Harmonic Analysis and Gamma Functions on Symplectic Groups

Zhilin Luo
joint with Dihua Jiang and Lei Zhang

University of Minnesota
Lie groups seminar, MIT
March 10, 2021

Preliminaries

- F number field, $\mathbb{A}=\mathbb{A}_{F}$;

Preliminaries

- F number field, $\mathbb{A}=\mathbb{A}_{F}$;
- G / F reductive;

Preliminaries

- F number field, $\mathbb{A}=\mathbb{A}_{F}$;
- G / F reductive;
- $\rho:{ }^{L} G \rightarrow \mathrm{GL}\left(V_{\rho}\right)$;

Preliminaries

- F number field, $\mathbb{A}=\mathbb{A}_{F}$;
- G / F reductive;
- $\rho:{ }^{L} G \rightarrow \mathrm{GL}\left(V_{\rho}\right)$;
- $\pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\text {cusp }}(G)$;

Preliminaries

- F number field, $\mathbb{A}=\mathbb{A}_{F}$;
- G / F reductive;
- $\rho:{ }^{L} G \rightarrow \mathrm{GL}\left(V_{\rho}\right)$;
- $\pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\text {cusp }}(G)$;
- According to R. Langlands, one should be able to define

$$
L(s, \pi, \rho)=\prod_{\mathfrak{p}} L\left(s, \pi_{\mathfrak{p}}, \rho\right) ;
$$

Preliminaries

- F number field, $\mathbb{A}=\mathbb{A}_{F}$;
- G / F reductive;
- $\rho:{ }^{L} G \rightarrow \mathrm{GL}\left(V_{\rho}\right)$;
- $\pi \simeq \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}} \in \mathcal{A}_{\text {cusp }}(G)$;
- According to R. Langlands, one should be able to define

$$
L(s, \pi, \rho)=\prod_{\mathfrak{p}} L\left(s, \pi_{\mathfrak{p}}, \rho\right) ;
$$

- By Langlands, $L(s, \pi, \rho)$ (actually the partial L-function) is absolutely convergent for $\operatorname{Re}(s)$ large;

Preliminaries

Langlands' conjecture
$L(s, \pi, \rho)$ has a meromorphic continuation to $s \in \mathbb{C}$, and the functional equation

$$
L\left(1-s, \pi^{\vee}, \rho\right)=\varepsilon(s, \pi, \rho) L(s, \pi, \rho)
$$

holds where $\varepsilon(s, \pi, \rho)$ is non-zero entire in $s \in \mathbb{C}$.

- The conjecture is known for a special list of (G, ρ);

Preliminaries

Langlands' conjecture
$L(s, \pi, \rho)$ has a meromorphic continuation to $s \in \mathbb{C}$, and the functional equation

$$
L\left(1-s, \pi^{\vee}, \rho\right)=\varepsilon(s, \pi, \rho) L(s, \pi, \rho)
$$

holds where $\varepsilon(s, \pi, \rho)$ is non-zero entire in $s \in \mathbb{C}$.

- The conjecture is known for a special list of (G, ρ);
- Methods: Godement-Jacquet (Tate), Rankin-Selberg; Langlands-Shahidi; Trace formula;

Preliminaries

Natural question
Establish the basic analytic properties for $L(s, \pi, \rho)$ through harmonic analysis on G (or related spherical varieties).

Godement-Jacquet

- R. Godement and H. Jacquet established the M.C. and F.E. of the standard L-function $L(s, \pi)$ of GL_{n} (over F-central simple algebras) via harmonic analysis on $\mathrm{GL}_{n} \hookrightarrow \mathrm{M}_{n}$, generalizing the work of Tate for $n=1$ (when $n=2$ it was also done in the last chapter of Jacquet-Langlands).

Godement-Jacquet

- R. Godement and H. Jacquet established the M.C. and F.E. of the standard L-function $L(s, \pi)$ of GL_{n} (over F-central simple algebras) via harmonic analysis on $\mathrm{GL}_{n} \hookrightarrow \mathrm{M}_{n}$, generalizing the work of Tate for $n=1$ (when $n=2$ it was also done in the last chapter of Jacquet-Langlands).
- $G=\mathrm{GL}_{n}$;

Godement-Jacquet

- R. Godement and H. Jacquet established the M.C. and F.E. of the standard L-function $L(s, \pi)$ of GL_{n} (over F-central simple algebras) via harmonic analysis on $\mathrm{GL}_{n} \hookrightarrow \mathrm{M}_{n}$, generalizing the work of Tate for $n=1$ (when $n=2$ it was also done in the last chapter of Jacquet-Langlands).
- $G=\mathrm{GL}_{n}$;
- ${ }^{L} G=\mathrm{GL}_{n}(\mathbb{C}) \times \mathcal{W}_{F}, \rho=\mathrm{Id} \otimes\{$ trivial $\}$.

Godement-Jacquet: Local

For convenience, let \mathfrak{p} be a non-archimedean place of F.
Ingredients

- Schwartz space $\mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right)=\left.\mathcal{C}_{c}^{\infty}\left(\mathrm{M}_{n}\left(F_{\mathfrak{p}}\right)\right)\right|_{G\left(F_{\mathfrak{p}}\right) ;}$

Godement-Jacquet: Local

For convenience, let \mathfrak{p} be a non-archimedean place of F.
Ingredients

- Schwartz space $\mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right)=\left.\mathcal{C}_{c}^{\infty}\left(\mathrm{M}_{n}\left(F_{\mathfrak{p}}\right)\right)\right|_{G\left(F_{\mathfrak{p}}\right)}$;
- Fourier transform $\mathcal{F}_{\psi_{\mathfrak{p}}}: \mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right) \rightarrow \mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right)$;

Godement-Jacquet: Local theory

For $f \in \mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right)$, set

$$
\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)=\int_{G\left(F_{\mathfrak{p}}\right)} f(g) \varphi_{\pi_{\mathfrak{p}}}(g)|\operatorname{det} g|_{F_{\mathfrak{p}}}^{s+\frac{n-1}{2}} d g, \quad s \in \mathbb{C},
$$

where $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)$ (the space of matrix coefficients of $\pi_{\mathfrak{p}}$).

Godement-Jacquet: Local theory

Theorem (Godement-Jacquet)

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is absolutely convergent for $\operatorname{Re}(s)$ sufficiently large, and is a rational function in q^{-s};

Godement-Jacquet: Local theory

Theorem (Godement-Jacquet)

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is absolutely convergent for $\operatorname{Re}(s)$ sufficiently large, and is a rational function in q^{-s};
- the set $\left\{\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right) \mid \quad f \in \mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right), \varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)\right\}$ is a fractional ideal of $\mathbb{C}\left[q^{-s}, q^{s}\right]$ with generator $\frac{1}{P\left(q^{-s}\right)}$, where $P\left(q^{-s}\right)$ is a polynomial with $P(0)=1$. Set $L\left(s, \pi_{\mathfrak{p}}\right)=\frac{1}{P\left(q^{-s}\right)}$;

Godement-Jacquet: Local theory

Theorem (Godement-Jacquet)

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is absolutely convergent for $\operatorname{Re}(s)$ sufficiently large, and is a rational function in q^{-s};
- the $\operatorname{set}\left\{\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right) \mid \quad f \in \mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right), \varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)\right\}$ is a fractional ideal of $\mathbb{C}\left[q^{-s}, q^{s}\right]$ with generator $\frac{1}{P\left(q^{-s}\right)}$, where $P\left(q^{-s}\right)$ is a polynomial with $P(0)=1$. Set $L\left(s, \pi_{\mathfrak{p}}\right)=\frac{1}{P\left(q^{-s}\right)}$;
- there exists a rational function $\gamma\left(s, \pi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right)$ in q^{-s} such that the following functional equation holds for any $f \in \mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right)$

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi_{\mathfrak{p}}}(f), \varphi_{\pi_{\mathfrak{p}}}^{\vee}\right)=\gamma\left(s, \pi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right) \mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)
$$

Godement-Jacquet: Local theory

Theorem (Godement-Jacquet)

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is absolutely convergent for $\operatorname{Re}(s)$ sufficiently large, and is a rational function in q^{-s};
- the $\operatorname{set}\left\{\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right) \mid \quad f \in \mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right), \varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)\right\}$ is a fractional ideal of $\mathbb{C}\left[q^{-s}, q^{s}\right]$ with generator $\frac{1}{P\left(q^{-s}\right)}$, where $P\left(q^{-s}\right)$ is a polynomial with $P(0)=1$. Set $L\left(s, \pi_{\mathfrak{p}}\right)=\frac{1}{P\left(q^{-s}\right)}$;
- there exists a rational function $\gamma\left(s, \pi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right)$ in q^{-s} such that the following functional equation holds for any $f \in \mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right)$

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi_{\mathfrak{p}}}(f), \varphi_{\pi_{\mathfrak{p}}}^{\vee}\right)=\gamma\left(s, \pi_{\mathfrak{p}}, \psi_{\mathfrak{p}}\right) \mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)
$$

- Let $1_{\mathfrak{p}}$ be the characteristic function of $\mathrm{M}_{n}\left(\mathfrak{o}_{\mathfrak{p}}\right) \subset \mathrm{M}_{n}\left(F_{\mathfrak{p}}\right)$. Then $\mathcal{F}_{\psi_{\mathfrak{p}}}\left(1_{\mathfrak{p}}\right)=1_{\mathfrak{p}}$ and $\mathcal{Z}\left(s, 1_{\mathfrak{p}}, \varphi_{\pi_{\mathfrak{p}}}\right)=L\left(s, \pi_{\mathfrak{p}}\right)$ for any unramified representation $\pi_{\mathfrak{p}}$ and $\varphi_{\pi_{\mathfrak{p}}}$ zonal spherical.

Godement-Jacquet: Global theory

Ingredients

- Schwartz space $\mathcal{S}(G(\mathbb{A}))=\bigotimes_{\mathfrak{p}}^{\prime} \mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right)$ w.r.t. $\left\{1_{\mathfrak{p}}\right\}_{\mathfrak{p}<\infty}$;

Godement-Jacquet: Global theory

Ingredients

- Schwartz space $\mathcal{S}(G(\mathbb{A}))=\bigotimes_{\mathfrak{p}}^{\prime} \mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right)$ w.r.t. $\left\{1_{\mathfrak{p}}\right\}_{\mathfrak{p}<\infty}$;
- Fourier transform $\mathcal{F}_{\psi}=\bigotimes_{\mathfrak{p}} \mathcal{F}_{\psi_{\mathfrak{p}}}$;

Godement-Jacquet: Global theory

Ingredients

- Schwartz space $\mathcal{S}(G(\mathbb{A}))=\bigotimes_{\mathfrak{p}}^{\prime} \mathcal{S}\left(G\left(F_{\mathfrak{p}}\right)\right)$ w.r.t. $\left\{1_{\mathfrak{p}}\right\}_{\mathfrak{p}<\infty}$;
- Fourier transform $\mathcal{F}_{\psi}=\bigotimes_{\mathfrak{p}} \mathcal{F}_{\psi_{\mathfrak{p}}}$;
- For $f \in \mathcal{S}(G(\mathbb{A}))$, consider

$$
\mathcal{Z}\left(s, f, \varphi_{\pi}\right)=\int_{G(\mathbb{A})} f(g) \varphi_{\pi}(g)|\operatorname{det} g|_{\mathbb{A}}^{s+\frac{n-1}{2}} d^{\times} g, \quad s \in \mathbb{C}
$$

where $\varphi_{\pi} \in \mathcal{C}(\pi)$.

Godement-Jacquet: Global theory

Theorem (Godement-Jacquet)

- When $\operatorname{Re}(s)$ is sufficiently large, $\mathcal{Z}\left(s, f, \varphi_{\pi}\right)$ is absolutely convergent, and $\mathcal{Z}\left(s, f, \varphi_{\pi}\right)=\prod_{\mathfrak{p}} \mathcal{Z}_{\mathfrak{p}}\left(s, f_{\mathfrak{p}}, \varphi_{\pi_{\mathfrak{p}}}\right)$ whenever $f=\otimes_{\mathfrak{p}} f_{\mathfrak{p}}$ is a pure tensor.

Godement-Jacquet: Global theory

Theorem (Godement-Jacquet)

- When $\operatorname{Re}(s)$ is sufficiently large, $\mathcal{Z}\left(s, f, \varphi_{\pi}\right)$ is absolutely convergent, and $\mathcal{Z}\left(s, f, \varphi_{\pi}\right)=\prod_{\mathfrak{p}} \mathcal{Z}_{\mathfrak{p}}\left(s, f_{\mathfrak{p}}, \varphi_{\pi_{\mathfrak{p}}}\right)$ whenever $f=\otimes_{\mathfrak{p}} f_{\mathfrak{p}}$ is a pure tensor.
- $\mathcal{Z}\left(s, f, \varphi_{\pi}\right)$ has a meromorphic continuation to $s \in \mathbb{C}$, and the functional equation

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi}(f), \varphi_{\pi}^{\vee}\right)=\mathcal{Z}\left(s, f, \varphi_{\pi}\right)
$$

holds.

Godement-Jacquet: Global theory

Theorem (Godement-Jacquet)

- When $\operatorname{Re}(s)$ is sufficiently large, $\mathcal{Z}\left(s, f, \varphi_{\pi}\right)$ is absolutely convergent, and $\mathcal{Z}\left(s, f, \varphi_{\pi}\right)=\prod_{\mathfrak{p}} \mathcal{Z}_{\mathfrak{p}}\left(s, f_{\mathfrak{p}}, \varphi_{\pi_{\mathfrak{p}}}\right)$ whenever $f=\otimes_{\mathfrak{p}} f_{\mathfrak{p}}$ is a pure tensor.
- $\mathcal{Z}\left(s, f, \varphi_{\pi}\right)$ has a meromorphic continuation to $s \in \mathbb{C}$, and the functional equation

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\psi}(f), \varphi_{\pi}^{\vee}\right)=\mathcal{Z}\left(s, f, \varphi_{\pi}\right)
$$

holds.

- Meromorphic continuation and functional equation follow from the Poisson summation formula for $\left(\mathcal{S}(G(\mathbb{A})), \mathcal{F}_{\psi}\right)$.

Braverman-Kazhdan proposal

- Around 2000, A. Braverman and D. Kazhdan proposed a conjectural framework to establish the analytical properties of general automorphic L-functions $L(s, \pi, \rho)$.
- The prototype of the proposal is the theory of Godement and Jacquet.

For convenience, make the following additional assumptions (can be removed)

Assumptions

- G/F split;
- ρ is obtained from an irreducible injective representation of $G^{\vee}(\mathbb{C})$ with highest weight λ_{ρ};
- $\sigma: G \rightarrow \mathbb{G}_{m}$ a character playing the role of det for GL_{n};

Braverman-Kazhdan proposal: Local

For convenience, let \mathfrak{p} be a non-archimedean place of F.
Conjectural ingredients

- Schwartz space $\mathcal{C}_{c}^{\infty}\left(G\left(F_{\mathfrak{p}}\right)\right) \subset \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right) \subset \mathcal{C}^{\infty}\left(G\left(F_{\mathfrak{p}}\right)\right)$;

Braverman-Kazhdan proposal: Local

For convenience, let \mathfrak{p} be a non-archimedean place of F.
Conjectural ingredients

- Schwartz space $\mathcal{C}_{c}^{\infty}\left(G\left(F_{\mathfrak{p}}\right)\right) \subset \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right) \subset \mathcal{C}^{\infty}\left(G\left(F_{\mathfrak{p}}\right)\right)$;
- Fourier transform $\mathcal{F}_{\rho, \psi_{\mathfrak{p}}}: \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right) \rightarrow \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)$;

Braverman-Kazhdan proposal: Local

Setup

- For $f \in \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)$, set

$$
\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)=\int_{G\left(F_{\mathfrak{p}}\right)} f(g) \varphi_{\pi_{\mathfrak{p}}}(g)|\sigma(g)|_{F_{\mathfrak{p}}}^{s+n_{\rho}} d g, \quad s \in \mathbb{C}
$$

where $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)$

Braverman-Kazhdan proposal: Local

Setup

- For $f \in \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)$, set

$$
\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)=\int_{G\left(F_{\mathfrak{p}}\right)} f(g) \varphi_{\pi_{\mathfrak{p}}}(g)|\sigma(g)|_{F_{\mathfrak{p}}}^{s+n_{\rho}} d g, \quad s \in \mathbb{C}
$$

where $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)$

- For geometric reason, may set

$$
n_{\rho}=\left\langle\rho_{B}, \lambda_{\rho}\right\rangle
$$

where ρ_{B} is the half sum of positive roots
(Bouthier-Ngô-Sakellaridis).

Braverman-Kazhdan proposal: Local

Setup

- For $f \in \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)$, set

$$
\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)=\int_{G\left(F_{\mathfrak{p}}\right)} f(g) \varphi_{\pi_{\mathfrak{p}}}(g)|\sigma(g)|_{F_{\mathfrak{p}}}^{s+n_{\rho}} d g, \quad s \in \mathbb{C}
$$

where $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)$

- For geometric reason, may set

$$
n_{\rho}=\left\langle\rho_{B}, \lambda_{\rho}\right\rangle
$$

where ρ_{B} is the half sum of positive roots
(Bouthier-Ngô-Sakellaridis).

- In general different n_{ρ} differ by unramified shift;

Braverman-Kazhdan proposal: Local

Expectation

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is absolutely convergent for $\operatorname{Re}(s)$ sufficiently large and is a rational function in q^{-s};

Braverman-Kazhdan proposal: Local

Expectation

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is absolutely convergent for $\operatorname{Re}(s)$ sufficiently large and is a rational function in q^{-s};
- The set $\left\{\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right) \mid \quad f \in \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right), \varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)\right\}$ is a finitely generated fractional ideal in $\mathbb{C}\left(q^{-s}\right)$ with generator $L\left(s, \pi_{\mathfrak{p}}, \rho\right)$;

Braverman-Kazhdan proposal: Local

Expectation

- $\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)$ is absolutely convergent for $\operatorname{Re}(s)$ sufficiently large and is a rational function in q^{-s};
- The set $\left\{\mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right) \mid \quad f \in \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right), \varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)\right\}$ is a finitely generated fractional ideal in $\mathbb{C}\left(q^{-s}\right)$ with generator $L\left(s, \pi_{\mathfrak{p}}, \rho\right)$;
- There exists a rational function $\gamma\left(s, \pi_{\mathfrak{p}}, \rho, \psi_{\mathfrak{p}}\right)$ in q^{-s} such that the following functional equation holds for any $f \in \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)$

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\rho, \psi_{\mathfrak{p}}}(f), \varphi_{\pi_{\mathfrak{p}}}^{\vee}\right)=\gamma\left(s, \pi_{\mathfrak{p}}, \rho, \psi_{\mathfrak{p}}\right) \mathcal{Z}\left(s, f, \varphi_{\pi_{\mathfrak{p}}}\right)
$$

where $\varphi_{\pi_{\mathfrak{p}}} \in \mathcal{C}\left(\pi_{\mathfrak{p}}\right)$;

Braverman-Kazhdan proposal: Local

Schwartz space

- For any (G, ρ), there is an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$, where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by M. Putcha, L. Renner and E. Vinberg. It is expected that $\mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)$ is connected with the geometry of \mathcal{M}_{ρ};

Braverman-Kazhdan proposal: Local

Schwartz space

- For any (G, ρ), there is an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$, where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by M. Putcha, L. Renner and E. Vinberg. It is expected that $\mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)$ is connected with the geometry of \mathcal{M}_{ρ};
- There should exist $\mathbb{L}_{\rho, \mathfrak{p}} \in \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}$ called the basic function, such that $\mathcal{Z}\left(s, \mathbb{L}_{\rho, \mathfrak{p}}, \varphi_{\pi_{\mathfrak{p}}}\right)=L\left(s, \pi_{\mathfrak{p}}, \rho\right)$ for any unramified representation $\pi_{\mathfrak{p}}$ and $\varphi_{\pi_{\mathfrak{p}}}$ zonal spherical;

Braverman-Kazhdan proposal: Local

Schwartz space

- For any (G, ρ), there is an affine spherical embedding $G \hookrightarrow \mathcal{M}_{\rho}$, where \mathcal{M}_{ρ} arises from the theory of reductive monoids studied by M. Putcha, L. Renner and E. Vinberg. It is expected that $\mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)$ is connected with the geometry of \mathcal{M}_{ρ};
- There should exist $\mathbb{L}_{\rho, \mathfrak{p}} \in \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}$ called the basic function, such that $\mathcal{Z}\left(s, \mathbb{L}_{\rho, \mathfrak{p}}, \varphi_{\pi_{\mathfrak{p}}}\right)=L\left(s, \pi_{\mathfrak{p}}, \rho\right)$ for any unramified representation $\pi_{\mathfrak{p}}$ and $\varphi_{\pi_{\mathfrak{p}}}$ zonal spherical;
- For Godement-Jacquet, $\mathcal{M}_{\rho}=\mathrm{M}_{n}, \mathbb{L}_{\rho, \mathfrak{p}}=1_{\mathfrak{p}}$.

Braverman-Kazhdan proposal: Local

Fourier transform

- For any $f \in \mathcal{C}_{c}^{\infty}\left(G\left(F_{\mathfrak{p}}\right)\right)$,

$$
\mathcal{F}_{\rho, \psi_{\mathfrak{p}}}(f)(g)=|\sigma(g)|^{-2 n_{\rho}-1}\left(\Phi_{\rho, \psi_{\mathfrak{p}}} * f^{\vee}\right)(g) ;
$$

where $\Phi_{\rho, \psi_{\mathfrak{p}}}$ is an invariant distribution on $G\left(F_{\mathfrak{p}}\right)$ such that

$$
\Phi_{\rho, \psi_{\mathfrak{p}}}(\pi)=\gamma\left(\cdot, \pi, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathrm{Id}_{\pi} ;
$$

Braverman-Kazhdan proposal: Local

Fourier transform

- For any $f \in \mathcal{C}_{c}^{\infty}\left(G\left(F_{\mathfrak{p}}\right)\right)$,

$$
\mathcal{F}_{\rho, \psi_{\mathbf{p}}}(f)(g)=|\sigma(g)|^{-2 n_{\rho}-1}\left(\Phi_{\rho, \psi_{\mathbf{p}}} * f^{\vee}\right)(g)
$$

where $\Phi_{\rho, \psi_{\mathfrak{p}}}$ is an invariant distribution on $G\left(F_{\mathfrak{p}}\right)$ such that

$$
\Phi_{\rho, \psi_{\mathfrak{p}}}(\pi)=\gamma\left(\cdot, \pi, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathrm{Id}_{\pi}
$$

- $\mathcal{F}_{\rho, \psi_{\mathbf{p}}}$ extends to a unitary operator on $L^{2}\left(G\left(F_{\mathfrak{p}}\right),|\sigma(\cdot)|^{2 n_{\rho}+1} d g\right)$ and $\mathcal{F}_{\rho, \psi_{\mathfrak{p}}} \circ \mathcal{F}_{\rho, \psi_{\mathfrak{p}}^{-1}}=\mathrm{Id} ;$

Braverman-Kazhdan proposal: Local

Fourier transform

- For any $f \in \mathcal{C}_{c}^{\infty}\left(G\left(F_{\mathfrak{p}}\right)\right)$,

$$
\mathcal{F}_{\rho, \psi_{\mathfrak{p}}}(f)(g)=|\sigma(g)|^{-2 n_{\rho}-1}\left(\Phi_{\rho, \psi_{\mathfrak{p}}} * f^{\vee}\right)(g)
$$

where $\Phi_{\rho, \psi_{\mathfrak{p}}}$ is an invariant distribution on $G\left(F_{\mathfrak{p}}\right)$ such that

$$
\Phi_{\rho, \psi_{\mathfrak{p}}}(\pi)=\gamma\left(\cdot, \pi, \rho, \psi_{\mathfrak{p}}\right) \cdot \mathrm{Id}_{\pi}
$$

- $\mathcal{F}_{\rho, \psi_{\mathrm{p}}}$ extends to a unitary operator on $L^{2}\left(G\left(F_{\mathfrak{p}}\right),|\sigma(\cdot)|^{2 n_{\rho}+1} d g\right)$ and $\mathcal{F}_{\rho, \psi_{\mathfrak{p}}} \circ \mathcal{F}_{\rho, \psi_{\mathfrak{p}}^{-1}}=\mathrm{Id} ;$
- For Godement-Jacquet, $\Phi_{\rho, \psi_{\mathfrak{p}}}(g)=\psi(\operatorname{tr}(g))|\operatorname{det}(g)|^{n}$.

Braverman-Kazhdan proposal: Local unramified

Theorem (L.)

- For \mathfrak{p} non-archimedean,

$$
\mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}=\mathbb{L}_{\rho, \mathfrak{p}} * \mathcal{C}_{c}^{\infty}\left(G\left(F_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}
$$

and

$$
\Phi_{\rho, \psi_{\mathfrak{p}}}^{K_{\mathfrak{p}}}=\text { Inverse Satake transform of } \gamma\left(-s-n_{\rho}, \pi_{\mathfrak{p}}, \rho^{\vee}, \psi_{\mathfrak{p}}\right) .
$$

The proposal is verified in full detail in unramified setting;

Braverman-Kazhdan proposal: Local unramified

Theorem (L.)

- For \mathfrak{p} non-archimedean,

$$
\mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}=\mathbb{L}_{\rho, \mathfrak{p}} * \mathcal{C}_{c}^{\infty}\left(G\left(F_{\mathfrak{p}}\right)\right)^{K_{\mathfrak{p}} \times K_{\mathfrak{p}}}
$$

and

$$
\Phi_{\rho, \psi_{\mathfrak{p}}}^{K_{\mathfrak{p}}}=\text { Inverse Satake transform of } \gamma\left(-s-n_{\rho}, \pi_{\mathfrak{p}}, \rho^{\vee}, \psi_{\mathfrak{p}}\right) \text {. }
$$

The proposal is verified in full detail in unramified setting;

- For \mathfrak{p} archimedean, take $\mathbb{L}_{\rho, \mathfrak{p}}$ as the inverse Harish-Chandra transform of $L\left(s, \pi_{\mathfrak{p}}, \rho\right)$, then

$$
\mathbb{L}_{\rho, \mathfrak{p}, s}=\mathbb{L}_{\rho, \mathfrak{p}}|\sigma(\cdot)|^{s}, \text { and } \Phi_{\rho, \psi_{\mathfrak{p}}, s}^{K_{\mathfrak{p}}}=\Phi_{\rho, \psi_{\mathfrak{p}}}^{K_{\mathfrak{p}}}|\sigma(\cdot)|^{s}
$$

can be plugged into the Arthur-Selberg trace formula when $\operatorname{Re}(s)$ large.

Braverman-Kazhdan proposal: Global

Conjectural ingredients

- Schwartz space $\mathcal{S}_{\rho}(G(\mathbb{A}))=\bigotimes_{\mathfrak{p}}^{\prime} \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)$ w.r.t. $\left\{\mathbb{L}_{\rho, \mathfrak{p}}\right\}_{\mathfrak{p}<\infty}$;

Braverman-Kazhdan proposal: Global

Conjectural ingredients

- Schwartz space $\mathcal{S}_{\rho}(G(\mathbb{A}))=\bigotimes_{\mathfrak{p}}^{\prime} \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)$ w.r.t. $\left\{\mathbb{L}_{\rho, \mathfrak{p}}\right\}_{\mathfrak{p}<\infty}$;
- Fourier transform $\mathcal{F}_{\rho, \psi}=\bigotimes_{\mathfrak{p}} \mathcal{F}_{\rho, \psi_{\mathrm{p}}}$;

Braverman-Kazhdan proposal: Global

Conjectural ingredients

- Schwartz space $\mathcal{S}_{\rho}(G(\mathbb{A}))=\bigotimes_{\mathfrak{p}}^{\prime} \mathcal{S}_{\rho}\left(G\left(F_{\mathfrak{p}}\right)\right)$ w.r.t. $\left\{\mathbb{L}_{\rho, \mathfrak{p}}\right\}_{\mathfrak{p}<\infty}$;
- Fourier transform $\mathcal{F}_{\rho, \psi}=\bigotimes_{\mathfrak{p}} \mathcal{F}_{\rho, \psi_{\mathfrak{p}}}$;
- ρ-Poisson summation formula for $\left(\mathcal{S}_{\rho}(G(\mathbb{A})), \mathcal{F}_{\rho, \psi}\right)$.

The work of Jiang-Luo-Zhang

- It is the first substantial case after the work of Godement-Jacquet;

The work of Jiang-Luo-Zhang

- It is the first substantial case after the work of Godement-Jacquet;
- Establish the analytical theory of $L(s, \pi, \rho)$ following the approach of Godement-Jacquet, provide new evidence substantially for the Braverman-Kazhdan proposal.

The work of Jiang-Luo-Zhang

In the following, let F be a p-adic field.

- $G=\mathbb{G}_{m} \times \operatorname{Sp}_{2 n}$;

The work of Jiang-Luo-Zhang

In the following, let F be a p-adic field.

- $G=\mathbb{G}_{m} \times \mathrm{Sp}_{2 n}$;
- $\rho: G^{\vee}(\mathbb{C})=\mathbb{C}^{\times} \times \mathrm{SO}_{2 n+1}(\mathbb{C}) \rightarrow \mathrm{GL}_{2 n+1}(\mathbb{C})$;

The work of Jiang-Luo-Zhang

In the following, let F be a p-adic field.

- $G=\mathbb{G}_{m} \times \operatorname{Sp}_{2 n}$;
$-\rho: G^{\vee}(\mathbb{C})=\mathbb{C}^{\times} \times \mathrm{SO}_{2 n+1}(\mathbb{C}) \rightarrow \mathrm{GL}_{2 n+1}(\mathbb{C})$;
- It is closely related to the doubling method of Piatetski-Shapiro and Rallis, the work of Lapid-Rallis, and other more recent works;

The work of Jiang-Luo-Zhang

In the following, let F be a p-adic field.

- $G=\mathbb{G}_{m} \times \operatorname{Sp}_{2 n}$;
- $\rho: G^{\vee}(\mathbb{C})=\mathbb{C}^{\times} \times \mathrm{SO}_{2 n+1}(\mathbb{C}) \rightarrow \mathrm{GL}_{2 n+1}(\mathbb{C})$;
- It is closely related to the doubling method of Piatetski-Shapiro and Rallis, the work of Lapid-Rallis, and other more recent works;
- The major work we need is the right normalization of the local intertwining operators appearing in doubling method;

The work of Jiang-Luo-Zhang

In the following, let F be a p-adic field.

- $G=\mathbb{G}_{m} \times \operatorname{Sp}_{2 n}$;
- $\rho: G^{\vee}(\mathbb{C})=\mathbb{C}^{\times} \times \mathrm{SO}_{2 n+1}(\mathbb{C}) \rightarrow \mathrm{GL}_{2 n+1}(\mathbb{C})$;
- It is closely related to the doubling method of Piatetski-Shapiro and Rallis, the work of Lapid-Rallis, and other more recent works;
- The major work we need is the right normalization of the local intertwining operators appearing in doubling method;
- Piatetski-Shapiro and Rallis, Lapid-Rallis and other more recent works found the right normalization which gave the local Langlands γ-factor via doubling local zeta integrals.

Doubling method (Piatetski-Shapiro and Rallis)

- $\left(F^{2 n},\langle\cdot, \cdot\rangle\right)$;

Doubling method (Piatetski-Shapiro and Rallis)

- $\left(F^{2 n},\langle\cdot, \cdot\rangle\right)$;
- $\mathrm{Sp}_{2 n}$;

Doubling method (Piatetski-Shapiro and Rallis)

- $\left(F^{2 n},\langle\cdot, \cdot\rangle\right)$;
- $\mathrm{Sp}_{2 n}$;
$-\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n} \hookrightarrow \mathrm{Sp}_{4 n} \operatorname{via}\left(F^{2 n} \oplus F^{2 n},\langle\cdot, \cdot\rangle \oplus-\langle\cdot, \cdot\rangle\right)$;

Doubling method (Piatetski-Shapiro and Rallis)

- $\left(F^{2 n},\langle\cdot, \cdot\rangle\right)$;
- $\mathrm{Sp}_{2 n}$;
$-\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n} \hookrightarrow \mathrm{Sp}_{4 n}$ via $\left(F^{2 n} \oplus F^{2 n},\langle\cdot, \cdot\rangle \oplus-\langle\cdot, \cdot\rangle\right)$;
- $P=M N=\operatorname{Stab}\left(L_{\Delta}\right)$ a Siegel parabolic in $\mathrm{Sp}_{4 n}$, where $L_{\Delta}=\left\{(v, v) \mid \quad v \in F^{2 n}\right\}$ is a Lagrangian;

Doubling method (Piatetski-Shapiro and Rallis)

- $\left(F^{2 n},\langle\cdot, \cdot\rangle\right)$;
$-\mathrm{Sp}_{2 n}$;
$-\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n} \hookrightarrow \mathrm{Sp}_{4 n}$ via $\left(F^{2 n} \oplus F^{2 n},\langle\cdot, \cdot\rangle \oplus-\langle\cdot, \cdot\rangle\right)$;
- $P=M N=\operatorname{Stab}\left(L_{\Delta}\right)$ a Siegel parabolic in $\mathrm{Sp}_{4 n}$, where $L_{\Delta}=\left\{(v, v) \mid \quad v \in F^{2 n}\right\}$ is a Lagrangian;

$$
\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n} \hookrightarrow \mathrm{Sp}_{4 n} \rightarrow P \backslash \mathrm{Sp}_{4 n}
$$

has Zariski open dense image, with stabilizer

$$
P \cap\left(\mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n}\right)=\mathrm{Sp}_{2 n}^{\Delta} \hookrightarrow \mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n}
$$

The work of Jiang-Luo-Zhang

The following diagram illustrates the basic idea behind our work

where $X_{P}=[P, P] \backslash \mathrm{Sp}_{4 n}, w=\left(\mathrm{Id}_{2 n},-\mathrm{Id}_{2 n}\right) \in \mathrm{Sp}_{2 n} \times \mathrm{Sp}_{2 n}$, $M^{\mathrm{ab}}=[M, M] \backslash M \simeq \mathbb{G}_{m}$.

- $w P w=P^{-}, M^{\text {ab }} w N$ is Zariski open dense in X_{P};
- $G=\mathbb{G}_{m} \times \mathrm{Sp}_{2 n}$ is Zariski open dense in X_{P};

Harmonic analysis on $M^{\mathrm{ab}} w N \hookrightarrow X_{P}$

Fourier transform

- For $f \in \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)$, define
$\mathcal{F}_{X, \psi}(f)(g):=\int_{F^{\times}}^{\mathrm{pv}} \eta_{\mathrm{pvs}, \psi}(x)|x|^{-\frac{2 n+1}{2}} \int_{N(F)} f(w n \mathfrak{s}(x) g) d n d x$.
where $\mathfrak{s}: \mathbb{G}_{m} \rightarrow M$ is a section of $M \rightarrow[M, M] \backslash M \simeq \mathbb{G}_{m}$;

Harmonic analysis on $M^{\mathrm{ab}} w N \hookrightarrow X_{P}$

Fourier transform

- For $f \in \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)$, define
$\mathcal{F}_{X, \psi}(f)(g):=\int_{F^{X}}^{\mathrm{pv}} \eta_{\mathrm{pvs}, \psi}(x)|x|^{-\frac{2 n+1}{2}} \int_{N(F)} f(w n \mathfrak{s}(x) g) d n d x$.
where $\mathfrak{s}: \mathbb{G}_{m} \rightarrow M$ is a section of $M \rightarrow[M, M] \backslash M \simeq \mathbb{G}_{m}$;
- $\eta_{\mathrm{pvs}, \psi}(x)$ is a distribution on F^{\times}, which is a key ingredient towards the understanding of $\mathcal{F}_{\rho, \psi}$ and $\mathcal{S}_{\rho}(G(F))$;

Harmonic analysis on $M^{\mathrm{ab}} w N \hookrightarrow X_{P}$

Fourier transform

- For $f \in \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)$, define
$\mathcal{F}_{X, \psi}(f)(g):=\int_{F^{\times}}^{\mathrm{pv}} \eta_{\mathrm{pvs}, \psi}(x)|x|^{-\frac{2 n+1}{2}} \int_{N(F)} f(w n \mathfrak{s}(x) g) d n d x$.
where $\mathfrak{s}: \mathbb{G}_{m} \rightarrow M$ is a section of $M \rightarrow[M, M] \backslash M \simeq \mathbb{G}_{m}$;
- $\eta_{\mathrm{pvs}, \psi}(x)$ is a distribution on F^{\times}, which is a key ingredient towards the understanding of $\mathcal{F}_{\rho, \psi}$ and $\mathcal{S}_{\rho}(G(F))$;
- The definition of $\eta_{\mathrm{pvs}, \psi}$ first appeared in
[Braverman-Kazhdan, 2002], but that definition of $\eta_{\mathrm{pvs}, \psi}$ did not carry enough analytical information for our work.

Abelian harmonic analysis

- To understand the analytical nature of $\eta_{\mathrm{pvs}, \psi}$, we develop the local harmonic analysis associated to $\eta_{\mathrm{pvs}, \psi}$ in the spirit of Braverman-Kazhdan proposal;

Abelian harmonic analysis

- To understand the analytical nature of $\eta_{\mathrm{pvs}, \psi}$, we develop the local harmonic analysis associated to $\eta_{\mathrm{pvs}, \psi}$ in the spirit of Braverman-Kazhdan proposal;
- An explicit formula for $\eta_{\mathrm{pvs}, \psi}$ is obtained from the functional equation associated to zeta integrals on the prehomogeneous space $\left(\mathrm{GL}_{2 n+1}, S_{2 n+1}\right)$, where $S_{2 n+1}$ is the space of $(2 n+1) \times(2 n+1)$ symmetric matrices. More precisely, for a character χ, the following zeta integral is considered

$$
\mathcal{Z}(s, f, \chi)=\int_{S_{2 n+1}(F)} f(X) \chi(X)|\operatorname{det} X|^{s-(n+1)} d X
$$

Abelian harmonic analysis

- To understand the analytical nature of $\eta_{\mathrm{pvs}, \psi}$, we develop the local harmonic analysis associated to $\eta_{\mathrm{pvs}, \psi}$ in the spirit of Braverman-Kazhdan proposal;
- An explicit formula for $\eta_{\mathrm{pvs}, \psi}$ is obtained from the functional equation associated to zeta integrals on the prehomogeneous space $\left(\mathrm{GL}_{2 n+1}, S_{2 n+1}\right)$, where $S_{2 n+1}$ is the space of $(2 n+1) \times(2 n+1)$ symmetric matrices. More precisely, for a character χ, the following zeta integral is considered

$$
\mathcal{Z}(s, f, \chi)=\int_{S_{2 n+1}(F)} f(X) \chi(X)|\operatorname{det} X|^{s-(n+1)} d X
$$

- The functional equation for the zeta integrals on $\left(\mathrm{GL}_{m}, S_{m}\right)$ is known by the work of Piatetski-Shapiro and Rallis, and T. Ikeda.

Abelian harmonic analysis

The following diagram illustrates the idea

where

- F.I. is the fiber integration along det : $S_{2 n+1} \rightarrow F$;
- \mathfrak{L} is the induced linear transform.

Abelian harmonic analysis

Theorem (JLZ)

- \mathfrak{L} is well-defined;

Abelian harmonic analysis

Theorem (JLZ)

- \mathfrak{L} is well-defined;
- $\mathcal{S}_{\mathrm{pvs}}^{+}\left(F^{\times}\right)$consists of functions f in $\mathcal{C}^{\infty}\left(F^{\times}\right)$, such that

1. $\operatorname{supp}(f)$ is bounded, i.e. $f(x)=0$ for $|x| \gg 0$;

Abelian harmonic analysis

Theorem (JLZ)

- \mathfrak{L} is well-defined;
- $\mathcal{S}_{\text {pvs }}^{+}\left(F^{\times}\right)$consists of functions f in $\mathcal{C}^{\infty}\left(F^{\times}\right)$, such that

1. $\operatorname{supp}(f)$ is bounded, i.e. $f(x)=0$ for $|x| \gg 0$;
2. for $|x| \ll 1$,

$$
\begin{aligned}
f(x) & =a_{0}^{+}(\operatorname{ac}(x))|x|^{-2 n} \\
& +\sum_{i=0}^{n-1} a_{i,+}^{+}(\operatorname{ac}(x))|x|^{i-\frac{2 n-1}{2}}+a_{i,-}^{+}(\operatorname{ac}(x))|x|^{i-\frac{2 n-1}{2}}(-1)^{\operatorname{ord}(x)}
\end{aligned}
$$

where a_{0}^{+}is a locally constant function on $\mathfrak{o}_{F}^{\times}$that is $\mathfrak{o}_{F}^{\times}$-invariant, $a_{i, \pm}^{+}$are locally constant functions on $\mathfrak{o}_{F}^{\times}$that are $\mathfrak{o}_{F}^{\times 2}$-invariant, $\operatorname{ac}(x)=\frac{x}{|x|} ;$

Abelian harmonic analysis

Theorem (JLZ)

- \mathfrak{L} is well-defined;
- $\mathcal{S}_{\text {pvs }}^{+}\left(F^{\times}\right)$consists of functions f in $\mathcal{C}^{\infty}\left(F^{\times}\right)$, such that

1. $\operatorname{supp}(f)$ is bounded, i.e. $f(x)=0$ for $|x| \gg 0$;
2. for $|x| \ll 1$,

$$
\begin{aligned}
f(x) & =a_{0}^{+}(\operatorname{ac}(x))|x|^{-2 n} \\
& +\sum_{i=0}^{n-1} a_{i,+}^{+}(\operatorname{ac}(x))|x|^{i-\frac{2 n-1}{2}}+a_{i,-}^{+}(\operatorname{ac}(x))|x|^{i-\frac{2 n-1}{2}}(-1)^{\operatorname{ord}(x)}
\end{aligned}
$$

where a_{0}^{+}is a locally constant function on $\mathfrak{o}_{F}^{\times}$that is $\mathfrak{o}_{F}^{\times}$-invariant, $a_{i, \pm}^{+}$are locally constant functions on $\mathfrak{o}_{F}^{\times}$that are $\mathfrak{o}_{F}^{\times 2}$-invariant, $\operatorname{ac}(x)=\frac{x}{|x|} ;$

- In particular, $\mathcal{C}_{c}^{\infty}\left(F^{\times}\right) \hookrightarrow \mathcal{S}_{\text {pvs }}^{+}\left(F^{\times}\right)$is of finite codimension;

Paley-Wiener theorem for $\mathcal{S}_{\text {pvs }}^{ \pm}\left(F^{\times}\right)$

Theorem (JLZ)

- Under Mellin transform $\left(\int_{F^{\times}} f(x) \chi_{s}(x) d x\right), \mathcal{S}_{\text {pvs }}^{+}\left(F^{\times}\right)$is captured by

$$
L(s, \chi) \prod_{i=0}^{n-1} L\left(2 s+2 i+1, \chi^{2}\right)
$$

It follows from the description of G.C.D. for the zeta integral $\mathcal{Z}(s, \cdot, \chi)$ attached to $\left(\mathrm{GL}_{m}, S_{m}\right)$, which is established in our work (for χ unramified it is proved by Piatetski-Shapiro and Rallis).

Abelian harmonic analysis

Proposition (JLZ)

- For any $f \in \mathcal{S}_{\mathrm{pvs}}^{+}\left(F^{\times}\right)$, there is the following functional equation after meromorphic continuation

$$
\int_{F^{\times}} \mathfrak{L}(f) \chi_{s+\frac{n+1}{2}}(t)^{-1} d t=\beta_{\psi}\left(\chi_{s}\right) \int_{F^{\times}} f(t) \chi_{s+\frac{2 n+1}{2}}(t) d t
$$

where

$$
\beta_{\psi}\left(\chi_{s}\right)=\gamma\left(s-\frac{2 n-1}{2}, \chi, \psi\right) \prod_{r=1}^{n} \gamma\left(2 s-2 n+2 r, \chi^{2}, \psi\right)
$$

Abelian harmonic analysis

Theorem (JLZ)

- For $k>0$, let $\mathbf{1}_{k}$ be the normalized characteristic function of $1+\varpi^{k} \mathfrak{o}_{F}$, then

$$
\lim _{k \rightarrow \infty} \mathfrak{L}\left(\mathbf{1}_{k}\right)(x)
$$

is stably convergent, i.e. for fixed $x \in F^{\times}$, there exists N such that $\mathfrak{L}\left(\mathbf{1}_{k}\right)(x)=\mathfrak{L}\left(\mathbf{1}_{N}\right)(x)$ for any $k>N$;

Abelian harmonic analysis

Theorem (JLZ)

- For $k>0$, let $\mathbf{1}_{k}$ be the normalized characteristic function of $1+\varpi^{k} \mathfrak{o}_{F}$, then

$$
\lim _{k \rightarrow \infty} \mathfrak{L}\left(\mathbf{1}_{k}\right)(x)
$$

is stably convergent, i.e. for fixed $x \in F^{\times}$, there exists N such that $\mathfrak{L}\left(\mathbf{1}_{k}\right)(x)=\mathfrak{L}\left(\mathbf{1}_{N}\right)(x)$ for any $k>N$;

- Define

$$
\eta_{\mathrm{pvs}, \psi}(x)=|x|^{-\frac{2 n+1}{2}} \lim _{k \rightarrow \infty} \mathfrak{L}\left(\mathbf{1}_{k}\right)(x)
$$

Then $\eta_{\mathrm{pvs}, \psi}(x)$ is locally constant on F^{\times}.

Abelian harmonic analysis

Theorem (JLZ)

- The generalized Fourier transform $\mathfrak{L}=\mathfrak{L}_{\eta_{\text {pvs }}, \psi}: \mathcal{S}_{\text {pvs }}^{+}\left(F^{\times}\right) \rightarrow \mathcal{S}_{\text {pvs }}^{-}\left(F^{\times}\right)$is given by the following principal value integral

$$
\mathcal{L}(f)=\left(\eta_{\mathrm{pvs}, \psi}|\cdot|^{2 n+1} \frac{2}{2} * f^{\vee}\right), \quad f \in \mathcal{S}_{\text {pvs }}^{+}\left(F^{\times}\right) .
$$

Abelian harmonic analysis

Theorem (JLZ)

- The generalized Fourier transform $\mathfrak{L}=\mathfrak{L}_{\eta_{\text {pvs }}, \psi}: \mathcal{S}_{\text {pvs }}^{+}\left(F^{\times}\right) \rightarrow \mathcal{S}_{\text {pvs }}^{-}\left(F^{\times}\right)$is given by the following principal value integral

$$
\mathcal{L}(f)=\left(\eta_{\mathrm{pvs}, \psi}|\cdot|^{\frac{2 n+1}{2}} * f^{\vee}\right), \quad f \in \mathcal{S}_{\mathrm{pvs}}^{+}\left(F^{\times}\right) .
$$

- For any character $\chi_{s}=\chi|\cdot|^{s}$ of F^{\times}, the following principal value integral is convergent whenever $\operatorname{Re}(s)$ is sufficiently small, and admits meromorphic continuation to $s \in \mathbb{C}$,

$$
\begin{aligned}
\eta_{\mathrm{pvs}, \psi}\left(\chi_{s}\right) & :=\eta_{\mathrm{pvs}, \psi} * \chi_{s}(e) \\
& =\lim _{k \rightarrow \infty} \int_{q^{-k} \leq|x| \leq q^{k}}^{\mathrm{pv}} \eta_{\mathrm{pvs}, \psi}(x) \chi_{s}\left(x^{-1}\right) d x \\
& =\beta_{\psi}\left(\chi_{s}\right) .
\end{aligned}
$$

Abelian harmonic analysis

- In conclusion, we develop a new type of harmonic analysis on F^{\times}associated to $\left(\mathcal{S}_{\mathrm{pvs}}^{ \pm}\left(F^{\times}\right), \mathfrak{L}_{\eta_{\mathrm{pvs}, \psi}}, \beta_{\psi}\left(\chi_{s}\right)\right)$.

Abelian harmonic analysis

- In conclusion, we develop a new type of harmonic analysis on F^{\times}associated to $\left(\mathcal{S}_{\mathrm{pvs}}^{ \pm}\left(F^{\times}\right), \mathfrak{L}_{\eta_{\mathrm{pvs}, \psi}}, \beta_{\psi}\left(\chi_{s}\right)\right)$.
- It can be viewed as the abelian case of the Braverman-Kazhdan proposal.

Abelian harmonic analysis

- In conclusion, we develop a new type of harmonic analysis on F^{\times}associated to $\left(\mathcal{S}_{\mathrm{pvs}}^{ \pm}\left(F^{\times}\right), \mathfrak{L}_{\eta_{\mathrm{pvs}, \psi}}, \beta_{\psi}\left(\chi_{s}\right)\right)$.
- It can be viewed as the abelian case of the Braverman-Kazhdan proposal.
- This abelian harmonic analysis plays the key role in our work.

Harmonic analysis on $M^{\mathrm{ab}} w N \hookrightarrow X_{P}$

Fix $f \in \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)$. Define

$$
R_{X}(f)(g):=\int_{N(F)} f(w n g) d n
$$

Proposition (JLZ)

- The function in $a \in F^{\times}$

$$
F_{g}(a):=|a|^{(2 n+1)} R_{X}(f)(\mathfrak{s}(a) g)
$$

lies in $\mathcal{S}_{\mathrm{pvs}}^{+}\left(F^{\times}\right)$.

Harmonic analysis on $M^{\mathrm{ab}} w N \hookrightarrow X_{P}$

Fix $f \in \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)$. Define

$$
R_{X}(f)(g):=\int_{N(F)} f(w n g) d n
$$

Proposition (JLZ)

- The function in $a \in F^{\times}$

$$
F_{g}(a):=|a|^{(2 n+1)} R_{X}(f)(\mathfrak{s}(a) g)
$$

lies in $\mathcal{S}_{\mathrm{pvs}}^{+}\left(F^{\times}\right)$.

- $\mathcal{L}_{\eta_{\mathrm{pvs}, \psi}}\left(F_{g}\right)(a)=|a|^{2 n+1} \mathcal{F}_{X, \psi}(f)\left(\mathfrak{s}^{-1}(a) g\right)$ lies in $\mathcal{S}_{\mathrm{pvs}}^{-}\left(F^{\times}\right)$.

Compatibility between $\mathcal{F}_{X, \psi}$ and the unnormalized

 intertwining operator $\mathrm{M}_{w}(s, \chi)$Proposition (JLZ)

- Let $\mathcal{P}_{\chi_{s}}: \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right) \rightarrow \mathrm{I}(s, \chi)=\operatorname{Ind}_{P}^{\mathrm{Sp}_{4 n}}\left(\chi_{s}\right)$,

$$
\mathcal{P}_{\chi_{s}}(f)(g)=\int_{F^{\times}} \chi_{s}(a)|a|^{\frac{2 n+1}{2}} f\left(\mathfrak{s}^{-1}(a) g\right) d a .
$$

Then $\mathcal{P}_{\chi_{s}^{-1}} \circ \mathcal{F}_{X, \psi}(f)(g)$ is absolutely convergent for $\operatorname{Re}(s)$ sufficiently small, and the following identity holds after meromorphic continuation

$$
\mathcal{P}_{\chi_{s}^{-1}} \circ \mathcal{F}_{X, \psi}(f)(g)=\beta_{\psi}\left(\chi_{s}\right)\left(\mathrm{M}_{w}(s, \chi) \circ \mathcal{P}_{\chi_{s}}\right)(f)(g)
$$

Basic properties of $\mathcal{F}_{X, \psi}$ and $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$

Define

$$
\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)=\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)+\mathcal{F}_{X, \psi}\left(\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)\right)
$$

Proposition (JLZ)

- $\mathcal{F}_{X, \psi}$ stabilizes $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$.

Basic properties of $\mathcal{F}_{X, \psi}$ and $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$

Define

$$
\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)=\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)+\mathcal{F}_{X, \psi}\left(\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)\right)
$$

Proposition (JLZ)

- $\mathcal{F}_{X, \psi}$ stabilizes $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$.
- $|2|^{n(2 n+1)} \cdot \mathcal{F}_{X, \psi}$ extends to a unitary operator on $L^{2}\left(X_{P}(F)\right)$ and $\mathcal{F}_{X, \psi} \circ \mathcal{F}_{X, \psi^{-1}}=|2|^{-2 n(2 n+1)} \mathrm{Id}$.

Basic properties of $\mathcal{F}_{X, \psi}$ and $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$

Define

$$
\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)=\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)+\mathcal{F}_{X, \psi}\left(\mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)\right)
$$

Proposition (JLZ)

- $\mathcal{F}_{X, \psi}$ stabilizes $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$.
- $|2|^{n(2 n+1)} \cdot \mathcal{F}_{X, \psi}$ extends to a unitary operator on $L^{2}\left(X_{P}(F)\right)$ and $\mathcal{F}_{X, \psi} \circ \mathcal{F}_{X, \psi^{-1}}=|2|^{-2 n(2 n+1)} \mathrm{Id}$.
- Via $\mathcal{P}_{\chi_{s}}, \mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$ projects onto the space of good sections $I^{\dagger}(s, \chi)$ introduced by S. Yamana.

Asymptotic of $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$

Proposition (JLZ)

A function $f \in \mathcal{C}^{\infty}\left(X_{P}(F)\right)$ belongs to $\mathcal{S}_{\text {pvs }}\left(X_{P}(F)\right)$ if and only if f is right $K_{\mathrm{Sp}_{4 n}}-$ finite, and as a function in $a \in F^{\times}$,

$$
|a|^{2 n+1} f\left(\mathfrak{s}_{a}^{-1} k\right)
$$

belongs to $\mathcal{S}_{\text {pvs }}^{-}\left(F^{\times}\right)$for any fixed $k \in K_{\mathrm{Sp}_{4 n}}$.

- Therefore functions in $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$ can be described by their asymptotic behavior near the singular point.

Asymptotic of $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$

Proposition (JLZ)

A function $f \in \mathcal{C}^{\infty}\left(X_{P}(F)\right)$ belongs to $\mathcal{S}_{\text {pvs }}\left(X_{P}(F)\right)$ if and only if f is right $K_{\mathrm{Sp}_{4 n}}$-finite, and as a function in $a \in F^{\times}$,

$$
|a|^{2 n+1} f\left(\mathfrak{s}_{a}^{-1} k\right)
$$

belongs to $\mathcal{S}_{\mathrm{pvs}}^{-}\left(F^{\times}\right)$for any fixed $k \in K_{\mathrm{Sp}_{4 n}}$.

- Therefore functions in $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$ can be described by their asymptotic behavior near the singular point.
- The support of functions in $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$ in $\bar{X}_{P}^{\text {aff }}(F)$ is compact. In particular $\bar{X}_{P}^{\text {aff }}(F) \backslash X_{P}(F)=\{\overrightarrow{0}\}$.

Harmonic analysis on $\mathbb{G}_{m} \times \mathrm{Sp}_{2 n} \hookrightarrow X_{P}$

Proposition (JLZ)

- $\mathcal{C}: w N \rightarrow \mathrm{Sp}_{2 n} \times\left\{\mathrm{I}_{2 n}\right\}$ is given by the Cayley transform.

Harmonic analysis on $\mathbb{G}_{m} \times \operatorname{Sp}_{2 n} \hookrightarrow X_{P}$

Proposition (JLZ)

- $\mathcal{C}: w N \rightarrow \mathrm{Sp}_{2 n} \times\left\{\mathrm{I}_{2 n}\right\}$ is given by the Cayley transform.
- The Jacobian of \mathcal{C}^{-1} is given by

$$
\mathfrak{j}_{\mathcal{C}^{-1}}(h)=c_{0}\left|\operatorname{det}\left(h-\mathrm{I}_{2 n}\right)\right|^{-(2 n+1)}
$$

where $c_{0}=\frac{1}{\prod_{i=1}^{n} \zeta_{F}(2 i)}$.

Harmonic analysis on $\mathbb{G}_{m} \times \operatorname{Sp}_{2 n} \hookrightarrow X_{P}$

- For $f \in \mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$, define

$$
\phi_{f}(a, h):=f\left(\mathfrak{s}(a)^{-1} \cdot\left(h, \mathrm{I}_{2 n}\right)\right)|a|^{\frac{2 n+1}{2}} .
$$

Set

$$
\mathcal{S}_{\rho}(G(F)):=\left\{\phi_{f} \mid \quad f \in \mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)\right\} .
$$

Harmonic analysis on $\mathbb{G}_{m} \times \operatorname{Sp}_{2 n} \hookrightarrow X_{P}$

- For $f \in \mathcal{S}_{\text {pvs }}\left(X_{P}(F)\right)$, define

$$
\phi_{f}(a, h):=f\left(\mathfrak{s}(a)^{-1} \cdot\left(h, \mathrm{I}_{2 n}\right)\right)|a|^{\frac{2 n+1}{2}} .
$$

Set

$$
\mathcal{S}_{\rho}(G(F)):=\left\{\phi_{f} \mid \quad f \in \mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)\right\} .
$$

- Define

$$
\Phi_{\rho, \psi}(a, h):=c_{0} \cdot \eta_{\mathrm{pvs}, \psi}\left(a \cdot \operatorname{det}\left(h+\mathrm{I}_{2 n}\right)\right) \cdot\left|\operatorname{det}\left(h+\mathrm{I}_{2 n}\right)\right|^{-\frac{2 n+1}{2}}
$$

For $f \in \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)$, the ρ-Fourier transform is defined by

$$
\mathcal{F}_{\rho, \psi}\left(\phi_{f}\right)(a, h):=\int_{F^{\times}}^{\mathrm{pv}} \int_{\mathrm{Sp}_{2 n}(F)} \Phi_{\rho, \psi}(a x, g h) \phi_{f}(x, g) d x d g
$$

Compatibility between $\mathcal{F}_{X, \psi}$ and $\mathcal{F}_{\rho, \psi}$

Proposition (JLZ)

- For $f \in \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)$,

$$
\phi_{\mathcal{F}_{X, \psi}(f)}(a, h)=|2|^{-n(2 n+1)} \mathcal{F}_{\rho, \psi}\left(\phi_{f}\right)\left(2^{-2 n} a,-h^{-1}\right) .
$$

Compatibility between $\mathcal{F}_{X, \psi}$ and $\mathcal{F}_{\rho, \psi}$

Proposition (JLZ)

- For $f \in \mathcal{C}_{c}^{\infty}\left(X_{P}(F)\right)$,

$$
\phi_{\mathcal{F}_{X, \psi}(f)}(a, h)=|2|^{-n(2 n+1)} \mathcal{F}_{\rho, \psi}\left(\phi_{f}\right)\left(2^{-2 n} a,-h^{-1}\right)
$$

- In particular, we can extend the definition of $\mathcal{F}_{\rho, \psi}$ to $\mathcal{S}_{\rho}(G(F))$ via

$$
\phi_{\mathcal{F}_{X, \psi}(f)}(a, h)=|2|^{-n(2 n+1)} \mathcal{F}_{\rho, \psi}\left(\phi_{f}\right)\left(2^{-2 n} a,-h^{-1}\right) .
$$

Compatibility between $\mathcal{F}_{\rho, \psi}$ and the normalized intertwining operators $\mathrm{M}_{w}^{\dagger}(s, \chi, \psi)$

Proposition (JLZ)
For $h \in \operatorname{Sp}_{2 n}(F)$ and $f \in \mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$,

$$
\mathcal{P}_{\chi_{s}^{-1}} \circ f_{\mathcal{F}_{\rho, \psi}\left(\phi_{f}\right)}\left(\left(-h^{-1}, \operatorname{Id}_{2 n}\right)\right)
$$

is well-defined for $\operatorname{Re}(s)$ sufficiently small, and the following identity holds after meromorphic continuation to $s \in \mathbb{C}$,

$$
\mathrm{M}_{w}^{\dagger}(s, \chi, \psi) \circ \mathcal{P}_{\chi_{s}}(f)((h, \mathrm{I}))=\mathcal{P}_{\chi_{s}^{-1}} \circ f_{\mathcal{F}_{\rho, \psi}\left(\phi_{f}\right)}\left(\left(-h^{-1}, \mathrm{I}\right)\right)
$$

Basic properties of $\mathcal{S}_{\rho}(G(F))$ and $\mathcal{F}_{\rho, \psi}$

Proposition (JLZ)

- $\mathcal{F}_{\rho, \psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$.

Basic properties of $\mathcal{S}_{\rho}(G(F))$ and $\mathcal{F}_{\rho, \psi}$

Proposition (JLZ)

- $\mathcal{F}_{\rho, \psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$.
- $\mathcal{F}_{\rho, \psi}$ extends to a unitary operator on $L^{2}(G(F), d g)$.

Basic properties of $\mathcal{S}_{\rho}(G(F))$ and $\mathcal{F}_{\rho, \psi}$

Proposition (JLZ)

- $\mathcal{F}_{\rho, \psi}$ stabilizes $\mathcal{S}_{\rho}(G(F))$.
- $\mathcal{F}_{\rho, \psi}$ extends to a unitary operator on $L^{2}(G(F), d g)$.
$-\mathcal{F}_{\rho, \psi^{-1}} \circ \mathcal{F}_{\rho, \psi}=$ Id.

Basic properties of $\mathcal{S}_{\rho}(G(F))$ and $\mathcal{F}_{\rho, \psi}$

Proposition (JLZ)
Fix $\chi \otimes \pi \in \operatorname{Irr}(G(F))$. Set

$$
\mathcal{Z}(s, f, \varphi)=\int_{F \times \times \mathrm{SP}_{2 n}(F)} \phi(a, h) \varphi(a, h)|a|^{s-\frac{1}{2}} d a d h,
$$

with $\phi \in \mathcal{S}_{\rho}(G(F)), \varphi \in \mathcal{C}(\chi \otimes \pi)$.
The integral is absolutely convergent for $\operatorname{Re}(s)$ large, and represents a rational function in q^{-s}.

- It can be deduced from the asymptotic of functions in $\mathcal{S}_{\mathrm{pvs}}\left(X_{P}(F)\right)$.

Basic properties of $\mathcal{S}_{\rho}(G(F))$ and $\mathcal{F}_{\rho, \psi}$

Proposition (JLZ)

- After restriction, the linear functional $\mathcal{Z}(s, \cdot, \cdot)$ lies in

$$
\operatorname{Hom}_{G(F) \times G(F)}\left(\mathcal{C}_{c}^{\infty}(G(F)) \otimes\left(\chi_{s-\frac{1}{2}}^{-1} \otimes \pi^{\vee}\right) \otimes\left(\chi_{s-\frac{1}{2}} \otimes \pi\right), \mathbb{C}\right)
$$

where the latter space is of dimension 1.

Basic properties of $\mathcal{S}_{\rho}(G(F))$ and $\mathcal{F}_{\rho, \psi}$

Proposition (JLZ)

- After restriction, the linear functional $\mathcal{Z}(s, \cdot, \cdot)$ lies in

$$
\operatorname{Hom}_{G(F) \times G(F)}\left(\mathcal{C}_{c}^{\infty}(G(F)) \otimes\left(\chi_{s-\frac{1}{2}}^{-1} \otimes \pi^{\vee}\right) \otimes\left(\chi_{s-\frac{1}{2}} \otimes \pi\right), \mathbb{C}\right)
$$

where the latter space is of dimension 1.

- By equivariant property there exists a rational function $\Gamma_{\rho, \psi}(s, \chi \otimes \pi)$ in q^{-s} such that

$$
\mathcal{Z}\left(1-s, \mathcal{F}_{\rho, \psi}(f), \varphi^{\vee}\right)=\Gamma_{\rho, \psi}(s, \chi \otimes \pi) \cdot \mathcal{Z}(s, f, \varphi)
$$

Basic properties of $\mathcal{S}_{\rho}(G(F))$ and $\mathcal{F}_{\rho, \psi}$

Proposition (JLZ)

- Let $\varphi_{\chi_{s} \otimes \pi} \in \mathcal{C}\left(\chi_{s} \otimes \pi\right)$. Then as distributions on $G(F)$, the following identity holds by meromorphic continuation,

$$
\mathcal{F}_{\rho, \psi}\left(\varphi_{\chi s \otimes \pi}^{\vee}\right)=\Gamma_{\rho, \psi}\left(\frac{1}{2}, \chi_{s} \otimes \pi\right) \cdot \varphi_{\chi_{s} \otimes \pi} .
$$

where for $f \in \mathcal{C}_{c}^{\infty}(G(F))$,

$$
\left(\mathcal{F}_{\rho, \psi}\left(\varphi_{\chi_{s} \otimes \pi}^{\vee}\right), f\right)_{G}:=\left(\varphi_{\chi_{s} \otimes \pi}^{\vee}, \mathcal{F}_{\rho, \psi}(f)\right)_{G}
$$

whenever the latter does not touch the poles. In particular $\Gamma_{\rho, \psi}(s, \chi \otimes \pi)$ is a Gamma function in the sense of Gelfand and Graev.

Basic properties of $\mathcal{S}_{\rho}(G(F))$ and $\mathcal{F}_{\rho, \psi}$

Proposition (JLZ)

- Let $\varphi_{\chi_{s} \otimes \pi} \in \mathcal{C}\left(\chi_{s} \otimes \pi\right)$. Then as distributions on $G(F)$, the following identity holds by meromorphic continuation,

$$
\mathcal{F}_{\rho, \psi}\left(\varphi_{\chi_{s} \otimes \pi}^{\vee}\right)=\Gamma_{\rho, \psi}\left(\frac{1}{2}, \chi_{s} \otimes \pi\right) \cdot \varphi_{\chi_{s} \otimes \pi} .
$$

where for $f \in \mathcal{C}_{c}^{\infty}(G(F))$,

$$
\left(\mathcal{F}_{\rho, \psi}\left(\varphi_{\chi s \otimes \pi}^{\vee}\right), f\right)_{G}:=\left(\varphi_{\chi s \otimes \pi}^{\vee}, \mathcal{F}_{\rho, \psi}(f)\right)_{G}
$$

whenever the latter does not touch the poles. In particular $\Gamma_{\rho, \psi}(s, \chi \otimes \pi)$ is a Gamma function in the sense of Gelfand and Graev.

$$
\Gamma_{\rho, \psi}\left(\frac{1}{2}, \chi_{s} \otimes \pi\right) \cdot \Gamma_{\rho, \psi^{-1}}\left(\frac{1}{2}, \chi_{s}^{-1} \otimes \pi^{\vee}\right)=1 .
$$

Basic properties of $\Phi_{\rho, \psi}$

- Set $G_{\ell}=\left\{(a, h) \in G(F)=F^{\times} \times \operatorname{Sp}_{2 n}|\quad| a \mid=q^{-\ell}\right\}$. Let c_{ℓ} be the characteristic function of G_{ℓ}.
- Set $\Phi_{\rho, \psi, \ell}=\Phi_{\rho, \psi} \cdot \operatorname{ch}_{\ell}$.

Basic properties of $\Phi_{\rho, \psi}$

Theorem (JLZ)

- The distribution $\Phi_{\rho, \psi, \ell}$ lies in the Bernstein center of $G(F)$. For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$
(\chi \otimes \pi)\left(\Phi_{\rho, \psi, \ell}\right)=f_{\ell}(\chi \otimes \pi) \operatorname{Id}_{\chi \otimes \pi} .
$$

Basic properties of $\Phi_{\rho, \psi}$

Theorem (JLZ)

- The distribution $\Phi_{\rho, \psi, \ell}$ lies in the Bernstein center of $G(F)$. For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$
(\chi \otimes \pi)\left(\Phi_{\rho, \psi, \ell}\right)=f_{\ell}(\chi \otimes \pi) \operatorname{Id}_{\chi \otimes \pi}
$$

- The summation

$$
\sum_{\ell} f_{\ell}\left(\chi_{s} \otimes \pi\right)
$$

is convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$.

Basic properties of $\Phi_{\rho, \psi}$

Theorem (JLZ)

- The distribution $\Phi_{\rho, \psi, \ell}$ lies in the Bernstein center of $G(F)$. For $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, set

$$
(\chi \otimes \pi)\left(\Phi_{\rho, \psi, \ell}\right)=f_{\ell}(\chi \otimes \pi) \operatorname{Id}_{\chi \otimes \pi}
$$

- The summation

$$
\sum_{\ell} f_{\ell}\left(\chi_{s} \otimes \pi\right)
$$

is convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and admits a meromorphic continuation to $s \in \mathbb{C}$.

- The following identity holds after meromorphic continuation

$$
\sum_{\ell} f_{\ell}\left(\chi_{s} \otimes \pi\right)=\Gamma_{\rho, \psi}\left(\frac{1}{2}, \chi_{s}^{-1} \otimes \pi^{\vee}\right)
$$

Verification

Corollary (JLZ)

- Based on the work of Yamana, for any $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, the following set

$$
\mathcal{I}_{\chi \otimes \pi}=\left\{\mathcal{Z}(s, \phi, \varphi) \mid \quad \phi \in \mathcal{S}_{\rho}(G(F)), \varphi \in \mathcal{C}(\chi \otimes \pi)\right\}
$$

is a finitely generated fractional ideal of $\mathbb{C}\left[q^{-s}, q^{s}\right]$ with generator $L(s, \chi \otimes \pi, \rho)$.

Verification

Corollary (JLZ)

- Based on the work of Yamana, for any $\chi \otimes \pi \in \operatorname{Irr}(G(F))$, the following set

$$
\mathcal{I}_{\chi \otimes \pi}=\left\{\mathcal{Z}(s, \phi, \varphi) \mid \quad \phi \in \mathcal{S}_{\rho}(G(F)), \varphi \in \mathcal{C}(\chi \otimes \pi)\right\}
$$

is a finitely generated fractional ideal of $\mathbb{C}\left[q^{-s}, q^{s}\right]$ with generator $L(s, \chi \otimes \pi, \rho)$.

- Based on the work of Lapid-Rallis, Ikeda and Kakuhama,

$$
\Gamma_{\rho, \psi}(s, \chi \otimes \pi)=\gamma(s, \chi \otimes \pi, \rho, \psi)
$$

Thank you!

