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Preliminaries

I F number field, A = AF ;

I G/F reductive;

I ρ : LG → GL(Vρ);

I π ' ⊗pπp ∈ Acusp(G );

I According to R. Langlands, one should be able to define

L(s, π, ρ) =
∏
p

L(s, πp, ρ);

I By Langlands, L(s, π, ρ) (actually the partial L-function) is
absolutely convergent for Re(s) large;
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Preliminaries

Langlands’ conjecture

L(s, π, ρ) has a meromorphic continuation to s ∈ C, and the
functional equation

L(1− s, π∨, ρ) = ε(s, π, ρ)L(s, π, ρ)

holds where ε(s, π, ρ) is non-zero entire in s ∈ C.

I The conjecture is known for a special list of (G , ρ);

I Methods: Godement-Jacquet (Tate), Rankin-Selberg;
Langlands-Shahidi; Trace formula;
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Preliminaries

Natural question

Establish the basic analytic properties for L(s, π, ρ) through
harmonic analysis on G (or related spherical varieties).



Godement-Jacquet

I R. Godement and H. Jacquet established the M.C. and F.E. of
the standard L-function L(s, π) of GLn (over F -central simple
algebras) via harmonic analysis on GLn ↪→ Mn, generalizing
the work of Tate for n = 1 (when n = 2 it was also done in
the last chapter of Jacquet-Langlands).

I G = GLn;

I LG = GLn(C)×WF , ρ = Id⊗ {trivial}.
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Godement-Jacquet: Local

For convenience, let p be a non-archimedean place of F .

Ingredients

I Schwartz space S(G (Fp)) = C∞c (Mn(Fp))|G(Fp);

I Fourier transform Fψp : S(G (Fp))→ S(G (Fp));
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Godement-Jacquet: Local theory

For f ∈ S(G (Fp)), set

Z(s, f , ϕπp) =

∫
G(Fp)

f (g)ϕπp(g)| det g |s+ n−1
2

Fp
dg , s ∈ C,

where ϕπp ∈ C(πp) (the space of matrix coefficients of πp).



Godement-Jacquet: Local theory

Theorem (Godement-Jacquet)

I Z(s, f , ϕπp) is absolutely convergent for Re(s) sufficiently
large, and is a rational function in q−s ;

I the set {Z(s, f , ϕπp)| f ∈ S(G (Fp)), ϕπp ∈ C(πp)} is a
fractional ideal of C[q−s , qs ] with generator 1

P(q−s) , where

P(q−s) is a polynomial with P(0) = 1. Set L(s, πp) = 1
P(q−s) ;

I there exists a rational function γ(s, πp, ψp) in q−s such that
the following functional equation holds for any f ∈ S(G (Fp))

Z(1− s,Fψp(f ), ϕ∨πp) = γ(s, πp, ψp)Z(s, f , ϕπp).

I Let 1p be the characteristic function of Mn(op) ⊂ Mn(Fp).
Then Fψp(1p) = 1p and Z(s, 1p, ϕπp) = L(s, πp) for any
unramified representation πp and ϕπp zonal spherical.



Godement-Jacquet: Local theory

Theorem (Godement-Jacquet)

I Z(s, f , ϕπp) is absolutely convergent for Re(s) sufficiently
large, and is a rational function in q−s ;

I the set {Z(s, f , ϕπp)| f ∈ S(G (Fp)), ϕπp ∈ C(πp)} is a
fractional ideal of C[q−s , qs ] with generator 1

P(q−s) , where

P(q−s) is a polynomial with P(0) = 1. Set L(s, πp) = 1
P(q−s) ;

I there exists a rational function γ(s, πp, ψp) in q−s such that
the following functional equation holds for any f ∈ S(G (Fp))

Z(1− s,Fψp(f ), ϕ∨πp) = γ(s, πp, ψp)Z(s, f , ϕπp).

I Let 1p be the characteristic function of Mn(op) ⊂ Mn(Fp).
Then Fψp(1p) = 1p and Z(s, 1p, ϕπp) = L(s, πp) for any
unramified representation πp and ϕπp zonal spherical.



Godement-Jacquet: Local theory

Theorem (Godement-Jacquet)

I Z(s, f , ϕπp) is absolutely convergent for Re(s) sufficiently
large, and is a rational function in q−s ;

I the set {Z(s, f , ϕπp)| f ∈ S(G (Fp)), ϕπp ∈ C(πp)} is a
fractional ideal of C[q−s , qs ] with generator 1

P(q−s) , where

P(q−s) is a polynomial with P(0) = 1. Set L(s, πp) = 1
P(q−s) ;

I there exists a rational function γ(s, πp, ψp) in q−s such that
the following functional equation holds for any f ∈ S(G (Fp))

Z(1− s,Fψp(f ), ϕ∨πp) = γ(s, πp, ψp)Z(s, f , ϕπp).

I Let 1p be the characteristic function of Mn(op) ⊂ Mn(Fp).
Then Fψp(1p) = 1p and Z(s, 1p, ϕπp) = L(s, πp) for any
unramified representation πp and ϕπp zonal spherical.



Godement-Jacquet: Local theory

Theorem (Godement-Jacquet)

I Z(s, f , ϕπp) is absolutely convergent for Re(s) sufficiently
large, and is a rational function in q−s ;

I the set {Z(s, f , ϕπp)| f ∈ S(G (Fp)), ϕπp ∈ C(πp)} is a
fractional ideal of C[q−s , qs ] with generator 1

P(q−s) , where

P(q−s) is a polynomial with P(0) = 1. Set L(s, πp) = 1
P(q−s) ;

I there exists a rational function γ(s, πp, ψp) in q−s such that
the following functional equation holds for any f ∈ S(G (Fp))

Z(1− s,Fψp(f ), ϕ∨πp) = γ(s, πp, ψp)Z(s, f , ϕπp).

I Let 1p be the characteristic function of Mn(op) ⊂ Mn(Fp).
Then Fψp(1p) = 1p and Z(s, 1p, ϕπp) = L(s, πp) for any
unramified representation πp and ϕπp zonal spherical.



Godement-Jacquet: Global theory

Ingredients

I Schwartz space S(G (A)) =
⊗′

p S(G (Fp)) w.r.t. {1p}p<∞;

I Fourier transform Fψ =
⊗

pFψp ;

I For f ∈ S(G (A)), consider

Z(s, f , ϕπ) =

∫
G(A)

f (g)ϕπ(g)| det g |s+ n−1
2

A d×g , s ∈ C,

where ϕπ ∈ C(π).



Godement-Jacquet: Global theory

Ingredients

I Schwartz space S(G (A)) =
⊗′

p S(G (Fp)) w.r.t. {1p}p<∞;

I Fourier transform Fψ =
⊗

pFψp ;

I For f ∈ S(G (A)), consider

Z(s, f , ϕπ) =

∫
G(A)

f (g)ϕπ(g)| det g |s+ n−1
2

A d×g , s ∈ C,

where ϕπ ∈ C(π).



Godement-Jacquet: Global theory

Ingredients

I Schwartz space S(G (A)) =
⊗′

p S(G (Fp)) w.r.t. {1p}p<∞;

I Fourier transform Fψ =
⊗

pFψp ;

I For f ∈ S(G (A)), consider

Z(s, f , ϕπ) =

∫
G(A)

f (g)ϕπ(g)| det g |s+ n−1
2

A d×g , s ∈ C,

where ϕπ ∈ C(π).



Godement-Jacquet: Global theory

Theorem (Godement-Jacquet)

I When Re(s) is sufficiently large, Z(s, f , ϕπ) is absolutely
convergent, and Z(s, f , ϕπ) =

∏
pZp(s, fp, ϕπp) whenever

f = ⊗pfp is a pure tensor.

I Z(s, f , ϕπ) has a meromorphic continuation to s ∈ C, and the
functional equation

Z(1− s,Fψ(f ), ϕ∨π ) = Z(s, f , ϕπ)

holds.

I Meromorphic continuation and functional equation follow
from the Poisson summation formula for (S(G (A)),Fψ).
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Braverman-Kazhdan proposal

I Around 2000, A. Braverman and D. Kazhdan proposed a
conjectural framework to establish the analytical properties of
general automorphic L-functions L(s, π, ρ).

I The prototype of the proposal is the theory of Godement and
Jacquet.

For convenience, make the following additional assumptions (can
be removed)

Assumptions

I G/F split;

I ρ is obtained from an irreducible injective representation of
G∨(C) with highest weight λρ;

I σ : G → Gm a character playing the role of det for GLn;
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G(Fp)

f (g)ϕπp(g)|σ(g)|s+nρ
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dg , s ∈ C,

where ϕπp ∈ C(πp)

I For geometric reason, may set

nρ = 〈ρB , λρ〉

where ρB is the half sum of positive roots
(Bouthier-Ngô-Sakellaridis).

I In general different nρ differ by unramified shift;
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Expectation

I Z(s, f , ϕπp) is absolutely convergent for Re(s) sufficiently
large and is a rational function in q−s ;

I The set {Z(s, f , ϕπp)| f ∈ Sρ(G (Fp)), ϕπp ∈ C(πp)} is a
finitely generated fractional ideal in C(q−s) with generator
L(s, πp, ρ);

I There exists a rational function γ(s, πp, ρ, ψp) in q−s such that
the following functional equation holds for any f ∈ Sρ(G (Fp))

Z(1− s,Fρ,ψp(f ), ϕ∨πp) = γ(s, πp, ρ, ψp)Z(s, f , ϕπp)

where ϕπp ∈ C(πp);
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Braverman-Kazhdan proposal: Local

Schwartz space

I For any (G , ρ), there is an affine spherical embedding
G ↪→Mρ, where Mρ arises from the theory of reductive
monoids studied by M. Putcha, L. Renner and E. Vinberg.
It is expected that Sρ(G (Fp)) is connected with the geometry
of Mρ;

I There should exist Lρ,p ∈ Sρ(G (Fp))Kp×Kp called the basic
function, such that Z(s,Lρ,p, ϕπp) = L(s, πp, ρ) for any
unramified representation πp and ϕπp zonal spherical;

I For Godement-Jacquet, Mρ = Mn, Lρ,p = 1p.
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Braverman-Kazhdan proposal: Local

Fourier transform

I For any f ∈ C∞c (G (Fp)),

Fρ,ψp(f )(g) = |σ(g)|−2nρ−1(Φρ,ψp ∗ f ∨)(g);

where Φρ,ψp is an invariant distribution on G (Fp) such that

Φρ,ψp(π) = γ(·, π, ρ, ψp) · Idπ;

I Fρ,ψp extends to a unitary operator on
L2(G (Fp), |σ(·)|2nρ+1dg) and Fρ,ψp ◦ Fρ,ψ−1

p
= Id;

I For Godement-Jacquet, Φρ,ψp(g) = ψ(tr(g))| det(g)|n.
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Braverman-Kazhdan proposal: Local unramified

Theorem (L.)

I For p non-archimedean,

Sρ(G (Fp))Kp×Kp = Lρ,p ∗ C∞c (G (Fp))Kp×Kp

and

Φ
Kp

ρ,ψp
= Inverse Satake transform of γ(−s − nρ, πp, ρ

∨, ψp).

The proposal is verified in full detail in unramified setting;

I For p archimedean, take Lρ,p as the inverse Harish-Chandra
transform of L(s, πp, ρ), then

Lρ,p,s = Lρ,p|σ(·)|s , and Φ
Kp

ρ,ψp,s
= Φ

Kp

ρ,ψp
|σ(·)|s

can be plugged into the Arthur-Selberg trace formula when
Re(s) large.
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The work of Jiang-Luo-Zhang

I It is the first substantial case after the work of
Godement-Jacquet;

I Establish the analytical theory of L(s, π, ρ) following the
approach of Godement-Jacquet, provide new evidence
substantially for the Braverman-Kazhdan proposal.
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The work of Jiang-Luo-Zhang

In the following, let F be a p-adic field.

I G = Gm × Sp2n;

I ρ : G∨(C) = C× × SO2n+1(C)→ GL2n+1(C);

I It is closely related to the doubling method of
Piatetski-Shapiro and Rallis, the work of Lapid-Rallis, and
other more recent works;

I The major work we need is the right normalization of the local
intertwining operators appearing in doubling method;

I Piatetski-Shapiro and Rallis, Lapid-Rallis and other more
recent works found the right normalization which gave the
local Langlands γ-factor via doubling local zeta integrals.
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Doubling method (Piatetski-Shapiro and Rallis)

I (F 2n, 〈·, ·〉);

I Sp2n;

I Sp2n × Sp2n ↪→ Sp4n via (F 2n ⊕ F 2n, 〈·, ·〉 ⊕ −〈·, ·〉);

I P = MN = Stab(L∆) a Siegel parabolic in Sp4n, where
L∆ = {(v , v)| v ∈ F 2n} is a Lagrangian;

I
Sp2n × Sp2n ↪→ Sp4n → P\Sp4n

has Zariski open dense image, with stabilizer

P ∩ (Sp2n × Sp2n) = Sp∆
2n ↪→ Sp2n × Sp2n;
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The work of Jiang-Luo-Zhang

The following diagram illustrates the basic idea behind our work

Sp4n

��
MabwN // XP Mab(Sp2n × {I2n}) ' Gm × Sp2n

oo

where XP = [P,P]\Sp4n, w = (Id2n,−Id2n) ∈ Sp2n × Sp2n,
Mab = [M,M]\M ' Gm.

I wPw = P−, MabwN is Zariski open dense in XP ;

I G = Gm × Sp2n is Zariski open dense in XP ;



Harmonic analysis on MabwN ↪→ XP

Fourier transform

I For f ∈ C∞c (XP(F )), define

FX ,ψ(f )(g) :=

∫ pv

F×
ηpvs,ψ(x)|x |−

2n+1
2

∫
N(F )

f (wns(x)g)dndx .

where s : Gm → M is a section of M → [M,M]\M ' Gm;

I ηpvs,ψ(x) is a distribution on F×, which is a key ingredient
towards the understanding of Fρ,ψ and Sρ(G (F ));

I The definition of ηpvs,ψ first appeared in
[Braverman-Kazhdan, 2002], but that definition of ηpvs,ψ did
not carry enough analytical information for our work.
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Abelian harmonic analysis

I To understand the analytical nature of ηpvs,ψ, we develop the
local harmonic analysis associated to ηpvs,ψ in the spirit of
Braverman-Kazhdan proposal;

I An explicit formula for ηpvs,ψ is obtained from the functional
equation associated to zeta integrals on the prehomogeneous
space (GL2n+1,S2n+1), where S2n+1 is the space of
(2n + 1)× (2n + 1) symmetric matrices. More precisely, for a
character χ, the following zeta integral is considered

Z(s, f , χ) =

∫
S2n+1(F )

f (X )χ(X )| detX |s−(n+1)dX ;

I The functional equation for the zeta integrals on (GLm,Sm) is
known by the work of Piatetski-Shapiro and Rallis, and T.
Ikeda.
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Abelian harmonic analysis

The following diagram illustrates the idea

C∞c (S2n+1)

F .I .
��

Fourier transform // C∞c (S2n+1)

F .I .
��

S+
n,β(F×)

|·|−2n

'
// S+

pvs(F
×)

L=Lηpvs,ψ // S−pvs(F
×) S−n,β(F×)

|·|n+1

'
oo

where

I F .I . is the fiber integration along det : S2n+1 → F ;

I L is the induced linear transform.



Abelian harmonic analysis

Theorem (JLZ)

I L is well-defined;

I S+
pvs(F

×) consists of functions f in C∞(F×), such that

1. supp(f ) is bounded, i.e. f (x) = 0 for |x | � 0;

2. for |x | � 1,

f (x) = a+
0 (ac(x))|x |−2n

+
n−1∑
i=0

a+
i,+(ac(x))|x |i−

2n−1
2 + a+

i,−(ac(x))|x |i−
2n−1

2 (−1)ord(x)

where a+
0 is a locally constant function on o×F that is

o×F -invariant, a+
i,± are locally constant functions on o×F that are

o×2
F -invariant, ac(x) = x

|x| ;

I In particular, C∞c (F×) ↪→ S+
pvs(F

×) is of finite codimension;
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Paley-Wiener theorem for S±pvs(F×)

Theorem (JLZ)

I Under Mellin transform (
∫
F× f (x)χs(x)dx), S+

pvs(F
×) is

captured by

L(s, χ)
n−1∏
i=0

L(2s + 2i + 1, χ2).

It follows from the description of G.C.D. for the zeta integral
Z(s, ·, χ) attached to (GLm,Sm), which is established in our work
(for χ unramified it is proved by Piatetski-Shapiro and Rallis).



Abelian harmonic analysis

Proposition (JLZ)

I For any f ∈ S+
pvs(F

×), there is the following functional
equation after meromorphic continuation∫

F×
L(f )χs+ n+1

2
(t)−1dt = βψ(χs)

∫
F×

f (t)χs+ 2n+1
2

(t)dt

where

βψ(χs) = γ(s − 2n − 1

2
, χ, ψ)

n∏
r=1

γ(2s − 2n + 2r , χ2, ψ).



Abelian harmonic analysis

Theorem (JLZ)

I For k > 0, let 1k be the normalized characteristic function of
1 +$koF , then

lim
k→∞

L(1k)(x)

is stably convergent, i.e. for fixed x ∈ F×, there exists N such
that L(1k)(x) = L(1N)(x) for any k > N;

I Define
ηpvs,ψ(x) = |x |−

2n+1
2 lim

k→∞
L(1k)(x).

Then ηpvs,ψ(x) is locally constant on F×.
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Abelian harmonic analysis

Theorem (JLZ)

I The generalized Fourier transform
L = Lηpvs,ψ : S+

pvs(F
×)→ S−pvs(F

×) is given by the following
principal value integral

L(f ) = (ηpvs,ψ| · |
2n+1

2 ∗ f ∨), f ∈ S+
pvs(F

×).

I For any character χs = χ| · |s of F×, the following principal
value integral is convergent whenever Re(s) is sufficiently
small, and admits meromorphic continuation to s ∈ C,

ηpvs,ψ(χs) := ηpvs,ψ ∗ χs(e)

= lim
k→∞

∫ pv

q−k≤|x |≤qk
ηpvs,ψ(x)χs(x−1)dx

= βψ(χs).
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Abelian harmonic analysis

I In conclusion, we develop a new type of harmonic analysis on
F× associated to (S±pvs(F

×),Lηpvs,ψ , βψ(χs)).

I It can be viewed as the abelian case of the
Braverman-Kazhdan proposal.

I This abelian harmonic analysis plays the key role in our work.
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Harmonic analysis on MabwN ↪→ XP

Fix f ∈ C∞c (XP(F )). Define

RX (f )(g) :=

∫
N(F )

f (wng)dn.

Proposition (JLZ)

I The function in a ∈ F×

Fg (a) := |a|(2n+1)RX (f )(s(a)g)

lies in S+
pvs(F

×).

I Lηpvs,ψ(Fg )(a) = |a|2n+1FX ,ψ(f )(s−1(a)g) lies in S−pvs(F
×).
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Compatibility between FX ,ψ and the unnormalized
intertwining operator Mw(s, χ)

Proposition (JLZ)

I Let Pχs : C∞c (XP(F ))→ I(s, χ) = Ind
Sp4n
P (χs),

Pχs (f )(g) =

∫
F×

χs(a)|a|
2n+1

2 f (s−1(a)g)da.

Then Pχ−1
s
◦ FX ,ψ(f )(g) is absolutely convergent for Re(s)

sufficiently small, and the following identity holds after
meromorphic continuation

Pχ−1
s
◦ FX ,ψ(f )(g) = βψ(χs)(Mw (s, χ) ◦ Pχs )(f )(g).



Basic properties of FX ,ψ and Spvs(XP(F ))

Define

Spvs(XP(F )) = C∞c (XP(F )) + FX ,ψ(C∞c (XP(F ))).

Proposition (JLZ)

I FX ,ψ stabilizes Spvs(XP(F )).

I |2|n(2n+1) · FX ,ψ extends to a unitary operator on L2(XP(F ))
and FX ,ψ ◦ FX ,ψ−1 = |2|−2n(2n+1)Id.

I Via Pχs , Spvs(XP(F )) projects onto the space of good
sections I†(s, χ) introduced by S. Yamana.



Basic properties of FX ,ψ and Spvs(XP(F ))

Define

Spvs(XP(F )) = C∞c (XP(F )) + FX ,ψ(C∞c (XP(F ))).

Proposition (JLZ)

I FX ,ψ stabilizes Spvs(XP(F )).

I |2|n(2n+1) · FX ,ψ extends to a unitary operator on L2(XP(F ))
and FX ,ψ ◦ FX ,ψ−1 = |2|−2n(2n+1)Id.

I Via Pχs , Spvs(XP(F )) projects onto the space of good
sections I†(s, χ) introduced by S. Yamana.



Basic properties of FX ,ψ and Spvs(XP(F ))

Define

Spvs(XP(F )) = C∞c (XP(F )) + FX ,ψ(C∞c (XP(F ))).

Proposition (JLZ)

I FX ,ψ stabilizes Spvs(XP(F )).

I |2|n(2n+1) · FX ,ψ extends to a unitary operator on L2(XP(F ))
and FX ,ψ ◦ FX ,ψ−1 = |2|−2n(2n+1)Id.

I Via Pχs , Spvs(XP(F )) projects onto the space of good
sections I†(s, χ) introduced by S. Yamana.



Asymptotic of Spvs(XP(F ))

Proposition (JLZ)

A function f ∈ C∞(XP(F )) belongs to Spvs(XP(F )) if and only if f
is right KSp4n

-finite, and as a function in a ∈ F×,

|a|2n+1f (s−1
a k)

belongs to S−pvs(F
×) for any fixed k ∈ KSp4n

.

I Therefore functions in Spvs(XP(F )) can be described by their
asymptotic behavior near the singular point.

I The support of functions in Spvs(XP(F )) in X
aff
P (F ) is

compact. In particular X
aff
P (F )\XP(F ) = {~0}.
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Harmonic analysis on Gm × Sp2n ↪→ XP

Sp4n

��
MabwN //

C

66
XP Mab(Sp2n × {I2n}) ' Gm × Sp2n
oo

Proposition (JLZ)

I C : wN → Sp2n × {I2n} is given by the Cayley transform.

I The Jacobian of C−1 is given by

jC−1(h) = c0| det(h − I2n)|−(2n+1)

where c0 = 1∏n
i=1 ζF (2i)

.
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Harmonic analysis on Gm × Sp2n ↪→ XP

I For f ∈ Spvs(XP(F )), define

φf (a, h) := f (s(a)−1 · (h, I2n))|a|
2n+1

2 .

Set
Sρ(G (F )) := {φf | f ∈ Spvs(XP(F ))}.

I Define

Φρ,ψ(a, h) := c0 · ηpvs,ψ(a · det(h + I2n)) · | det(h + I2n)|−
2n+1

2 .

For f ∈ C∞c (XP(F )), the ρ-Fourier transform is defined by

Fρ,ψ(φf )(a, h) : =

∫ pv

F×

∫
Sp2n(F )

Φρ,ψ(ax , gh)φf (x , g)dxdg .
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Compatibility between FX ,ψ and Fρ,ψ

Proposition (JLZ)

I For f ∈ C∞c (XP(F )),

φFX ,ψ(f )(a, h) = |2|−n(2n+1)Fρ,ψ(φf )(2−2na,−h−1).

I In particular, we can extend the definition of Fρ,ψ to
Sρ(G (F )) via

φFX ,ψ(f )(a, h) = |2|−n(2n+1)Fρ,ψ(φf )(2−2na,−h−1).
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Compatibility between Fρ,ψ and the normalized
intertwining operators M†w(s, χ, ψ)

Proposition (JLZ)

For h ∈ Sp2n(F ) and f ∈ Spvs(XP(F )),

Pχ−1
s
◦ fFρ,ψ(φf )((−h−1, Id2n))

is well-defined for Re(s) sufficiently small, and the following
identity holds after meromorphic continuation to s ∈ C,

M†w (s, χ, ψ) ◦ Pχs (f )((h, I)) = Pχ−1
s
◦ fFρ,ψ(φf )((−h−1, I)).



Basic properties of Sρ(G (F )) and Fρ,ψ

Proposition (JLZ)

I Fρ,ψ stabilizes Sρ(G (F )).

I Fρ,ψ extends to a unitary operator on L2(G (F ), dg).

I Fρ,ψ−1 ◦ Fρ,ψ = Id.
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I Fρ,ψ extends to a unitary operator on L2(G (F ), dg).

I Fρ,ψ−1 ◦ Fρ,ψ = Id.



Basic properties of Sρ(G (F )) and Fρ,ψ

Proposition (JLZ)

Fix χ⊗ π ∈ Irr(G (F )). Set

Z(s, f , ϕ) =

∫
F××Sp2n(F )

φ(a, h)ϕ(a, h)|a|s−
1
2 dadh,

with φ ∈ Sρ(G (F )), ϕ ∈ C(χ⊗ π).
The integral is absolutely convergent for Re(s) large, and
represents a rational function in q−s .

I It can be deduced from the asymptotic of functions in
Spvs(XP(F )).



Basic properties of Sρ(G (F )) and Fρ,ψ

Proposition (JLZ)

I After restriction, the linear functional Z(s, ·, ·) lies in

HomG(F )×G(F )(C∞c (G (F ))⊗ (χ−1
s− 1

2

⊗ π∨)⊗ (χs− 1
2
⊗ π),C),

where the latter space is of dimension 1.

I By equivariant property there exists a rational function
Γρ,ψ(s, χ⊗ π) in q−s such that

Z(1− s,Fρ,ψ(f ), ϕ∨) = Γρ,ψ(s, χ⊗ π) · Z(s, f , ϕ).
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Basic properties of Sρ(G (F )) and Fρ,ψ
Proposition (JLZ)

I Let ϕχs⊗π ∈ C(χs ⊗ π). Then as distributions on G (F ), the
following identity holds by meromorphic continuation,

Fρ,ψ(ϕ∨χs⊗π) = Γρ,ψ(
1

2
, χs ⊗ π) · ϕχs⊗π.

where for f ∈ C∞c (G (F )),

(Fρ,ψ(ϕ∨χs⊗π), f )G := (ϕ∨χs⊗π,Fρ,ψ(f ))G

whenever the latter does not touch the poles.
In particular Γρ,ψ(s, χ⊗ π) is a Gamma function in the sense
of Gelfand and Graev.

I

Γρ,ψ(
1

2
, χs ⊗ π) · Γρ,ψ−1(

1

2
, χ−1

s ⊗ π∨) = 1.



Basic properties of Sρ(G (F )) and Fρ,ψ
Proposition (JLZ)

I Let ϕχs⊗π ∈ C(χs ⊗ π). Then as distributions on G (F ), the
following identity holds by meromorphic continuation,

Fρ,ψ(ϕ∨χs⊗π) = Γρ,ψ(
1

2
, χs ⊗ π) · ϕχs⊗π.

where for f ∈ C∞c (G (F )),

(Fρ,ψ(ϕ∨χs⊗π), f )G := (ϕ∨χs⊗π,Fρ,ψ(f ))G

whenever the latter does not touch the poles.
In particular Γρ,ψ(s, χ⊗ π) is a Gamma function in the sense
of Gelfand and Graev.

I

Γρ,ψ(
1

2
, χs ⊗ π) · Γρ,ψ−1(

1

2
, χ−1

s ⊗ π∨) = 1.



Basic properties of Φρ,ψ

I Set G` = {(a, h) ∈ G (F ) = F× × Sp2n| |a| = q−`}. Let ch`
be the characteristic function of G`.

I Set Φρ,ψ,` = Φρ,ψ · ch`.



Basic properties of Φρ,ψ

Theorem (JLZ)

I The distribution Φρ,ψ,` lies in the Bernstein center of G (F ).
For χ⊗ π ∈ Irr(G (F )), set

(χ⊗ π)(Φρ,ψ,`) = f`(χ⊗ π)Idχ⊗π.

I The summation ∑
`

f`(χs ⊗ π)

is convergent whenever Re(s) is sufficiently large, and admits
a meromorphic continuation to s ∈ C.

I The following identity holds after meromorphic continuation∑
`

f`(χs ⊗ π) = Γρ,ψ(
1

2
, χ−1

s ⊗ π∨)
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Verification

Corollary (JLZ)

I Based on the work of Yamana, for any χ⊗ π ∈ Irr(G (F )), the
following set

Iχ⊗π = {Z(s, φ, ϕ)| φ ∈ Sρ(G (F )), ϕ ∈ C(χ⊗ π)}

is a finitely generated fractional ideal of C[q−s , qs ] with
generator L(s, χ⊗ π, ρ).

I Based on the work of Lapid-Rallis, Ikeda and Kakuhama,
Γρ,ψ(s, χ⊗ π) = γ(s, χ⊗ π, ρ, ψ).
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Thank you!


