Graded Lie algebras, character sheaves & representations of double affine Hecke algebras MIT Lie groups seminar March 17, 2021 Joint with K. Vilonen & partly with M. Grinberg G reductive algebraic group / C 0: G>G semisimple automorphism, order M (finite) praded Lie algebras arise naturally from p-adic Oindures 2/mz -grading on Lie  $G = G = \bigoplus_{i \in 2/m} G_i$ gps via Moy-Prasad filtration (classified by kac, Vinberg, Reeder-Yu-Levy-Gross)

Let 
$$k = (G^{0})^{\circ}$$
 (Lie  $k = G_{0}$ )  $N = nilp cone of G^{\circ}$   
Vinberg: invariant theory of  $k \in G_{i}$  parallel to  $G^{\circ}G$   
 $(m=2: kostant - Rallis : symmetric pairs (real gps)$   
In particular  $k \in N_{i} := G_{i} \cap N$  has finitely many orbits  
Def character sheaves on  $G_{i}$   
 $Char(G, 0) := Simple k - equivariant perverse$   
sheaves on  $G_{i}$  with nilpotent singular support?  
 $= \{F_{our}(IC(0, z)) \mid O \in N_{-1} \mid k - orbit, z irr$   
by  
definition  $k - equiv local system on O ? (finite set)$   
"arti-orbital complexes"

Four: 
$$\operatorname{Perv}_{k}(G_{-1})_{\mathfrak{a}^{*}-\operatorname{conic}} \xrightarrow{\sim} \operatorname{Perv}_{k}(G_{1})_{\mathfrak{c}^{*}-\operatorname{conic}}$$
  
 $G_{1} \cong G_{-1}^{*}$  (via  
 $G_{1} \cong G_{-1}^{*}$  (via  
 $G_{-inv} \quad 0 - inv \quad nondeg$   
bilinear form on G)  
 $\overline{Goal}$  Describe the set char(G,0)  
 $= \{ IC ( \text{support}, | \text{ocal system} ) \}$   
This can be viewed as a Springer theory for graded  
Lie algebras, hope to be useful for reprise of  
 $P$ -adic gps

 $(\mathcal{L})$ (combinatorics /geometry more strategy for general O Complicated) 1) classify the <u>cuspidal</u> character sheaves, i.e. those that do not appear as (shifts of) direct summand of parabolic induction of character sheaves on O-stable Levi subgroups contained in proper O-stable parabolic subgroups. 2) study parabolic induction of cuspidals on Levi's



## In general, we expect the following:

a) nilpotent support cuspidal character sheaves are rare, they come from classical cuspidals on g many cuspidal char sheaves with non-nilpotent support. 6) often full support, i.e. support = g, Moreover, they all arise from a geometric nearby cycle construction (+ variations)

(a) Lusztig-Yun 
$$\{\text{Simple } k - eguivariant \text{ pervese sheaves on } M\}$$
  
 $\iff \{\text{irr. reprise of trigonometric DAHAs.}\}$   
 $(\text{Lusztig}: \mathbb{Z} - \text{graded case})$   
 $D \in UN_{-1}$ ) has a block decomposition.  
The blocks are (roughly) indexed by  $(M, C, F)$   
where M is a pseudo-Levi subgroup of  $(G, B)$   
and  $(C, F)$  is a cuspidal pair for M (in the sense  
of (Ungraded) Lusztig's generalized springer correspondence)  
We call them Lusztig-Yun block.

e.g. principal block contains all IC(O,C)

Fix a LY block 
$$3$$
, Lusztig-Tun associates  
a graded DAHA  $H_c^3$  with parameters  $C=3Ci$ ?  
E Same data as in Lusztig's "classification of unip  
reprise of simple p-adic gps I, II"]  
This (conjectured by Lusztig-Tun, proved by W. Liu)  
f simple perverse sheaves in  $D_K (N-1)_3$ ?  
 $\Longrightarrow$  { simple (integrable)  $(H_{C,m}^3 - modules)$   
(with prescribed generalised eigenvalues  
of the polynomial part given by the grading)

Conj/theorem (Z. Yun, C-C Tsai)  
Under LY construction  
{cuspidal sheaves in Dk(N-1)z} ~> {finite diml irreps of  
(varying the gradings) 
$$H_{C,tm}^{3}$$

 $\overline{12}$ 

b) Nearby cycle construction  
Vinberg: 
$$\exists$$
 Cartan subspace  $Q \subseteq G_1$   
s.t  $C[G_1]^K \cong C[Q]^{W_Q} \in polynomial algebra
 $W_Q = \frac{N_K(Q)}{Z_K(Q)}$  little Weyl group$ 

2) m=2: G classical, (G, K): split symmetric pair.



3) general O

i) <u>stable gradings</u>: in the sense of invariant theory  $\exists x \in G_1^{s,s}$  sit  $Z_k(x)$  is finite

These have been classified by Reeder-Levy-Yu-Gross; indexed by regular elliptic numbers of WG  $(\sigma = outer class of 0, they were motivated by repn$ theory of P-adic gps) symmetric pair) stable grading (-> split (m = 2)rank o gradings (e.g. Z-gradings are rank o) Tì)  $(k, G_{1})$ special prehomogeneous vector spaces (studied extensively, zeta fins)

$$k \cong \frac{l}{1} GL(V_{1})$$

$$G_{1} \cong \bigoplus_{\hat{z}=z}^{\ell} \operatorname{Hom}(V_{\hat{z}}, V_{\hat{i}-i}) \oplus \operatorname{sym}^{2}(V_{i}) \oplus \operatorname{sym}^{2}(V_{e}^{*})$$

$$W_{\alpha} = G(m, l, \Gamma) = S_{\Gamma} \times (\mathscr{Y}_{mZ})^{\Gamma}$$

P=2=0: stable grading

Conj (Work in progress) For G = sp(2n) with grading as above, (i)  
all cuspidal character sheaves arise from  
hearby cycle construction. They are of Bn  
full support and correspond to irreps of 
$$\int_{III}^{OOO=0}$$
  
Hecke algebras of  $G(m, I,k) \times G(m, I, k)$   
with Hecke relations :  $(Ts -1)^2 = 0$   
of the form  $(T_{t} -1)^{l+p+2+1}(T_{t} +1)^{l-p+2+1} = 0$   
 $(T_{t} -1)^{l+p-2}(T_{t} +1)^{l-p+2} = 0$   
Rmk : Hecke algebra associated to complex reflection  
group W introduced by Brove - Malle - Rouguier

.





∀ b ∈ F<sub>a</sub><sup>ss</sup> Z<sub>k</sub>(b) ⊂ φ<sup>o-(</sup>b) is a prehomogeneous vector space Let ∫ be a k-equivariant local system on F<sub>a</sub><sup>o</sup> s.t its restriction to the fibers of φ<sup>o</sup> is rank o cuspidal local system

Take nearby cycle sheaf 
$$4f(IC(S_1)) := P_L$$
  
Grinberg's theorem  $\Rightarrow$  Four  $(P_L) = IC(M_L)$   
 $\cdot$  rank  $(M_L) = |W_{a}|$   
 $\cdot$  P\_S has a large endomorphism group  
To describe M\_S, we can reduce to the case of  
semisimple rank 1.  
et us now consider the rank 1 situation  
in the example, i.e.  $r=1$ 

We have 
$$G_1 \supseteq G_1^{reg} = \xi f_1 \cdots f_{p+2} f \neq 0$$
 (2)  
Uf  
 $Q'_{W@} \cong C$   
Take  $\int t_0$  be a rank 1 k-equiv. local system on  $G_1^{reg}$  with

 $\sim - 0$ 

-1 monodromy along all hypersurfaces  $\{f_i = 0 \mid z_{i=1, -p+2}\}$ 

Then we claim  
Four 
$$(4f(IC(f)) = IC(g_{1}^{reg*}, C_{f}\otimes (g(z))))$$

Where 
$$g(x) = \begin{cases} (x-1)^{l+p+2+1} (x+1)^{l-p-2+1} & \text{if } L \text{ has trivial} \\ monodromy along \\ \{f=0\} \end{cases}$$
  
 $(x-1)^{l+p-2} (x+1)^{l-p+2} & \text{otherwise.} \end{cases}$ 

we have 
$$f: G_1 \cong \mathbb{C}^{l+1} \longrightarrow \mathbb{C}$$
  
 $f(\chi_{l_1}, \dots, \chi_{l+1}) = \chi_1^2 \cdots \chi_{l-1}^2 \chi_l \chi_{l+1}$ 

$$\pi_{i}^{k}(g_{i}^{rs}) = Z(G) \oplus \mathbb{Z} \cong \mathbb{Z}_{22} \oplus \mathbb{Z}$$



Rmk The conjecture can be formulated explicitly for all classical types.

c) 
$$k Z$$
 functor (Ginzburg-Guay-Opdam-Rouquier) (4)  
W-complex reflection group C h-vector space  
 $H_{c}^{rat}(w)$  rational DAHA  $C[w] \times (C[h] \oplus C[h^*])$   
with parameter C  
 $O(H_{c}^{rat}(w))$ : category  $O:$  h acts locally nilp  
 $f.g$  over  $C[h]$   
 $kZ$   
 $H_{w,2}-mod$   
 $H_{w,2} = C[Bw]$   
 $H_{w,2}-mod$   
 $KZ:$   
 $O(for \longrightarrow H_{w,2}-mod$   
 $for gamma for gamma f$ 

d) koszul duality of blocks of category 0  
of (cyclotomic) rational DAHAs  
(conj'd by Chuang-Miyachi, proved by 
$$RSVV$$
)  
 $O_{t}$  ( $H_{t,s}^{rat}$  ( $G(L, I, rI$ ))  $\stackrel{koszul}{\longleftrightarrow}$  ( $O_{s}$  ( $H_{t,t}^{rat}$  ( $G(e, L, r'I$ ))  
 $block$   $\stackrel{rat}{\Rightarrow}$  parameter  
On the categorical level, there is derived equivalence  
 $st$  tilting  $\iff$  simple module  
 $U$   
{full support mod}  $\stackrel{c}{\Rightarrow}$  iffin. diml mod}  
expected to be a bijection (shan, Losev)  
(caj: atrow (d) in the diagram (\*) is [RSVV] duality.

Rmk: In the case of exceptional gps, the diagram (\*) (26) suggests duality for exceptional type rational DAHAS.  $\mathcal{E}$  trig. DAHA  $H_{c,m}^{3}$   $\stackrel{\sim}{\longrightarrow}$   $\frac{11}{\chi}$   $\{f.d.\ irreps\ of$   $H_{c,m}^{rat}$   $(W_{\chi})\}$ e) Etingof: 2f.d irreps of (analogy: Lusztig: affine Hecke alg and Hecke algs) a) b) d) in Conj Restricting to the LY blocks, diagram (\*) are bijections. (Fourier transform "=" Koszul duality)

Rmks i) We expect all f.d irreps of rational DAHAs occur in this picture 2) reprise of P-adic gps? 3) categorical explanation of diagram (\*)?