Harmonic Analysis and Gamma Functions on Symplectic Groups

Zhilin Luo joint with Dihua Jiang and Lei Zhang

University of Minnesota

Lie groups seminar, MIT March 10, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

F number field, $\mathbb{A} = \mathbb{A}_F$;

- F number field, $\mathbb{A} = \mathbb{A}_F$;
- ► *G*/*F* reductive;

F number field, $\mathbb{A} = \mathbb{A}_F$;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- ► *G*/*F* reductive;
- $\blacktriangleright \ \rho: {}^{L}G \to \mathrm{GL}(V_{\rho});$

- F number field, $\mathbb{A} = \mathbb{A}_F$;
- ► *G*/*F* reductive;
- $\blacktriangleright \ \rho: {}^{L}G \to \mathrm{GL}(V_{\rho});$
- $\blacktriangleright \ \pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\mathrm{cusp}}(G);$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- F number field, $\mathbb{A} = \mathbb{A}_F$;
- ► G/F reductive;
- $\blacktriangleright \ \rho: {}^{L}G \to \mathrm{GL}(V_{\rho});$
- $\blacktriangleright \ \pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\mathrm{cusp}}(G);$
- According to R. Langlands, one should be able to define

$$L(s,\pi,
ho)=\prod_{\mathfrak{p}}L(s,\pi_{\mathfrak{p}},
ho);$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- F number field, $\mathbb{A} = \mathbb{A}_F$;
- G/F reductive;
- $\blacktriangleright \ \rho: {}^{L}G \to \mathrm{GL}(V_{\rho});$
- $\blacktriangleright \ \pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\mathrm{cusp}}(G);$
- According to R. Langlands, one should be able to define

$$L(s,\pi,\rho)=\prod_{\mathfrak{p}}L(s,\pi_{\mathfrak{p}},\rho);$$

By Langlands, L(s, π, ρ) (actually the partial L-function) is absolutely convergent for Re(s) large;

Langlands' conjecture

 $L(s, \pi, \rho)$ has a meromorphic continuation to $s \in \mathbb{C}$, and the functional equation

$$L(1-s,\pi^{ee},
ho)=arepsilon(s,\pi,
ho)L(s,\pi,
ho)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

holds where $\varepsilon(s, \pi, \rho)$ is non-zero entire in $s \in \mathbb{C}$.

• The conjecture is known for a special list of (G, ρ) ;

Langlands' conjecture

 $L(s, \pi, \rho)$ has a meromorphic continuation to $s \in \mathbb{C}$, and the functional equation

$$L(1-s,\pi^{\vee},
ho)=arepsilon(s,\pi,
ho)L(s,\pi,
ho)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

holds where $\varepsilon(s, \pi, \rho)$ is non-zero entire in $s \in \mathbb{C}$.

- The conjecture is known for a special list of (G, ρ) ;
- Methods: Godement-Jacquet (Tate), Rankin-Selberg; Langlands-Shahidi; Trace formula;

Natural question

Establish the basic analytic properties for $L(s, \pi, \rho)$ through harmonic analysis on G (or related spherical varieties).

Godement-Jacquet

► R. Godement and H. Jacquet established the M.C. and F.E. of the standard *L*-function *L*(*s*, π) of GL_n (over *F*-central simple algebras) via harmonic analysis on GL_n → M_n, generalizing the work of Tate for *n* = 1 (when *n* = 2 it was also done in the last chapter of Jacquet-Langlands).

Godement-Jacquet

► R. Godement and H. Jacquet established the M.C. and F.E. of the standard *L*-function *L*(*s*, π) of GL_n (over *F*-central simple algebras) via harmonic analysis on GL_n → M_n, generalizing the work of Tate for *n* = 1 (when *n* = 2 it was also done in the last chapter of Jacquet-Langlands).

•
$$G = GL_n;$$

Godement-Jacquet

► R. Godement and H. Jacquet established the M.C. and F.E. of the standard *L*-function *L*(*s*, π) of GL_n (over *F*-central simple algebras) via harmonic analysis on GL_n → M_n, generalizing the work of Tate for *n* = 1 (when *n* = 2 it was also done in the last chapter of Jacquet-Langlands).

•
$$G = GL_n$$

•
$${}^{L}G = \operatorname{GL}_{n}(\mathbb{C}) \times \mathcal{W}_{F}, \ \rho = \operatorname{Id} \otimes \{\operatorname{trivial}\}.$$

Godement-Jacquet: Local

For convenience, let \mathfrak{p} be a non-archimedean place of F. Ingredients

Schwartz space $\mathcal{S}(G(F_{\mathfrak{p}})) = \mathcal{C}_{c}^{\infty}(M_{n}(F_{\mathfrak{p}}))|_{G(F_{\mathfrak{p}})};$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For convenience, let \mathfrak{p} be a non-archimedean place of F. Ingredients

- Schwartz space $\mathcal{S}(G(F_{\mathfrak{p}})) = \mathcal{C}_{c}^{\infty}(M_{n}(F_{\mathfrak{p}}))|_{G(F_{\mathfrak{p}})};$
- ▶ Fourier transform $\mathcal{F}_{\psi_{\mathfrak{p}}} : \mathcal{S}(G(F_{\mathfrak{p}})) \to \mathcal{S}(G(F_{\mathfrak{p}}));$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For $f \in \mathcal{S}(G(F_{\mathfrak{p}}))$, set

$$\mathcal{Z}(s,f,arphi_{\pi_{\mathfrak{p}}}) = \int_{\mathcal{G}(F_{\mathfrak{p}})} f(g) arphi_{\pi_{\mathfrak{p}}}(g) |\det g|_{F_{\mathfrak{p}}}^{s+rac{n-1}{2}} dg, \quad s \in \mathbb{C},$$

where $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}(\pi_{\mathfrak{p}})$ (the space of matrix coefficients of $\pi_{\mathfrak{p}}$).

Theorem (Godement-Jacquet)

Z(s, f, φ_{π_p}) is absolutely convergent for Re(s) sufficiently large, and is a rational function in q^{-s};

Theorem (Godement-Jacquet)

- Z(s, f, φ_{πp}) is absolutely convergent for Re(s) sufficiently large, and is a rational function in q^{-s};
- the set {Z(s, f, φ_{πp})| f ∈ S(G(F_p)), φ_{πp} ∈ C(πp)} is a fractional ideal of C[q^{-s}, q^s] with generator 1/P(q^{-s}), where P(q^{-s}) is a polynomial with P(0) = 1. Set L(s, πp) = 1/P(q^{-s});

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Godement-Jacquet)

- Z(s, f, φ_{πp}) is absolutely convergent for Re(s) sufficiently large, and is a rational function in q^{-s};
- the set {Z(s, f, φ_{πp})| f ∈ S(G(F_p)), φ_{πp} ∈ C(πp)} is a fractional ideal of C[q^{-s}, q^s] with generator 1/P(q^{-s}), where P(q^{-s}) is a polynomial with P(0) = 1. Set L(s, πp) = 1/P(q^{-s});
- there exists a rational function γ(s, π_p, ψ_p) in q^{-s} such that the following functional equation holds for any f ∈ S(G(F_p))

$$\mathcal{Z}(1-s,\mathcal{F}_{\psi_{\mathfrak{p}}}(f),\varphi_{\pi_{\mathfrak{p}}}^{\vee})=\gamma(s,\pi_{\mathfrak{p}},\psi_{\mathfrak{p}})\mathcal{Z}(s,f,\varphi_{\pi_{\mathfrak{p}}}).$$

Theorem (Godement-Jacquet)

- Z(s, f, φ_{πp}) is absolutely convergent for Re(s) sufficiently large, and is a rational function in q^{-s};
- ▶ the set $\{\mathcal{Z}(s, f, \varphi_{\pi\mathfrak{p}}) | f \in \mathcal{S}(G(F_{\mathfrak{p}})), \varphi_{\pi\mathfrak{p}} \in \mathcal{C}(\pi\mathfrak{p})\}$ is a fractional ideal of $\mathbb{C}[q^{-s}, q^s]$ with generator $\frac{1}{P(q^{-s})}$, where $P(q^{-s})$ is a polynomial with P(0) = 1. Set $L(s, \pi\mathfrak{p}) = \frac{1}{P(q^{-s})}$;
- there exists a rational function γ(s, π_p, ψ_p) in q^{-s} such that the following functional equation holds for any f ∈ S(G(F_p))

$$\mathcal{Z}(1-s,\mathcal{F}_{\psi_{\mathfrak{p}}}(f),\varphi_{\pi_{\mathfrak{p}}}^{\vee})=\gamma(s,\pi_{\mathfrak{p}},\psi_{\mathfrak{p}})\mathcal{Z}(s,f,\varphi_{\pi_{\mathfrak{p}}}).$$

• Let $1_{\mathfrak{p}}$ be the characteristic function of $M_n(\mathfrak{o}_{\mathfrak{p}}) \subset M_n(F_{\mathfrak{p}})$. Then $\mathcal{F}_{\psi_{\mathfrak{p}}}(1_{\mathfrak{p}}) = 1_{\mathfrak{p}}$ and $\mathcal{Z}(s, 1_{\mathfrak{p}}, \varphi_{\pi_{\mathfrak{p}}}) = L(s, \pi_{\mathfrak{p}})$ for any unramified representation $\pi_{\mathfrak{p}}$ and $\varphi_{\pi_{\mathfrak{p}}}$ zonal spherical.

Ingredients

▶ Schwartz space $S(G(\mathbb{A})) = \bigotimes_{\mathfrak{p}}' S(G(F_{\mathfrak{p}}))$ w.r.t. $\{1_{\mathfrak{p}}\}_{\mathfrak{p}<\infty}$;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Ingredients

► Schwartz space $S(G(\mathbb{A})) = \bigotimes_{\mathfrak{p}}^{\prime} S(G(F_{\mathfrak{p}}))$ w.r.t. $\{1_{\mathfrak{p}}\}_{\mathfrak{p}<\infty}$;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Fourier transform $\mathcal{F}_{\psi} = \bigotimes_{\mathfrak{p}} \mathcal{F}_{\psi_{\mathfrak{p}}}$;

Ingredients

- ► Schwartz space $S(G(\mathbb{A})) = \bigotimes_{\mathfrak{p}}' S(G(F_{\mathfrak{p}}))$ w.r.t. $\{1_{\mathfrak{p}}\}_{\mathfrak{p}<\infty}$;
- Fourier transform $\mathcal{F}_{\psi} = \bigotimes_{\mathfrak{p}} \mathcal{F}_{\psi_{\mathfrak{p}}}$;
- For $f \in \mathcal{S}(G(\mathbb{A}))$, consider

$$\mathcal{Z}(s,f,arphi_{\pi}) = \int_{G(\mathbb{A})} f(g) arphi_{\pi}(g) |\det g|_{\mathbb{A}}^{s+rac{n-1}{2}} d^{ imes} g, \quad s \in \mathbb{C},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $\varphi_{\pi} \in \mathcal{C}(\pi)$.

Theorem (Godement-Jacquet)

When Re(s) is sufficiently large, Z(s, f, φ_π) is absolutely convergent, and Z(s, f, φ_π) = Π_p Z_p(s, f_p, φ_{πp}) whenever f = ⊗_pf_p is a pure tensor.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Godement-Jacquet)

- When Re(s) is sufficiently large, Z(s, f, φ_π) is absolutely convergent, and Z(s, f, φ_π) = Π_p Z_p(s, f_p, φ_{π_p}) whenever f = ⊗_pf_p is a pure tensor.
- ► $\mathcal{Z}(s, f, \varphi_{\pi})$ has a meromorphic continuation to $s \in \mathbb{C}$, and the functional equation

$$\mathcal{Z}(1-s,\mathcal{F}_\psi(f),arphi_\pi^ee)=\mathcal{Z}(s,f,arphi_\pi)$$

holds.

Theorem (Godement-Jacquet)

- When Re(s) is sufficiently large, Z(s, f, φ_π) is absolutely convergent, and Z(s, f, φ_π) = Π_p Z_p(s, f_p, φ_{π_p}) whenever f = ⊗_pf_p is a pure tensor.
- ► $Z(s, f, \varphi_{\pi})$ has a meromorphic continuation to $s \in \mathbb{C}$, and the functional equation

$$\mathcal{Z}(1-s,\mathcal{F}_\psi(f),arphi_\pi^ee)=\mathcal{Z}(s,f,arphi_\pi)$$

holds.

Meromorphic continuation and functional equation follow from the Poisson summation formula for (S(G(A)), F_ψ).

Braverman-Kazhdan proposal

- Around 2000, A. Braverman and D. Kazhdan proposed a conjectural framework to establish the analytical properties of general automorphic *L*-functions *L*(*s*, π, ρ).
- The prototype of the proposal is the theory of Godement and Jacquet.

For convenience, make the following additional assumptions (can be removed)

Assumptions

- ► G/F split;
- ρ is obtained from an irreducible injective representation of G[∨](ℂ) with highest weight λ_ρ;
- $\sigma: G \to \mathbb{G}_m$ a character playing the role of det for GL_n ;

For convenience, let p be a non-archimedean place of F. Conjectural ingredients

► Schwartz space $C_c^{\infty}(G(F_{\mathfrak{p}})) \subset S_{\rho}(G(F_{\mathfrak{p}})) \subset C^{\infty}(G(F_{\mathfrak{p}}));$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For convenience, let p be a non-archimedean place of F. Conjectural ingredients

▶ Schwartz space $C_c^{\infty}(G(F_{\mathfrak{p}})) \subset S_{\rho}(G(F_{\mathfrak{p}})) \subset C^{\infty}(G(F_{\mathfrak{p}}))$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► Fourier transform $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}: \mathcal{S}_{\rho}(G(F_{\mathfrak{p}})) \to \mathcal{S}_{\rho}(G(F_{\mathfrak{p}}));$

Setup

▶ For
$$f \in \mathcal{S}_{
ho}(G(F_{\mathfrak{p}}))$$
, set

$$\mathcal{Z}(s,f,\varphi_{\pi_{\mathfrak{p}}}) = \int_{G(F_{\mathfrak{p}})} f(g)\varphi_{\pi_{\mathfrak{p}}}(g) |\sigma(g)|_{F_{\mathfrak{p}}}^{s+n_{\rho}} dg, \quad s \in \mathbb{C},$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

where $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}(\pi_{\mathfrak{p}})$

Setup

▶ For
$$f \in S_{\rho}(G(F_{\mathfrak{p}}))$$
, set

$$\mathcal{Z}(s,f,arphi_{\pi_{\mathfrak{p}}}) = \int_{G(F_{\mathfrak{p}})} f(g) arphi_{\pi_{\mathfrak{p}}}(g) |\sigma(g)|_{F_{\mathfrak{p}}}^{s+n_{
ho}} dg, \quad s \in \mathbb{C},$$

where $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}(\pi_{\mathfrak{p}})$

For geometric reason, may set

$$\mathbf{n}_{\rho} = \langle \rho_{B}, \lambda_{\rho} \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where ρ_B is the half sum of positive roots (Bouthier-Ngô-Sakellaridis).

Setup

▶ For
$$f \in S_{\rho}(G(F_{\mathfrak{p}}))$$
, set

$$\mathcal{Z}(s,f,arphi_{\pi_{\mathfrak{p}}}) = \int_{G(F_{\mathfrak{p}})} f(g) arphi_{\pi_{\mathfrak{p}}}(g) |\sigma(g)|_{F_{\mathfrak{p}}}^{s+n_{
ho}} dg, \quad s \in \mathbb{C},$$

where $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}(\pi_{\mathfrak{p}})$

For geometric reason, may set

$$\mathbf{n}_{\rho} = \langle \rho_{B}, \lambda_{\rho} \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where ρ_B is the half sum of positive roots (Bouthier-Ngô-Sakellaridis).

ln general different n_{ρ} differ by unramified shift;

Expectation

Z(s, f, φ_{πp}) is absolutely convergent for Re(s) sufficiently large and is a rational function in q^{-s};

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Expectation

- Z(s, f, φ_{π_p}) is absolutely convergent for Re(s) sufficiently large and is a rational function in q^{-s};
- The set {Z(s, f, φ_{π_p})| f ∈ S_ρ(G(F_p)), φ_{π_p} ∈ C(π_p)} is a finitely generated fractional ideal in C(q^{-s}) with generator L(s, π_p, ρ);

Expectation

- Z(s, f, φ_{π_p}) is absolutely convergent for Re(s) sufficiently large and is a rational function in q^{-s};
- The set {Z(s, f, φ_{π_p})| f ∈ S_ρ(G(F_p)), φ_{π_p} ∈ C(π_p)} is a finitely generated fractional ideal in C(q^{-s}) with generator L(s, π_p, ρ);
- There exists a rational function γ(s, π_p, ρ, ψ_p) in q^{-s} such that the following functional equation holds for any f ∈ S_ρ(G(F_p))

$$\mathcal{Z}(1-s,\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}(f),\varphi_{\pi_{\mathfrak{p}}}^{\vee})=\gamma(s,\pi_{\mathfrak{p}},\rho,\psi_{\mathfrak{p}})\mathcal{Z}(s,f,\varphi_{\pi_{\mathfrak{p}}})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}(\pi_{\mathfrak{p}})$;

Schwartz space

For any (G, ρ), there is an affine spherical embedding G → M_ρ, where M_ρ arises from the theory of reductive monoids studied by M. Putcha, L. Renner and E. Vinberg. It is expected that S_ρ(G(F_p)) is connected with the geometry of M_ρ;
Schwartz space

- For any (G, ρ), there is an affine spherical embedding G → M_ρ, where M_ρ arises from the theory of reductive monoids studied by M. Putcha, L. Renner and E. Vinberg. It is expected that S_ρ(G(F_p)) is connected with the geometry of M_ρ;
- There should exist L_{ρ,p} ∈ S_ρ(G(F_p))^{K_p×K_p} called the *basic* function, such that Z(s, L_{ρ,p}, φ_{π_p}) = L(s, π_p, ρ) for any unramified representation π_p and φ_{π_p} zonal spherical;

(日)((1))

Schwartz space

- For any (G, ρ), there is an affine spherical embedding G → M_ρ, where M_ρ arises from the theory of reductive monoids studied by M. Putcha, L. Renner and E. Vinberg. It is expected that S_ρ(G(F_p)) is connected with the geometry of M_ρ;
- There should exist L_{ρ,p} ∈ S_ρ(G(F_p))^{K_p×K_p} called the *basic function*, such that Z(s, L_{ρ,p}, φ_{π_p}) = L(s, π_p, ρ) for any unramified representation π_p and φ_{π_p} zonal spherical;

- ロ ト - 4 回 ト - 4 □

► For Godement-Jacquet, $\mathcal{M}_{\rho} = M_n$, $\mathbb{L}_{\rho, \mathfrak{p}} = 1_{\mathfrak{p}}$.

Fourier transform

• For any
$$f \in \mathcal{C}^{\infty}_{c}(G(F_{\mathfrak{p}}))$$
,
 $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}(f)(g) = |\sigma(g)|^{-2n_{\rho}-1}(\Phi_{\rho,\psi_{\mathfrak{p}}} * f^{\vee})(g)$;
where $\Phi_{\rho,\psi_{\mathfrak{p}}}$ is an **invariant** distribution on $G(F_{\mathfrak{p}})$ such that

$$\Phi_{\rho,\psi_{\mathfrak{p}}}(\pi) = \gamma(\cdot,\pi,\rho,\psi_{\mathfrak{p}}) \cdot \mathrm{Id}_{\pi};$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Fourier transform

• For any
$$f \in \mathcal{C}^{\infty}_{c}(G(F_{\mathfrak{p}}))$$
,
 $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}(f)(g) = |\sigma(g)|^{-2n_{\rho}-1}(\Phi_{\rho,\psi_{\mathfrak{p}}} * f^{\vee})(g);$

where $\Phi_{\rho,\psi_{\mathfrak{p}}}$ is an **invariant** distribution on $G(F_{\mathfrak{p}})$ such that

$$\Phi_{
ho,\psi_{\mathfrak{p}}}(\pi) = \gamma(\cdot,\pi,
ho,\psi_{\mathfrak{p}})\cdot \mathrm{Id}_{\pi};$$

►
$$\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}$$
 extends to a unitary operator on
 $L^{2}(G(F_{\mathfrak{p}}), |\sigma(\cdot)|^{2n_{\rho}+1}dg)$ and $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}} \circ \mathcal{F}_{\rho,\psi_{\mathfrak{p}}^{-1}} = \mathrm{Id};$

Fourier transform

• For any
$$f \in \mathcal{C}^{\infty}_{c}(G(F_{\mathfrak{p}}))$$
,
 $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}(f)(g) = |\sigma(g)|^{-2n_{\rho}-1}(\Phi_{\rho,\psi_{\mathfrak{p}}} * f^{\vee})(g);$

where $\Phi_{\rho,\psi_{\mathfrak{p}}}$ is an **invariant** distribution on $G(F_{\mathfrak{p}})$ such that

$$\Phi_{
ho,\psi_{\mathfrak{p}}}(\pi) = \gamma(\cdot,\pi,
ho,\psi_{\mathfrak{p}})\cdot \mathrm{Id}_{\pi};$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}}$ extends to a unitary operator on $L^{2}(G(F_{\mathfrak{p}}), |\sigma(\cdot)|^{2n_{\rho}+1}dg)$ and $\mathcal{F}_{\rho,\psi_{\mathfrak{p}}} \circ \mathcal{F}_{\rho,\psi_{\mathfrak{p}}^{-1}} = \mathrm{Id};$
- ► For Godement-Jacquet, $\Phi_{\rho,\psi_{\mathfrak{p}}}(g) = \psi(\operatorname{tr}(g))|\operatorname{det}(g)|^{n}$.

Braverman-Kazhdan proposal: Local unramified Theorem (L.)

► For p non-archimedean,

$$\mathcal{S}_{
ho}(\mathcal{G}(\mathcal{F}_{\mathfrak{p}}))^{\mathcal{K}_{\mathfrak{p}} imes \mathcal{K}_{\mathfrak{p}}} = \mathbb{L}_{
ho, \mathfrak{p}} * \mathcal{C}^{\infty}_{c}(\mathcal{G}(\mathcal{F}_{\mathfrak{p}}))^{\mathcal{K}_{\mathfrak{p}} imes \mathcal{K}_{\mathfrak{p}}}$$

and

$$\Phi_{
ho,\psi_{\mathfrak{p}}}^{K_{\mathfrak{p}}} = \text{ Inverse Satake transform of } \gamma(-s - n_{
ho}, \pi_{\mathfrak{p}},
ho^{ee}, \psi_{\mathfrak{p}}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The proposal is verified in full detail in unramified setting;

Braverman-Kazhdan proposal: Local unramified Theorem (L.)

For p non-archimedean,

$$\mathcal{S}_{
ho}(\mathcal{G}(\mathcal{F}_{\mathfrak{p}}))^{\mathcal{K}_{\mathfrak{p}} imes \mathcal{K}_{\mathfrak{p}}} = \mathbb{L}_{
ho, \mathfrak{p}} * \mathcal{C}^{\infty}_{c}(\mathcal{G}(\mathcal{F}_{\mathfrak{p}}))^{\mathcal{K}_{\mathfrak{p}} imes \mathcal{K}_{\mathfrak{p}}}$$

and

$$\Phi_{\rho,\psi_{\mathfrak{p}}}^{K_{\mathfrak{p}}} = \text{ Inverse Satake transform of } \gamma(-s - n_{\rho}, \pi_{\mathfrak{p}}, \rho^{\vee}, \psi_{\mathfrak{p}}).$$

The proposal is verified in full detail in unramified setting;

For p archimedean, take L_{ρ,p} as the inverse Harish-Chandra transform of L(s, π_p, ρ), then

$$\mathbb{L}_{\rho,\mathfrak{p},\mathfrak{s}} = \mathbb{L}_{\rho,\mathfrak{p}} |\sigma(\cdot)|^{\mathfrak{s}}, \text{ and } \Phi_{\rho,\psi_{\mathfrak{p}},\mathfrak{s}}^{K_{\mathfrak{p}}} = \Phi_{\rho,\psi_{\mathfrak{p}}}^{K_{\mathfrak{p}}} |\sigma(\cdot)|^{\mathfrak{s}}$$

can be plugged into the Arthur-Selberg trace formula when $\operatorname{Re}(s)$ large.

Conjectural ingredients

► Schwartz space $S_{\rho}(G(\mathbb{A})) = \bigotimes_{\mathfrak{p}}' S_{\rho}(G(F_{\mathfrak{p}}))$ w.r.t. $\{\mathbb{L}_{\rho,\mathfrak{p}}\}_{\mathfrak{p}<\infty}$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjectural ingredients

► Schwartz space $S_{\rho}(G(\mathbb{A})) = \bigotimes_{\mathfrak{p}}' S_{\rho}(G(F_{\mathfrak{p}}))$ w.r.t. $\{\mathbb{L}_{\rho,\mathfrak{p}}\}_{\mathfrak{p}<\infty}$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Fourier transform $\mathcal{F}_{\rho,\psi} = \bigotimes_{\mathfrak{p}} \mathcal{F}_{\rho,\psi_{\mathfrak{p}}}$;

Conjectural ingredients

► Schwartz space $S_{\rho}(G(\mathbb{A})) = \bigotimes_{\mathfrak{p}}' S_{\rho}(G(F_{\mathfrak{p}}))$ w.r.t. $\{\mathbb{L}_{\rho,\mathfrak{p}}\}_{\mathfrak{p}<\infty}$;

- Fourier transform $\mathcal{F}_{\rho,\psi} = \bigotimes_{\mathfrak{p}} \mathcal{F}_{\rho,\psi_{\mathfrak{p}}}$;
- ρ -Poisson summation formula for $(\mathcal{S}_{\rho}(\mathcal{G}(\mathbb{A})), \mathcal{F}_{\rho,\psi})$.

 It is the first substantial case after the work of Godement-Jacquet;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- It is the first substantial case after the work of Godement-Jacquet;
- Establish the analytical theory of L(s, π, ρ) following the approach of Godement-Jacquet, provide new evidence substantially for the Braverman-Kazhdan proposal.

- ロ ト - 4 回 ト - 4 □

In the following, let F be a p-adic field.

(ロ)、(型)、(E)、(E)、 E) の(()

•
$$G = \mathbb{G}_m \times \mathrm{Sp}_{2n};$$

In the following, let F be a p-adic field.

(ロ)、(型)、(E)、(E)、 E) の(()

In the following, let F be a p-adic field.

$$\blacktriangleright \ G = \mathbb{G}_m \times \operatorname{Sp}_{2n};$$

$$\blacktriangleright \ \rho: \mathcal{G}^{\vee}(\mathbb{C}) = \mathbb{C}^{\times} \times \mathrm{SO}_{2n+1}(\mathbb{C}) \to \mathrm{GL}_{2n+1}(\mathbb{C});$$

 It is closely related to the doubling method of Piatetski-Shapiro and Rallis, the work of Lapid-Rallis, and other more recent works;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In the following, let F be a p-adic field.

•
$$G = \mathbb{G}_m \times \operatorname{Sp}_{2n};$$

$$\blacktriangleright \ \rho: \mathcal{G}^{\vee}(\mathbb{C}) = \mathbb{C}^{\times} \times \mathrm{SO}_{2n+1}(\mathbb{C}) \to \mathrm{GL}_{2n+1}(\mathbb{C});$$

- It is closely related to the doubling method of Piatetski-Shapiro and Rallis, the work of Lapid-Rallis, and other more recent works;
- The major work we need is the right normalization of the local intertwining operators appearing in doubling method;

In the following, let F be a p-adic field.

•
$$G = \mathbb{G}_m \times \operatorname{Sp}_{2n};$$

$$\blacktriangleright \ \rho: \mathcal{G}^{\vee}(\mathbb{C}) = \mathbb{C}^{\times} \times \mathrm{SO}_{2n+1}(\mathbb{C}) \to \mathrm{GL}_{2n+1}(\mathbb{C});$$

- It is closely related to the doubling method of Piatetski-Shapiro and Rallis, the work of Lapid-Rallis, and other more recent works;
- The major work we need is the right normalization of the local intertwining operators appearing in doubling method;
- Piatetski-Shapiro and Rallis, Lapid-Rallis and other more recent works found the right normalization which gave the local Langlands γ-factor via doubling local zeta integrals.

$$\blacktriangleright (F^{2n}, \langle \cdot, \cdot \rangle);$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$(F^{2n}, \langle \cdot, \cdot \rangle);$$

• $\operatorname{Sp}_{2n};$

$$(F^{2n}, \langle \cdot, \cdot \rangle);$$

$\blacktriangleright \operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n} \hookrightarrow \operatorname{Sp}_{4n} \text{ via } (F^{2n} \oplus F^{2n}, \langle \cdot, \cdot \rangle \oplus - \langle \cdot, \cdot \rangle);$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

$$\blacktriangleright (F^{2n}, \langle \cdot, \cdot \rangle);$$

$$\blacktriangleright \operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n} \hookrightarrow \operatorname{Sp}_{4n} \text{ via } (F^{2n} \oplus F^{2n}, \langle \cdot, \cdot \rangle \oplus - \langle \cdot, \cdot \rangle);$$

► $P = MN = \text{Stab}(L_{\Delta})$ a Siegel parabolic in Sp_{4n} , where $L_{\Delta} = \{(v, v) | v \in F^{2n}\}$ is a Lagrangian;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $(\Box 2n / \rangle).$

$$\begin{array}{l} (I - \langle \cdot, \cdot \rangle), \\ & \operatorname{Sp}_{2n}; \\ & \operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n} \hookrightarrow \operatorname{Sp}_{4n} \operatorname{via} \left(F^{2n} \oplus F^{2n}, \langle \cdot, \cdot \rangle \oplus - \langle \cdot, \cdot \rangle \right); \\ & P = MN = \operatorname{Stab}(L_{\Delta}) \text{ a Siegel parabolic in } \operatorname{Sp}_{4n}, \text{ where } \\ & L_{\Delta} = \{ (v, v) | \quad v \in F^{2n} \} \text{ is a Lagrangian}; \\ & \operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n} \hookrightarrow \operatorname{Sp}_{4n} \to P \backslash \operatorname{Sp}_{4n} \end{array}$$

has Zariski open dense image, with stabilizer

$$P \cap (\operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n}) = \operatorname{Sp}_{2n}^{\Delta} \hookrightarrow \operatorname{Sp}_{2n} \times \operatorname{Sp}_{2n};$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The following diagram illustrates the basic idea behind our work

$$\begin{split} & \underset{M^{\mathrm{ab}} w N \longrightarrow X_{P} \longleftarrow M^{\mathrm{ab}}(\mathrm{Sp}_{2n} \times \{\mathrm{I}_{2n}\}) \simeq \mathbb{G}_{m} \times \mathrm{Sp}_{2n} \\ & \underset{M^{\mathrm{ab}} w N \longrightarrow X_{P} \longleftarrow M^{\mathrm{ab}}(\mathrm{Sp}_{2n} \times \{\mathrm{I}_{2n}\}) \simeq \mathbb{G}_{m} \times \mathrm{Sp}_{2n} \\ & \underset{M^{\mathrm{ab}} = [P, P] \backslash \mathrm{Sp}_{4n}, w = (\mathrm{Id}_{2n}, -\mathrm{Id}_{2n}) \in \mathrm{Sp}_{2n} \times \mathrm{Sp}_{2n}, \\ & \underset{M^{\mathrm{ab}} = [M, M] \backslash M \simeq \mathbb{G}_{m}. \\ & \underset{WPw = P^{-}, M^{\mathrm{ab}} w N \text{ is Zariski open dense in } X_{P}; \\ & \underset{G = \mathbb{G}_{m} \times \mathrm{Sp}_{2n} \text{ is Zariski open dense in } X_{P}; \end{split}$$

(ロ)、(型)、(E)、(E)、 E) の(()

Harmonic analysis on $M^{\mathrm{ab}}wN \hookrightarrow X_P$

Fourier transform

► For
$$f \in \mathcal{C}^{\infty}_{c}(X_{P}(F))$$
, define
$$\mathcal{F}_{X,\psi}(f)(g) := \int_{F^{\times}}^{\mathrm{pv}} \eta_{\mathrm{pvs},\psi}(x) |x|^{-\frac{2n+1}{2}} \int_{N(F)} f(wn\mathfrak{s}(x)g) dn dx.$$

where $\mathfrak{s} : \mathbb{G}_m \to M$ is a section of $M \to [M, M] \setminus M \simeq \mathbb{G}_m$;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Harmonic analysis on $M^{\mathrm{ab}}wN \hookrightarrow X_P$

Fourier transform

For f ∈ C[∞]_c(X_P(F)), define
 F_{X,ψ}(f)(g) := ∫^{pv}_{F×} η_{pvs,ψ}(x)|x|⁻²ⁿ⁺¹/₂ ∫_{N(F)} f(wns(x)g)dndx.
 where s : G_m → M is a section of M → [M, M]\M ≃ G_m;
 η_{pvs,ψ}(x) is a distribution on F[×], which is a key ingredient

towards the understanding of $\mathcal{F}_{
ho,\psi}$ and $\mathcal{S}_{
ho}(\mathcal{G}(\mathcal{F}))$;

Harmonic analysis on $M^{\mathrm{ab}}wN \hookrightarrow X_P$

Fourier transform

▶ For $f \in C_c^{\infty}(X_P(F))$, define

$$\mathcal{F}_{X,\psi}(f)(g) := \int_{F^{\times}}^{\mathrm{pv}} \eta_{\mathrm{pvs},\psi}(x) |x|^{-\frac{2n+1}{2}} \int_{N(F)} f(\mathsf{wns}(x)g) dn dx.$$

where $\mathfrak{s} : \mathbb{G}_m \to M$ is a section of $M \to [M, M] \setminus M \simeq \mathbb{G}_m$;

- η_{pvs,ψ}(x) is a distribution on F[×], which is a key ingredient towards the understanding of F_{ρ,ψ} and S_ρ(G(F));
- The definition of $\eta_{\text{pvs},\psi}$ first appeared in [Braverman-Kazhdan, 2002], but that definition of $\eta_{\text{pvs},\psi}$ did not carry enough analytical information for our work.

 To understand the analytical nature of η_{pvs,ψ}, we develop the local harmonic analysis associated to η_{pvs,ψ} in the spirit of Braverman-Kazhdan proposal;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- To understand the analytical nature of η_{pvs,ψ}, we develop the local harmonic analysis associated to η_{pvs,ψ} in the spirit of Braverman-Kazhdan proposal;
- An explicit formula for η_{pvs,ψ} is obtained from the functional equation associated to zeta integrals on the prehomogeneous space (GL_{2n+1}, S_{2n+1}), where S_{2n+1} is the space of (2n + 1) × (2n + 1) symmetric matrices. More precisely, for a character χ, the following zeta integral is considered

$$\mathcal{Z}(s, f, \chi) = \int_{S_{2n+1}(F)} f(X)\chi(X) |\det X|^{s-(n+1)} dX;$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- To understand the analytical nature of η_{pvs,ψ}, we develop the local harmonic analysis associated to η_{pvs,ψ} in the spirit of Braverman-Kazhdan proposal;
- An explicit formula for η_{pvs,ψ} is obtained from the functional equation associated to zeta integrals on the prehomogeneous space (GL_{2n+1}, S_{2n+1}), where S_{2n+1} is the space of (2n + 1) × (2n + 1) symmetric matrices. More precisely, for a character χ, the following zeta integral is considered

$$\mathcal{Z}(s, f, \chi) = \int_{S_{2n+1}(F)} f(X)\chi(X) |\det X|^{s-(n+1)} dX;$$

The functional equation for the zeta integrals on (GL_m, S_m) is known by the work of Piatetski-Shapiro and Rallis, and T. Ikeda.

The following diagram illustrates the idea

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where

- *F.I.* is the fiber integration along det : $S_{2n+1} \rightarrow F$;
- £ is the induced linear transform.

Theorem (JLZ)

 \blacktriangleright \mathfrak{L} is well-defined;

Theorem (JLZ)

- £ is well-defined;
- S⁺_{pvs}(F[×]) consists of functions f in C[∞](F[×]), such that
 1. supp(f) is bounded, i.e. f(x) = 0 for |x| ≫ 0;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (JLZ)

- £ is well-defined;
- S⁺_{pvs}(F[×]) consists of functions f in C[∞](F[×]), such that
 1. supp(f) is bounded, i.e. f(x) = 0 for |x| ≫ 0;
 2. for |x| ≪ 1,

$$\begin{split} f(x) &= a_0^+(\operatorname{ac}(x))|x|^{-2n} \\ &+ \sum_{i=0}^{n-1} a_{i,+}^+(\operatorname{ac}(x))|x|^{i-\frac{2n-1}{2}} + a_{i,-}^+(\operatorname{ac}(x))|x|^{i-\frac{2n-1}{2}}(-1)^{\operatorname{ord}(x)} \end{split}$$

where a_0^+ is a locally constant function on \mathfrak{o}_F^{\times} that is \mathfrak{o}_F^{\times} -invariant, $a_{i,\pm}^+$ are locally constant functions on \mathfrak{o}_F^{\times} that are $\mathfrak{o}_F^{\times 2}$ -invariant, $\operatorname{ac}(x) = \frac{x}{|x|}$;

Theorem (JLZ)

- £ is well-defined;
- S⁺_{pvs}(F[×]) consists of functions f in C[∞](F[×]), such that
 1. supp(f) is bounded, i.e. f(x) = 0 for |x| ≫ 0;
 2. for |x| ≪ 1,

$$F(x) = a_0^+(\operatorname{ac}(x))|x|^{-2n} + \sum_{i=0}^{n-1} a_{i,+}^+(\operatorname{ac}(x))|x|^{i-\frac{2n-1}{2}} + a_{i,-}^+(\operatorname{ac}(x))|x|^{i-\frac{2n-1}{2}}(-1)^{\operatorname{ord}(x)}$$

where a_0^+ is a locally constant function on \mathfrak{o}_F^{\times} that is \mathfrak{o}_F^{\times} -invariant, $a_{i,\pm}^+$ are locally constant functions on \mathfrak{o}_F^{\times} that are $\mathfrak{o}_F^{\times 2}$ -invariant, $\operatorname{ac}(x) = \frac{x}{|x|}$;

▶ In particular, $C_c^{\infty}(F^{\times}) \hookrightarrow S_{pvs}^+(F^{\times})$ is of finite codimension;

(ロ)、(型)、(E)、(E)、(E)、(O)への

Paley-Wiener theorem for $\mathcal{S}^{\pm}_{\text{pvs}}(F^{\times})$

Theorem (JLZ)

Under Mellin transform (∫_{F×} f(x)χ_s(x)dx), S⁺_{pvs}(F[×]) is captured by

$$L(s,\chi)\prod_{i=0}^{n-1}L(2s+2i+1,\chi^2).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It follows from the description of G.C.D. for the zeta integral $\mathcal{Z}(s, \cdot, \chi)$ attached to (GL_m, S_m) , which is established in our work (for χ unramified it is proved by Piatetski-Shapiro and Rallis).

Proposition (JLZ)

For any $f \in S^+_{pvs}(F^{\times})$, there is the following functional equation after meromorphic continuation

$$\int_{F^{\times}} \mathfrak{L}(f)\chi_{s+\frac{n+1}{2}}(t)^{-1}dt = \beta_{\psi}(\chi_s)\int_{F^{\times}} f(t)\chi_{s+\frac{2n+1}{2}}(t)dt$$

where

$$\beta_{\psi}(\chi_s) = \gamma(s - \frac{2n-1}{2}, \chi, \psi) \prod_{r=1}^n \gamma(2s - 2n + 2r, \chi^2, \psi).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
Theorem (JLZ)

For k > 0, let 1_k be the normalized characteristic function of 1 + ∞^k 𝔅_F, then

 $\lim_{k\to\infty}\mathfrak{L}(\mathbf{1}_k)(x)$

is stably convergent, i.e. for fixed $x \in F^{\times}$, there exists N such that $\mathfrak{L}(\mathbf{1}_k)(x) = \mathfrak{L}(\mathbf{1}_N)(x)$ for any k > N;

Theorem (JLZ)

 For k > 0, let 1_k be the normalized characteristic function of 1 + ω^k o_F, then

 $\lim_{k\to\infty}\mathfrak{L}(\mathbf{1}_k)(x)$

is stably convergent, i.e. for fixed $x \in F^{\times}$, there exists N such that $\mathfrak{L}(\mathbf{1}_k)(x) = \mathfrak{L}(\mathbf{1}_N)(x)$ for any k > N;

Define

$$\eta_{\mathrm{pvs},\psi}(x) = |x|^{-\frac{2n+1}{2}} \lim_{k \to \infty} \mathfrak{L}(\mathbf{1}_k)(x).$$

Then $\eta_{\text{pvs},\psi}(x)$ is locally constant on F^{\times} .

Theorem (JLZ)

The generalized Fourier transform £ = £_{η_{pvs},ψ : S⁺_{pvs}(F[×]) → S⁻_{pvs}(F[×]) is given by the following principal value integral}

$$\mathcal{L}(f) = (\eta_{ ext{pvs},\psi}|\cdot|^{rac{2n+1}{2}}*f^{ee}), \quad f\in\mathcal{S}^+_{ ext{pvs}}(\mathsf{F}^{ee}).$$

Theorem (JLZ)

The generalized Fourier transform
𝔅 = 𝔅_{η_{pvs},ψ} : 𝔅⁺_{pvs}(𝑘[×]) → 𝔅⁻_{pvs}(𝑘[×]) is given by the following principal value integral

$$\mathcal{L}(f) = (\eta_{ ext{pvs},\psi}|\cdot|^{rac{2n+1}{2}}*f^{ee}), \quad f\in\mathcal{S}^+_{ ext{pvs}}({ extsf{F}}^{ee}).$$

For any character χ_s = χ| · |^s of F[×], the following principal value integral is convergent whenever Re(s) is sufficiently small, and admits meromorphic continuation to s ∈ C,

$$egin{aligned} &\eta_{ ext{pvs},\psi}(\chi_{s}) &:= \eta_{ ext{pvs},\psi} st \chi_{s}(e) \ &= \lim_{k o \infty} \int_{q^{-k} \leq |x| \leq q^{k}}^{ ext{pv}} \eta_{ ext{pvs},\psi}(x) \chi_{s}(x^{-1}) dx \ &= eta_{\psi}(\chi_{s}). \end{aligned}$$

In conclusion, we develop a new type of harmonic analysis on F[×] associated to (S[±]_{pvs}(F[×]), L_{η_{pvs}, ψ}, β_ψ(χ_s)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In conclusion, we develop a new type of harmonic analysis on F[×] associated to (S[±]_{pvs}(F[×]), L_{η_{pvs,ψ}, β_ψ(χ_s)).}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 It can be viewed as the abelian case of the Braverman-Kazhdan proposal.

- In conclusion, we develop a new type of harmonic analysis on F[×] associated to (S[±]_{pvs}(F[×]), L_{η_{pvs,ψ}, β_ψ(χ_s)).}
- It can be viewed as the abelian case of the Braverman-Kazhdan proposal.
- This abelian harmonic analysis plays the key role in our work.

Harmonic analysis on $M^{\mathrm{ab}}wN \hookrightarrow X_P$

Fix $f \in \mathcal{C}^{\infty}_{c}(X_{P}(F))$. Define

$$R_X(f)(g) := \int_{N(F)} f(wng) dn.$$

• The function in $a \in F^{\times}$

$$F_g(a) := |a|^{(2n+1)} R_X(f)(\mathfrak{s}(a)g)$$

lies in $\mathcal{S}^+_{\mathrm{pvs}}(F^{\times})$.

Harmonic analysis on $M^{\mathrm{ab}}wN \hookrightarrow X_P$

Fix $f \in \mathcal{C}^{\infty}_{c}(X_{P}(F))$. Define

$$R_X(f)(g) := \int_{N(F)} f(wng) dn.$$

Proposition (JLZ)

• The function in $a \in F^{\times}$

$$F_g(a) := |a|^{(2n+1)} R_X(f)(\mathfrak{s}(a)g)$$

lies in $\mathcal{S}^+_{\text{pvs}}(F^{\times})$. $\blacktriangleright \mathcal{L}_{\eta_{\text{pvs},\psi}}(F_g)(a) = |a|^{2n+1} \mathcal{F}_{X,\psi}(f)(\mathfrak{s}^{-1}(a)g)$ lies in $\mathcal{S}^-_{\text{pvs}}(F^{\times})$.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ○ ● ● ●

Compatibility between $\mathcal{F}_{X,\psi}$ and the unnormalized intertwining operator $M_w(s,\chi)$

Proposition (JLZ)

• Let
$$\mathcal{P}_{\chi_s} : \mathcal{C}^{\infty}_c(X_P(F)) \to \mathrm{I}(s,\chi) = \mathrm{Ind}_P^{\mathrm{Sp}_{4n}}(\chi_s),$$

 $\mathcal{P}_{\chi_s}(f)(g) = \int_{F^{\times}} \chi_s(a) |a|^{\frac{2n+1}{2}} f(\mathfrak{s}^{-1}(a)g) da.$

Then $\mathcal{P}_{\chi_s^{-1}} \circ \mathcal{F}_{X,\psi}(f)(g)$ is absolutely convergent for $\operatorname{Re}(s)$ sufficiently small, and the following identity holds after meromorphic continuation

$$\mathcal{P}_{\chi_s^{-1}} \circ \mathcal{F}_{X,\psi}(f)(g) = \beta_{\psi}(\chi_s)(\mathrm{M}_w(s,\chi) \circ \mathcal{P}_{\chi_s})(f)(g).$$

Basic properties of $\mathcal{F}_{X,\psi}$ and $\mathcal{S}_{pvs}(X_P(F))$

Define

$$\mathcal{S}_{\mathrm{pvs}}(X_{\mathcal{P}}(F)) = \mathcal{C}^{\infty}_{c}(X_{\mathcal{P}}(F)) + \mathcal{F}_{X,\psi}(\mathcal{C}^{\infty}_{c}(X_{\mathcal{P}}(F))).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition (JLZ)

•
$$\mathcal{F}_{X,\psi}$$
 stabilizes $\mathcal{S}_{\text{pvs}}(X_P(F))$.

Basic properties of $\mathcal{F}_{X,\psi}$ and $\mathcal{S}_{pvs}(X_P(F))$

Define

$$\mathcal{S}_{\mathrm{pvs}}(X_{\mathcal{P}}(F)) = \mathcal{C}^{\infty}_{c}(X_{\mathcal{P}}(F)) + \mathcal{F}_{X,\psi}(\mathcal{C}^{\infty}_{c}(X_{\mathcal{P}}(F))).$$

Proposition (JLZ)

*F*_{X,ψ} stabilizes *S*_{pvs}(*X*_P(*F*)).
 |2|ⁿ⁽²ⁿ⁺¹⁾ · *F*_{X,ψ} extends to a unitary operator on L²(*X*_P(*F*)) and *F*_{X,ψ} ∘ *F*_{X,ψ⁻¹} = |2|⁻²ⁿ⁽²ⁿ⁺¹⁾Id.

・ロト・日本・日本・日本・日本・日本

Basic properties of $\mathcal{F}_{X,\psi}$ and $\mathcal{S}_{pvs}(X_P(F))$

Define

$$\mathcal{S}_{\mathrm{pvs}}(X_{\mathcal{P}}(F)) = \mathcal{C}^{\infty}_{c}(X_{\mathcal{P}}(F)) + \mathcal{F}_{X,\psi}(\mathcal{C}^{\infty}_{c}(X_{\mathcal{P}}(F))).$$

Proposition (JLZ)

- *F*_{X,ψ} stabilizes S_{pvs}(X_P(F)).
 |2|ⁿ⁽²ⁿ⁺¹⁾ · *F*_{X→} extends to a unitary of the stabilized stabil
- ► $|2|^{n(2n+1)} \cdot \mathcal{F}_{X,\psi}$ extends to a unitary operator on $L^2(X_P(F))$ and $\mathcal{F}_{X,\psi} \circ \mathcal{F}_{X,\psi^{-1}} = |2|^{-2n(2n+1)}$ Id.

Via P_{χs}, S_{pvs}(X_P(F)) projects onto the space of good sections I[†](s, χ) introduced by S. Yamana.

Asymptotic of $S_{\text{pvs}}(X_P(F))$

Proposition (JLZ) A function $f \in C^{\infty}(X_P(F))$ belongs to $S_{pvs}(X_P(F))$ if and only if f is right $K_{Sp_{4n}}$ -finite, and as a function in $a \in F^{\times}$,

$$|a|^{2n+1}f(\mathfrak{s}_a^{-1}k)$$

belongs to $\mathcal{S}^{-}_{\mathrm{pvs}}(F^{\times})$ for any fixed $k \in K_{\mathrm{Sp}_{4n}}$.

▶ Therefore functions in $S_{pvs}(X_P(F))$ can be described by their asymptotic behavior near the singular point.

Asymptotic of $S_{pvs}(X_P(F))$

Proposition (JLZ) A function $f \in C^{\infty}(X_P(F))$ belongs to $S_{pvs}(X_P(F))$ if and only if fis right $K_{Sp_{4n}}$ -finite, and as a function in $a \in F^{\times}$,

$$|a|^{2n+1}f(\mathfrak{s}_a^{-1}k)$$

belongs to $\mathcal{S}^{-}_{\mathrm{pvs}}(F^{\times})$ for any fixed $k \in K_{\mathrm{Sp}_{4n}}$.

- ▶ Therefore functions in $S_{pvs}(X_P(F))$ can be described by their asymptotic behavior near the singular point.
- ► The support of functions in S_{pvs}(X_P(F)) in X_P^{aff}(F) is compact. In particular X_P^{aff}(F)\X_P(F) = {0

Harmonic analysis on $\mathbb{G}_m \times \mathrm{Sp}_{2n} \hookrightarrow X_P$

Proposition (JLZ)

▶ $C : wN \rightarrow Sp_{2n} \times {I_{2n}}$ is given by the Cayley transform.

Harmonic analysis on $\mathbb{G}_m \times \operatorname{Sp}_{2n} \hookrightarrow X_P$

Proposition (JLZ)

- ▶ C : wN → $Sp_{2n} \times {I_{2n}}$ is given by the Cayley transform.
- The Jacobian of C^{-1} is given by

$$\mathfrak{j}_{\mathcal{C}^{-1}}(h) = c_0 |\det(h - I_{2n})|^{-(2n+1)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where
$$c_0 = rac{1}{\prod_{i=1}^n \zeta_F(2i)}$$
.

Harmonic analysis on $\mathbb{G}_m \times \operatorname{Sp}_{2n} \hookrightarrow X_P$

For
$$f \in S_{\text{pvs}}(X_P(F))$$
, define
 $\phi_f(a, h) := f(\mathfrak{s}(a)^{-1} \cdot (h, I_{2n}))|a|^{\frac{2n+1}{2}}$.
Set
 $S_{\rho}(G(F)) := \{\phi_f | f \in S_{\text{pvs}}(X_P(F))\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Harmonic analysis on $\mathbb{G}_m \times \mathrm{Sp}_{2n} \hookrightarrow X_P$

For
$$f \in S_{pvs}(X_P(F))$$
, define
 $\phi_f(a, h) := f(\mathfrak{s}(a)^{-1} \cdot (h, I_{2n}))|a|^{\frac{2n+1}{2}}$.
Set

$$\mathcal{S}_{
ho}(G(F)) := \{ \phi_f | \quad f \in \mathcal{S}_{\mathrm{pvs}}(X_P(F)) \}.$$

$$\Phi_{\rho,\psi}(a,h) := c_0 \cdot \eta_{\mathrm{pvs},\psi}(a \cdot \det(h + \mathrm{I}_{2n})) \cdot |\det(h + \mathrm{I}_{2n})|^{-\frac{2n+1}{2}}$$

For $f \in \mathcal{C}^{\infty}_{c}(X_{P}(F))$, the ρ -Fourier transform is defined by

$$\mathcal{F}_{
ho,\psi}(\phi_f)(a,h):=\int_{F^{ imes}}^{\mathrm{pv}}\int_{\mathrm{Sp}_{2n}(F)}\Phi_{
ho,\psi}(ax,gh)\phi_f(x,g)dxdg.$$

Compatibility between $\mathcal{F}_{X,\psi}$ and $\mathcal{F}_{\rho,\psi}$

Proposition (JLZ)

► For
$$f \in C^{\infty}_{c}(X_{P}(F))$$
,
 $\phi_{\mathcal{F}_{X,\psi}(f)}(a,h) = |2|^{-n(2n+1)}\mathcal{F}_{\rho,\psi}(\phi_{f})(2^{-2n}a,-h^{-1}).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Compatibility between $\mathcal{F}_{X,\psi}$ and $\mathcal{F}_{\rho,\psi}$

Proposition (JLZ)

$$\phi_{\mathcal{F}_{X,\psi}(f)}(a,h) = |2|^{-n(2n+1)} \mathcal{F}_{\rho,\psi}(\phi_f)(2^{-2n}a,-h^{-1}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Compatibility between $\mathcal{F}_{\rho,\psi}$ and the normalized intertwining operators $M_w^{\dagger}(s, \chi, \psi)$

Proposition (JLZ) For $h \in \operatorname{Sp}_{2n}(F)$ and $f \in S_{\operatorname{pvs}}(X_P(F))$, $\mathcal{P}_{\gamma_c^{-1}} \circ f_{\mathcal{F}_{\rho,\psi}(\phi_f)}((-h^{-1}, \operatorname{Id}_{2n}))$

is well-defined for $\operatorname{Re}(s)$ sufficiently small, and the following identity holds after meromorphic continuation to $s \in \mathbb{C}$,

$$\mathrm{M}^{\dagger}_{\mathsf{w}}(s,\chi,\psi)\circ\mathcal{P}_{\chi_{s}}(f)((h,\mathrm{I}))=\mathcal{P}_{\chi_{s}^{-1}}\circ f_{\mathcal{F}_{\rho,\psi}(\phi_{f})}((-h^{-1},\mathrm{I})).$$

Proposition (JLZ)

Proposition (JLZ)

- $\mathcal{F}_{\rho,\psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$.
- *F_{ρ,ψ}* extends to a unitary operator on L²(G(F), dg).

Proposition (JLZ)

*F*_{ρ,ψ} stabilizes *S*_ρ(*G*(*F*)). *F*_{ρ,ψ} extends to a unitary operator on L²(*G*(*F*), dg). *F*_{ρ,ψ⁻¹} ∘ *F*_{ρ,ψ} = Id.

Proposition (JLZ) Fix $\chi \otimes \pi \in Irr(G(F))$. Set

$$\mathcal{Z}(s, f, \varphi) = \int_{F^{\times} \times \operatorname{Sp}_{2n}(F)} \phi(a, h) \varphi(a, h) |a|^{s - \frac{1}{2}} dadh,$$

with $\phi \in S_{\rho}(G(F)), \varphi \in C(\chi \otimes \pi)$. The integral is absolutely convergent for $\operatorname{Re}(s)$ large, and represents a rational function in q^{-s} .

It can be deduced from the asymptotic of functions in S_{pvs}(X_P(F)).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proposition (JLZ)

• After restriction, the linear functional $\mathcal{Z}(s, \cdot, \cdot)$ lies in $\operatorname{Hom}_{G(F)\times G(F)}(\mathcal{C}^{\infty}_{c}(G(F))\otimes (\chi^{-1}_{s-\frac{1}{2}}\otimes \pi^{\vee})\otimes (\chi_{s-\frac{1}{2}}\otimes \pi), \mathbb{C}),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where the latter space is of dimension 1.

Proposition (JLZ)

► After restriction, the linear functional $\mathcal{Z}(s, \cdot, \cdot)$ lies in $\operatorname{Hom}_{G(F)\times G(F)}(\mathcal{C}^{\infty}_{c}(G(F)) \otimes (\chi^{-1}_{s-\frac{1}{2}} \otimes \pi^{\vee}) \otimes (\chi_{s-\frac{1}{2}} \otimes \pi), \mathbb{C}),$

where the latter space is of dimension 1.

By equivariant property there exists a rational function $\Gamma_{\rho,\psi}(s,\chi\otimes\pi)$ in q^{-s} such that

$$\mathcal{Z}(1-s,\mathcal{F}_{
ho,\psi}(f),arphi^{ee})=\mathsf{\Gamma}_{
ho,\psi}(s,\chi\otimes\pi)\cdot\mathcal{Z}(s,f,arphi).$$

Basic properties of $S_{\rho}(G(F))$ and $\mathcal{F}_{\rho,\psi}$ Proposition (JLZ)

Let φ_{χ_s⊗π} ∈ C(χ_s ⊗ π). Then as distributions on G(F), the following identity holds by meromorphic continuation,

$$\mathcal{F}_{\rho,\psi}(\varphi_{\chi_{s}\otimes\pi}^{\vee})=\mathsf{\Gamma}_{\rho,\psi}(\frac{1}{2},\chi_{s}\otimes\pi)\cdot\varphi_{\chi_{s}\otimes\pi}.$$

where for $f \in \mathcal{C}^{\infty}_{c}(G(F))$,

$$(\mathcal{F}_{
ho,\psi}(arphi_{\chi_{s}\otimes\pi}^{ee}),f)_{\mathcal{G}}:=(arphi_{\chi_{s}\otimes\pi}^{ee},\mathcal{F}_{
ho,\psi}(f))_{\mathcal{G}}$$

whenever the latter does not touch the poles. In particular $\Gamma_{\rho,\psi}(s,\chi\otimes\pi)$ is a Gamma function in the sense of Gelfand and Graev.

Basic properties of $S_{\rho}(G(F))$ and $\mathcal{F}_{\rho,\psi}$ Proposition (JLZ)

Let φ_{χ_s⊗π} ∈ C(χ_s ⊗ π). Then as distributions on G(F), the following identity holds by meromorphic continuation,

$$\mathcal{F}_{\rho,\psi}(\varphi_{\chi_{s}\otimes\pi}^{\vee})=\mathsf{\Gamma}_{\rho,\psi}(\frac{1}{2},\chi_{s}\otimes\pi)\cdot\varphi_{\chi_{s}\otimes\pi}.$$

where for $f \in \mathcal{C}^{\infty}_{c}(G(F))$,

$$(\mathcal{F}_{
ho,\psi}(arphi_{\chi_{s}\otimes\pi}^{ee}),f)_{\mathcal{G}}:=(arphi_{\chi_{s}\otimes\pi}^{ee},\mathcal{F}_{
ho,\psi}(f))_{\mathcal{G}}$$

whenever the latter does not touch the poles. In particular $\Gamma_{\rho,\psi}(s,\chi\otimes\pi)$ is a Gamma function in the sense of Gelfand and Graev.

$$\Gamma_{
ho,\psi}(rac{1}{2},\chi_s\otimes\pi)\cdot\Gamma_{
ho,\psi^{-1}}(rac{1}{2},\chi_s^{-1}\otimes\pi^{\vee})=1.$$

Basic properties of $\Phi_{\rho,\psi}$

▶ Set $G_{\ell} = \{(a, h) \in G(F) = F^{\times} \times \operatorname{Sp}_{2n} | \quad |a| = q^{-\ell}\}$. Let ch_{ℓ} be the characteristic function of G_{ℓ} .

► Set
$$\Phi_{\rho,\psi,\ell} = \Phi_{\rho,\psi} \cdot ch_{\ell}$$
.

Basic properties of $\Phi_{\rho,\psi}$ Theorem (JLZ)

> • The distribution $\Phi_{\rho,\psi,\ell}$ lies in the Bernstein center of G(F). For $\chi \otimes \pi \in Irr(G(F))$, set

$$(\chi\otimes\pi)(\Phi_{
ho,\psi,\ell})=f_\ell(\chi\otimes\pi)\mathrm{Id}_{\chi\otimes\pi}.$$

Basic properties of $\Phi_{\rho,\psi}$ Theorem (JLZ)

> The distribution $\Phi_{\rho,\psi,\ell}$ lies in the Bernstein center of G(F). For $\chi \otimes \pi \in Irr(G(F))$, set

$$(\chi\otimes\pi)(\Phi_{
ho,\psi,\ell})=f_\ell(\chi\otimes\pi)\mathrm{Id}_{\chi\otimes\pi}.$$

The summation

$$\sum_{\ell} f_{\ell}(\chi_{s} \otimes \pi)$$

is convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$.

Basic properties of $\Phi_{\rho,\psi}$ Theorem (JLZ)

> The distribution $\Phi_{\rho,\psi,\ell}$ lies in the Bernstein center of G(F). For $\chi \otimes \pi \in Irr(G(F))$, set

$$(\chi\otimes\pi)(\Phi_{
ho,\psi,\ell})=f_\ell(\chi\otimes\pi)\mathrm{Id}_{\chi\otimes\pi}.$$

The summation

$$\sum_{\ell} f_{\ell}(\chi_{s} \otimes \pi)$$

is convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$.

The following identity holds after meromorphic continuation

$$\sum_{\ell} f_{\ell}(\chi_{s} \otimes \pi) = \mathsf{\Gamma}_{\rho,\psi}(\frac{1}{2},\chi_{s}^{-1} \otimes \pi^{\vee})$$

Verification

Corollary (JLZ)

Based on the work of Yamana, for any χ ⊗ π ∈ Irr(G(F)), the following set

$$\mathcal{I}_{\chi\otimes\pi}=\{\mathcal{Z}(\pmb{s},\phi,arphi)|\quad\phi\in\mathcal{S}_{
ho}(\pmb{G}(\pmb{F})),arphi\in\mathcal{C}(\chi\otimes\pi)\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is a finitely generated fractional ideal of $\mathbb{C}[q^{-s}, q^s]$ with generator $L(s, \chi \otimes \pi, \rho)$.

Verification

Corollary (JLZ)

Based on the work of Yamana, for any χ ⊗ π ∈ Irr(G(F)), the following set

$$\mathcal{I}_{\chi\otimes\pi}=\{\mathcal{Z}(\pmb{s},\phi,arphi)|\quad\phi\in\mathcal{S}_{
ho}(\mathcal{G}(\mathcal{F})),arphi\in\mathcal{C}(\chi\otimes\pi)\}$$

is a finitely generated fractional ideal of $\mathbb{C}[q^{-s}, q^s]$ with generator $L(s, \chi \otimes \pi, \rho)$.

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ