathbb{Z}-grading are rank 0)
$\left(k, g_{1}\right)$
special prehomogeneous vector spaces (studied extensively, zeta fins)

Conj: G classical group.
The gradings affording (non-nilp support) cuspidals are mixture of stable grading + special rank 0 .

This can be made precise. We give an example here.
Example $G=\operatorname{sp}(2 n) \quad m=2 l=\operatorname{order}(\theta)$

$$
\begin{aligned}
& k \cong \prod_{i=1}^{\ell} G L\left(V_{i}\right) \\
& G_{1} \cong \bigoplus_{i=2}^{\ell} H_{o m}\left(V_{i}, V_{i-1}\right) \oplus \operatorname{sym}^{2}\left(V_{1}\right) \oplus \operatorname{sym}^{2}\left(V_{e}^{*}\right) \\
& W_{a}=G(m, 1, r)=\operatorname{Sr} \propto\left(Z_{m z}\right)^{r}
\end{aligned}
$$

$r=0$: prehomogeneous vector space
Orbit has Jordan blocks local system
cuspidal

$$
\begin{aligned}
2+4+6+\cdots+2 p \\
2+4+6+\cdots+2 q
\end{aligned}+\mathcal{c o m i n g ~ f r o m ~} 1 \text { Lus2tig's cuspidal }
$$

$p=q=0$: stable grading

Conj (Work in progress) For $G=s p(2 n)$ with grading as above, all cuspidal character sheaves arise from nearby cycle construction. They are of

Hecke algebras of $G(m, 1, k) \times G(m, 1, F-k)$

with Hecke relations: $\left(\begin{array}{ll}T s & -1\end{array}\right)^{2}=0$
of the form $\quad\left(T_{t}-1\right)^{l+p+q+1}\left(T_{t}+1\right)^{l-p-q-1}=0$

$$
\left(T_{t}-1\right)^{l+p-2}\left(T_{t}+1\right)^{l-p+2}=0
$$

Rok: Hecke algebra associated to complex reflection group W introduced by Broné - Malle-Rouquier

It is free of rank $|w|$ (see Etingof's proof 2017)

Nearby cycles
Consider $\quad f: G_{1} \rightarrow G_{1 / k} \cong a_{w a}$
Let $\quad \bar{a} \in Q^{\text {res. }} / w_{a} \quad a^{r . s}$: regular semisimple locus.
We write $F_{\bar{a}}=f^{-1}(\bar{a})$
In general $F \bar{a}$ is a finite union of k-orbits
we write $F_{\bar{a}}^{\circ} \subset F_{\bar{a}}$ the open dense k-orbit in $F_{\bar{a}}$
$F_{\bar{a}}^{s s} \subset F \bar{a}$ the unique semisimple orbit in $F_{\bar{a}}$ (closed)

$$
G_{1}^{\text {reg }}=\bigcup_{\bar{a} \in Q^{\text {re }} / w_{a}} F \frac{0}{a}
$$

We have

$$
\begin{aligned}
& F^{0} \bar{a} \hookrightarrow \\
& F_{\bar{a}} \\
& \varphi^{\circ} \searrow \downarrow \varphi \\
& \\
& F_{\bar{a}}^{s s}
\end{aligned}
$$

$\forall b \in F_{\bar{a}}^{s s} \quad Z_{k}(b) \subset \varphi^{0-1}(b)$ is a prehomogeneous vector space

Let δ be a k-equivariant local system on $F_{-\frac{0}{a}}^{0}$ s.t its restriction to the fibers of φ° is rank cuspidal local system

Take nearby cycle sheaf $\psi_{f}\left(I C\left(\alpha_{1}\right):=\rho_{\rho}\right.$
Grinberg's theorem $\Rightarrow \operatorname{Four}\left(\rho_{\alpha}\right)=I C\left(M_{\alpha}\right)$

- $\operatorname{rank}\left(M_{\perp}\right)=\left|w_{a}\right|$
- P_{α} has a large endomorphism group

To describe M_{α}, we can reduce to the case of semisimple rank 1.

Let us now consider the rank 1 situation in the example, i.e. $r=1$

We have $\quad g_{1}>f=g_{1}^{\text {reg }}=\left\{f_{1} \cdots f_{p+2} f \neq 0\right\}$

$$
\text { Q/wa } \cong \mathbb{C}
$$

Take \mathcal{L} to be a rank 1 Kequiv. local system on $\mathcal{G}_{1}^{\text {reg }}$ with - 1 monodromy along all hypersurfaces $\left\{f_{i}=0 \mid \quad i=1, \cdots p+\varepsilon\right\}$

Then we claim

$$
\operatorname{Four}\left(\psi_{f}(I C(\alpha))=I C\left(g_{1}^{\text {reg* }}, \mathbb{C}_{\alpha} \otimes \frac{\mathbb{C}[x]}{(g(x))}\right)\right.
$$

Where $g(x)= \begin{cases}(x-1)^{l+p+2+1}(x+1)^{l-p-q-1} & \text { if } \alpha \text { has trivial } \\ & \text { monodomy along } \\ & \{f=0\} \\ (x-1)^{l+p-2} & (x+1)^{l-p+2} \\ & \text { otherwise. }\end{cases}$

Rink.) The above construction has been carried out in the case of stable polar reps (in our setting, this means $F_{\bar{a}}^{0}=F_{\bar{a}}$, i.e., the regular s.s orbits form a dense subset in G_{1}) in [Grinberg-Vilonen-x].
2) In $\left[\right.$ vilonen-X.] we describle the local systems $M_{\mathcal{L}}$ explicitly in the case of stable gradings for classided types, in terms of Hecke algebras of the form discussed in the conjecture. (we make use of classification of perverse sheaves in the normal crossings case)

Consider the case of $r=1, p=q=0$ in the example

$$
(G=s p(2 e))
$$

we have $f: g_{1} \cong \mathbb{C}^{l+1} \rightarrow \mathbb{C}$

$$
\begin{gathered}
f\left(x_{1}, \cdots, x_{l+1}\right)=x_{1}^{2} \cdots x_{c-1}^{2} x_{l} x_{c+1} \\
\pi_{1}^{k}\left(g_{1}^{r s}\right)=z(G) \oplus \mathbb{Z} \cong \mathbb{Z} / 2 \oplus \mathbb{Z} \\
M_{\mathcal{L}} \cong\left\{\begin{array}{c}
\frac{\mathbb{C}[x]}{\left(x^{2}-1\right)^{l-1}(x-1)^{2}} \text { \& trivial } \\
\mathbb{C}_{\perp} \otimes \frac{\mathbb{C}[x]}{\left(x^{2}-1\right)^{l}} \delta \text { nontorial }
\end{array}\right.
\end{gathered}
$$

Rok The conjecture can be formulated explicitly for all classical types.
c) $k \geq$ functor (Ginzburg-Guay - Opdam - Rouquier)
W-complex reflection group $C h$-vector space
$H_{c}^{\text {rat }}(w) \quad$ rational $\quad D A H A \quad \mathbb{C}[w] \propto\left(\mathbb{C}[h] \oplus \mathbb{C}\left[h^{*}\right]\right)$ with parameter C
$O\left(H_{c}^{\text {rat }}(w)\right)$: category $0:$ acts locally nils $f . g$ over $\mathbb{C}[h]$
$k z$

$B w-\bmod$

Hz, $-\bmod$

$$
B_{w}=\pi_{1}\left(\frac{\mathrm{hreg}}{w}\right)
$$

$$
q=e^{2 \pi i c}
$$

$K Z: \underset{\substack{1 \\ \text { modules supported on discriminant locus }}}{\sim H w, q-\bmod }$
preserves blocks
d) Koszul duality of blocks of category 0 of (cyclotomi) rational DAHAS
(conj'd by Chuang-Miyachi, proved by RSVV)

On the categorical level, there is derived equivalence s.t $\quad \begin{gathered}\text { tilting } \\ \cup\end{gathered} \longleftrightarrow$ simple module
$\{$ full support $\bmod \} \underset{\uparrow}{\longleftrightarrow}\{$ fin. dime $\bmod \}$
expected to be a bijection (Shan, Loser)
Conj: arrow (d) in the diagram (*) is [RSVU] duality.

Rmk: In the case of exceptional gps, the diagram (*) suggests duality for exceptional type rational DAHAs.
e) Eting of:
\{f.d irreps of $\left.H_{c, \frac{1}{m}}^{\xi}\right\} \stackrel{\text { trig. DAHA }}{\rightleftarrows} \frac{11}{x}$ \{f.d. irreps of

$$
\left.H_{c, \frac{1}{m}}^{\text {rat }}\left(W_{x}\right)\right\}
$$

(analogy: Lusztig: affine Hecke alg \leftrightarrow graded Hecke algs)
Conj Restricting to the LY blocks,
a) b) d) in diagram (*) are bijections.
(Fourier transform " $=$ " Koszul duality)

Rmks 1) We expect all f.d irreps of rational DAHAs occur in this picture
2) reps of p-adic gps?
3) Categorical explanation of diagram (*)?

