Some aspects of parabolic induction for the general linear group over a p-adic field

Erez Lapid

Weizmann Institute of Science

Based on joint works with Alberto Mínguez and Max Gurevich

Let F be a non-archimedean local field.

My goal is to review the status of what is known and conjectured about the question of irreducibility of parabolic induction

$$\pi_1 \times \pi_2 = \operatorname{Ind}_{P_{n_1,n_2}}^{\operatorname{GL}_n(F)} \pi_1 \otimes \pi_2$$

(normalized) parabolic induction from the standard parabolic subgroup of type (n_1, n_2) .

There will be more questions than answers.

Please don't hesitate to interrupt me for any questions and comments, or simply to set the record straight!

Why GL_n ?

- Many aspects of representation theory of *p*-adic groups (e.g., *L*-packets, endoscopy) are simpler for GL_n. It is a benchmark (and a prerequisite) for understanding other groups (especially classical groups).
- Representation theory of GL_n was undertaken by Bernstein–Zelevinsky in the 1970s. They highlighted working with all *n*'s together, i.e., considering

 $\oplus_{n\geq 0}\mathcal{R}(\mathsf{GL}_n(F)).$

It is a monoidal category, with parabolic induction as the tensor functor and transitivity of induction as the associativity constraints with the identity being the one-dimensional representation of $GL_0 = 1$. It is a ring category (the tensor functor is bilinear and biexact).

• Connections between representation theory of $GL_n(F)$ and quantum groups.

Consider a quiver Q of type A_n with the standard orientation

 $\bullet \to \bullet \to \dots \to \bullet$

A representation of Q is a collection of finite-dimensional \mathbb{C} -vector spaces V_1, \ldots, V_n together with linear transformations $T_i: V_i \rightarrow V_{i+1}, i = 1, \ldots, n-1$; in other words a finite-dimensional graded vector space $V = \bigoplus_{i=1}^{n} V_i$ and a degree 1 (nilpotent) linear transformation $T: V \rightarrow V$. This forms an abelian category. Its indecomposable objects are Jordan blocks (segments) [i, j], indexed by $1 \le i \le j \le n$: dim $V_k = 1$ if $k \in [i, j]$ and $V_k = 0$ otherwise; $T_k \neq 0$ iff $i \leq k < j$. The irreducible objects are [i, i], i = 1, ..., n. Thus, the objects up to isomorphisms are indexed by multisegments, which are simply formal finite sums of segments. This is of course a special case of Gabriel's theorem (1972) which classifies the indecomposable objects of a Dynkin diagram of a root system with an orientation by the positive roots – followed up by Bernstein-Gelfand-Ponomarev 1973.

Fix $V = \bigoplus_{i=1}^{n} V_i$ of graded dimension $\boldsymbol{d} = (d_1, \dots, d_n)$ and set $V_i = d_i = 0$ if $i \notin \{1, \dots, n\}$. Consider the vector space

$$E_{
ightarrow}(V)=\{T:V
ightarrow V|T(V_i)\subset V_{i+1} ext{ for all }i\}.$$

(This is the module variety (of dimension d) of the path algebra of Q.) Then $\operatorname{GL}_d = \prod_{i=1}^n \operatorname{GL}_{d_i}$ acts linearly on $E_{\rightarrow}(V)$ with finitely many orbits, indexed by multisegments of type d. Note that dim $E_{\rightarrow}(V) = \sum_i d_i d_{i+1}$. We could also consider the opposite quiver (reversing the arrows) and

$$E_{\leftarrow}(V) = \{T : V o V | T(V_i) \subset V_{i-1} ext{ for all } i\}.$$

This is the dual space of $E_{\rightarrow}(V)$. Once again, GL_d -orbits in $E_{\leftarrow}(V)$ are indexed by multisegments of type d.

Preprojective algebra and nilpotent varieties (Pyasetskiĭ 1975, Gelfand–Ponomarev 1979,...,Lusztig 1990-1)

Consider all orientations simultaneously, i.e., the "bipartisan" quiver \bar{Q}

 $\bullet\leftrightarrow\bullet\leftrightarrow\cdots\leftrightarrow\bullet$

Fix V of graded dimension d.

$$\Lambda_{\boldsymbol{d}} = \{(A,B) \in E_{\rightarrow}(V) \times E_{\leftarrow}(V) : AB = BA\}.$$

This is the module variety of the d-dimensional modules of the finite-dimensional quotient of the path algebra of \bar{Q} by the

relations
$$\overrightarrow{e}_i \overleftarrow{e}_{i+1} - \overleftarrow{e}_i \overrightarrow{e}_{i-1}, i = 1, \dots, n.$$

 Λ_d is of pure dimension dim $E_{\rightarrow}(V)$ and in fact a Lagrangian subvariety of $T^*(E_{\rightarrow}(V)) = E_{\rightarrow}(V) \times E_{\leftarrow}(V)$. The irr. comp. of Λ_d are the closure of the conormal bundle of GL_d -orbits in $E_{\rightarrow}(V)$ (which are indexed by multisegments of type d). Let C_i be irr. comp. of Λ_{d_i} , i = 1, 2 and let $d = d_1 + d_2$. Denote by $C_1 \oplus C_2$ the GL_d-orbit of $\{x_1 \oplus x_2 : x_i \in C_i\}$. This is an irreducible set.

We say that an irr. comp. C is generically indecomposable if the set $\{x \in C : x \text{ is indecomposable}\}$ has nonempty interior.

Theorem (Crawley-Boevey–Schröer (2002))

- (analogue of Krull-Remak-Schmidt) Any irr. comp. C of Λ_d can be written uniquely (up to permutation) as $\overline{C_1 \oplus \cdots \oplus C_k}$ where C_i are generically indecomposable.
- 2 Let C_1, C_2 be irr. comp.. Then $\overline{C_1 \oplus C_2}$ is an irr. comp. if and only if there exist $x_i \in C_i$, i = 1, 2 such that $\operatorname{Ext}^1(x_1, x_2) = \operatorname{Ext}^1(x_2, x_1) = 0$. (This is a open condition in $(x_1, x_2) \in \Lambda_{d_1} \times \Lambda_{d_2}$.)

Remarks

- The results above hold for the module variety of the *d*-dimensional modules of an arbitrary finite-dimensional ring. (Or more generally, the *d*-dimensional modules of a finite-dimensional ring with orthogonal idempotents e₁,..., e_n such that e₁ + ··· + e_n = 1.)
- By Voigt's lemma (1974), for any $x \in \Lambda_d$ with GL_d -orbit $\mathcal{O}(x)$

$$\operatorname{Ext}^{1}(x,x) \simeq N_{x}(\mathcal{O}(x)) = T_{x}\Lambda_{d}/T_{x}\mathcal{O}(x)$$

where $T_x \Lambda_d$ is the tangent space of the scheme Λ_d at x.

In the preprojective case, Ext¹(x, x') and Ext¹(x', x) are in duality (and in particular, have the same dimension) for any x ∈ Λ_d and x' ∈ Λ_{d'}. Moreover,

 $\operatorname{codim} \mathcal{O}(x) = \dim \Lambda_{d} - \dim \mathcal{O}(x) = \dim T_{x}\Lambda_{d} - \dim \Lambda_{d}.$ It follows that dim $\operatorname{Ext}^{1}(x, x) = 2 \operatorname{codim} \mathcal{O}(x)$ and therefore $\dim \operatorname{Ext}^{1}(x, x') = \operatorname{codim} \mathcal{O}(x \oplus x') - \operatorname{codim} \mathcal{O}(x) - \operatorname{codim} \mathcal{O}(x').$ We say that $x \in \Lambda_d$ is rigid if the following equivalent conditions are satisfied.

- Ext¹(x, x) = 0.
- **2** $\mathcal{O}(x)$ is open in Λ_d .
- $\mathcal{O}(x)$ is an open subscheme of Λ_d .
- The Zariski closure $\overline{\mathcal{O}(x)}$ is an irr. comp. of Λ_d .
- $im End(x) = \dim GL_{d} \dim \Lambda_{d}.$
- dim $\operatorname{End}(x) \leq \operatorname{dim} \operatorname{GL}_{\boldsymbol{d}} \operatorname{dim} \Lambda_{\boldsymbol{d}}$.
- The scheme Λ_d is smooth at x.

This condition can be checked by linear algebra. If $x_1 \in \Lambda_{d_1}$ and $x_2 \in \Lambda_{d_2}$ are rigid, then

$$x_1 \oplus x_2$$
 is rigid $\iff \operatorname{Ext}^1(x_1, x_2) = 0 \iff \operatorname{Ext}^1(x_2, x_1) = 0.$

Rigid irr. comp.

An irr. comp. C of Λ_d is called rigid if it satisfies the following equivalent conditions.

- C contains a rigid module.
- **2** C contains a (unique) open GL_d -orbit.
- The scheme Λ_d is generically reduced at C.

In this case, the open orbit in C consists of the rigid modules in C; it is contained in the conormal bundle whose closure in C.

rigid irr. comp. \longleftrightarrow rigid modules/ GL_d

The role of rigid modules and irr. comp. was highlighted in the work of Geiss-Leclerc-Schröer (early 2000s –).

The rigidity condition for an irr. comp. can be checked probabilistically by linear algebra.

Question

Is there a simple combinatorial criterion for the rigidity of an irr. comp., or at least a deterministic algorithm?

Examples

- Suppose that C is the irr. comp. corresponding to a multisegment ∑_{i=1}^r[a_i, b_i] such that a₁ ≤ ··· ≤ a_r and b₁ ≥ ··· ≥ b_r. (Any two segments are comparable by inclusion.) Then C is rigid. In fact, in this case C = E→(V).
- Similarly if b_i = a_i for all i (all segments are singletons). In this case C = E_←(V).
- Assume [a_i, b_i] = [i, n r + i], i = 1, ..., r. We get the proj. indecomp. module p_r corresponding to the r-th simple root.
- More generally suppose that a₁ < ··· < a_r and b₁ < ··· < b_r. (We call such C special.) Then C is rigid.

A non-rigid example (Geiss–Schröer 2005, following Leclerc 2003)

For $n \le 4$ all irr. comp. are rigid. (Λ_d is representation-finite.) Consider n = 5, d = (1, 2, 2, 2, 1) (dim $\Lambda_d = 12$, dim GL_d = 14) and the irr. comp. *C* with multisegment

$$[4,5] + [2,4] + [3,3] + [1,2].$$

C is the closure of a one-parameter family of 11-dimensional orbits and *C* is indecomposable. If $\mathcal{O}(x) \neq \mathcal{O}(y)$ then dim Hom(x, y) = 2and Ext¹(x, y) = 0, but dim End(x) = 3 and dim Ext¹(x, x) = 2. Thus, $\overline{C \oplus C}$ is an irr. comp. even though there is a short exact sequence

$$0 \rightarrow x \rightarrow p_2 \oplus p_4 \rightarrow x \rightarrow 0$$

where as before p_2 and p_4 have multisegments

$$[1,4] + [2,5]$$
 and $[1,2] + [2,3] + [3,4] + [4,5]$.

Relation to representation theory

By Zelevinsky's classification (1980), there is a bijection

 $C \rightarrow \pi_C$

between the irr. comp. of Λ_d (i.e., multisegments of type d) and the irreducible subquotients (up to isomorphism) of

$$\overbrace{|\cdot|\times\cdots\times|\cdot|}^{d_1}\times\cdots\times\overbrace{|\cdot|^n\times\ldots|\cdot|^n}^{d_n}$$

(a representation of $GL_{d_1+\dots+d_n}(F)$).

Also, Lusztig's canonical bases (1990) of $U(\mathfrak{sl}_{n+1})^d$ (the *d*-graded piece of the positive part of the universal enveloping algebra of type A_n) are indexed by irr. comp. of Λ_d .

Dually, if *N* is the maximal unipotent subgroup of GL_{n+1} , then $\mathbb{C}[N]$ is isomorphic to the subring of the Bernstein–Zelevinsky ring of representations of $GL_k(F)$, $k \ge 0$ generated by $|\cdot|, \ldots, |\cdot|^n$. The dual canonical basis corresponds to the irreducible representations (Ariki, Grojnowski, Leclerc, Nazarov, Thibon, Zelevinsky)

Going back to the previous example if C, C_1 , C_2 corresponds to

$$\mathfrak{m}=[4,5]+[2,4]+[3,3]+[1,2]$$

$$\mathfrak{m}_1=[1,4]+[2,5], \ \mathfrak{m}_2=[1,2]+[2,3]+[3,4]+[4,5],$$
 then (Leclerc, 2003)

$$\pi_{\mathcal{C}} \times \pi_{\mathcal{C}} = \pi_{\overline{\mathcal{C} \oplus \mathcal{C}}} + \pi_{\mathcal{C}_1} \times \pi_{\mathcal{C}_2} = \pi_{\overline{\mathcal{C} \oplus \mathcal{C}}} + \pi_{\overline{\mathcal{C}_1 \oplus \mathcal{C}_2}}.$$

 $\overline{C \oplus C}$ and $\overline{C_1 \oplus C_2}$ have multisegments $\mathfrak{m} + \mathfrak{m}$ and $\mathfrak{m}_1 + \mathfrak{m}_2$.

Conjecture 1 (Geiss-Schröer 2005, after Marsh-Reineke)

Let C_i be irr. comp. of Λ_{d_i} , i = 1, 2. Assume that

there exist nonempty open subset $U_i \subset C_i$ such that Ext¹(x_1, x_2) = 0 for all $x_i \in U_i$, i = 1, 2.

(*)

Then $\pi_{C_1} \times \pi_{C_2}$ is irreducible.

- As far as I know, the conjecture is wide open in general.
- Strong form: the converse also holds.
- If $C_1 = C_2$, the condition (*) is that C_1 is rigid.
- In general, (*) implies that $\overline{C_1 \oplus C_2}$ is an irr. comp..
- The converse holds if C₁ (say) is rigid, in which case the condition (*) is that Ext¹(x₁, x₂) = 0 for a rigid x₁ ∈ C₁ and generic x₂ ∈ C₂. This condition can be checked efficiently by a probabilistic algorithm.
- If neither C_i is rigid (and $C_1 \neq C_2$) then it is unclear how to check (*) algorithmically.

Special case: type A_{2n-1} , d = (1, 2, ..., n, n-1, ..., 1) $(\sum d_i = n^2)$

$$\stackrel{1}{\bullet} \stackrel{2}{\to} \stackrel{2}{\bullet} \rightarrow \cdots \rightarrow \stackrel{n}{\bullet} \stackrel{n-1}{\bullet} \rightarrow \cdots \rightarrow \stackrel{1}{\bullet}$$

Consider the following open, GL_d -invariant subset of $E_{\rightarrow}(V)$ $E_{\rightarrow}^{\flat}(V) = \{T \in E_{\rightarrow}(V) : T|_{V} \text{ is injective } \forall i < n \text{ and surjective } \forall i \geq n\}$ Let X be the (complete) flag variety of GL_n . The map $E^{\flat}_{\rightarrow}(V) \to X \times X$ given by $T \mapsto (\mathcal{F}_1(T), \mathcal{F}_2(T))$ where $\mathcal{F}_1(T): 0 \subseteq T^{n-1}(V_1) \subseteq T^{n-2}(V_2) \subseteq \cdots \subseteq T(V_{n-1}) \subseteq V_n$ $\mathcal{F}_2(T): 0 \subsetneq \operatorname{Ker}(T|_V) \subsetneq \operatorname{Ker}(T^2|_V) \subsetneq \cdots \subsetneq \operatorname{Ker}(T^{n-1}|_V) \subsetneq V_n,$ is a principal $\prod_{i \neq n} GL(V_i)$ -bundle. Hence, we get an isomorphism of GL_n-varieties (cf. Kashiwara–Saito 1997)

$$E^{\flat}_{\rightarrow}(V)/\prod_{i\neq n} \operatorname{GL}(V_i) \longleftrightarrow X \times X.$$

Thus, the GL_d -orbits in $E_{\rightarrow}^{\flat}(V)$ correspond to the GL_n -orbits in $X \times X$, which are parameterized by the symmetric group S_n . If Y_w , $w \in S_n$ is a GL_n -orbit in $X \times X$ (Bruhat cell), then the corresponding irr. comp. C_w of Λ_d has multisegment

$$[1, w(1) + n - 1] + \cdots + [n, w(n) + n - 1].$$

Denote by X_w the closure of Y_w (Schubert variety). For example, $X_e = Y_e = \Delta X$ (diagonal), Y_{w_0} open, $X_{w_0} = X \times X$.

Theorem (•+Mínguez, 2018)

The following conditions on $w \in S_n$ are equivalent.

- C_w is rigid.
- **2** The conormal bundle of $Y_w \subset X$ has an open GL_n -orbit.
- **3** X_{w_0w} is (rationally) smooth.
- $\pi_{C_w} \times \pi_{C_w}$ is irreducible.
- (Lakshmibai–Sandhya, 1990) w is 1324 and 2143 avoiding.

The case w = 1324 is essentially Leclerc's example.

Remarks

Conditions 2 and 3 are purely geometric. Their equivalence leads to the following

Conjecture 2 (Mellit)

Let $x, w \in S_n$ with $Y_w \subset X_x$ (i.e., $w \le x$). Suppose that X_x is smooth. Then the following conditions are equivalent

- **1** The conormal bundle of $Y_w \subset X_x$ has an open GL_n -orbit.
- 2 The smooth locus of X_{w_0w} contains Y_{w_0x} .

We proved this conjecture (along with a representation-theoretic criterion) for x 231 avoiding (which implies that X_x is smooth). The current proof is not conceptual.

In general, one can realize in a similar way the GL_n -action on $P \setminus GL_n \times Q \setminus GL_n$ for any parabolic subgroups P and Q of GL_n . Unfortunately, the naive analogue of the theorem in this context is not true – nor do we have a conjectural replacement for the smoothness condition.

Theorem (translation of Kang–Kashiwara–Kim–Oh (2015))

The following conditions are equivalent for a rep'n π of $GL_n(F)$.

- **1** $\pi \times \pi$ is irreducible.
- 2 End_{GL_{2n}(F)}($\pi \otimes \pi$) = \mathbb{C} .

3 The normalized intert. oper. $\pi \times \pi \to \pi \times \pi$ is a scalar. Under these conditions, for any irreducible representation σ of $GL_m(F)$ the socle of $\pi \times \sigma$ is irreducible and occurs with mult. one in $JH(\pi \times \sigma)$. It is the image of the intert. oper. $\sigma \times \pi \to \pi \times \sigma$.

This result gives an interesting perspective on Bernstein's result (1983) on the irreducibility of parabolic induction of unitarizable representations (proved by a completely different method). It yields a simplification of the proof of Tadic's classification of the unitary dual of $GL_n(F)$ (1986).

Recall that conjecturally $\pi \times \pi$ is irreducible if and only if the corresponding irr. comp. of Λ_d is rigid.

Let C_i be an irr. comp. of Λ_{d_i} , i = 1, 2 and $d = d_1 + d_2$. Let

 $S = \{(x_1, x_2) \in C_1 \times C_2 : \operatorname{dim} \operatorname{Ext}^1(x_1, x_2) \text{ is minimal}\},\$

an open subset of $C_1 \times C_2$. The GL_d-invariant set

 $\mathcal{E}(C_1, C_2) = \{ x \in \Lambda_d : \exists \text{ a short exact sequence} \\ 0 \to x_2 \to x \to x_1 \to 0 \text{ with } (x_1, x_2) \in S \}$

is irreducible (Crawley-Boevey–Schröer, 2002). Moreover, $C = \overline{\mathcal{E}(C_1, C_2)}$ is an irr. comp. (Rami Aizenbud)

Conjecture 3

π_C is a subrepresentation of $\pi_{C_1} \times \pi_{C_2}$.

If true, a generic extension of a generic $x_1 \in C_1$ by a generic $x_2 \in C_2$ determines an irreducible subrepresentation of $\pi_{C_1} \times \pi_{C_2}$. (It is easy to compute $\overline{\mathcal{E}(C_1, C_2)}$ by a probabilistic algorithm.) The following diagram is an extension of the red part by the blue part.

Recall that the dots represent a basis for V, the grading is by the horizontal position; the horizontal arrows define $A \in E_{\rightarrow}(V)$ and the diagonal arrows define $B \in E_{\leftarrow}(V)$.

Theorem (•+Mínguez, 2016, 2020)

Suppose that C_1 or C_2 is a direct sum of special irr. comp.. Then there is a simple combinatorial way to determine the multisegment of $C = \overline{\mathcal{E}(C_1, C_2)}$ from the multisegments \mathfrak{m}_1 and \mathfrak{m}_2 of C_1 and C_2 . Moreover, $\pi_C = \operatorname{soc}(\pi_{C_1} \times \pi_{C_2})$.

A special case

Let \mathfrak{m}_i be the multisegments of C_i and write $\mathfrak{m}_i = \sum_{j \in I_i} \Delta_j$, i = 1, 2 with $I_1 \cap I_2 = \emptyset$. Define a bipartite graph $\mathcal{G} = (X, Y, E)$ by

$$X = \{(r, s) \in (l_1 \times l_2) \cup (l_2 \times l_1) : \Delta_r \prec \Delta_s\}$$
$$Y = \{(r, s) \in (l_1 \times l_2) \cup (l_2 \times l_1) : \overrightarrow{\Delta}_r \prec \Delta_s\}$$
$$E = \{((r, s), (r, t)) \in X \times Y : \overrightarrow{\Delta}_s \prec \Delta_t\} \cup$$
$$\{((r, t), (s, t)) \in X \times Y : \overrightarrow{\Delta}_s \prec \Delta_r\}$$

where for $\Delta = [a, b]$, $\Delta' = [a', b']$ we write

$$\Delta \prec \Delta' \iff a \le a' \le b \le b', \quad \stackrel{\rightarrow}{\Delta} = [a+1, b+1].$$

Theorem

If C_1 or C_2 is special then $\pi_{C_1} \times \pi_{C_2}$ is irreducible if and only if there exists a matching in \mathcal{G} which covers all vertices of Y.

Question

Is there a relation between the set of irreducible subquotients of $\pi_{C_1} \times \pi_{C_2}$ and the set of irr. comp. containing $C_1 \oplus C_2$?

For instance, it is clear that if C_i correspond to \mathfrak{m}_i , i = 1, 2 and C corresponds to $\mathfrak{m}_1 + \mathfrak{m}_2$ then $C \supset C_1 \oplus C_2$.

Question

Is there a practical way to check whether a given $x \in \Lambda_d$ is contained in a given irr. comp.?

Standard modules and Robinson-Schensted-Knuth

Let C be an irr. comp. with multisegment $\mathfrak{m} = \sum_{i=1}^{r} [a_i, b_i]$. Apply the RSK correspondence to $(a_i, b_i)_{i=1}^r$ to obtain a pair (P, Q) of "semistandard" Young tableaux of the same shape. The entries of P are the a_i 's and the entries of Q are the b_i 's. In our conventions, the entries along each row (of both P or Q) are strictly decreasing while the entries down each column are weakly decreasing. Note that we do not get all such pairs (P, Q) because of the restriction $a_i \leq b_i$. Let k be the number of rows of P and Q and for each i = 1, ..., k let C_i be the special irr. comp. with multisegment $\sum_{i=1}^{n_i} [p_{i,j}, q_{i,j}]$ formed by the entries of the *i*-th row of P and Q. (Indeed, $p_{i,j} \leq q_{i,j}$.)

Theorem (Max Gurevich+•, 2020)

 π_C is a subrepresentation of $\Pi_C := \pi_{C_k} \times \cdots \times \pi_{C_1}$

In fact, Gurevich proved that the socle of Π_C is irreducible (hence equal to π_C) and occurs with multiplicity one in JH(Π_C).

Upper triangularity

We can think of Π_C as a new (?) kind of standard module. Define a partial order on "semistandard" Young tableaux by

$$Y \leq Y'$$
 if shape $(Y_{\geq r}) \prec \text{shape}(Y'_{\geq r})$ for all $r \geq 0$,

where shape $(Y_{\geq r})$ is the Young diagram of the sub "semistandard" tableaux consisting of the entries $\geq r$ and \prec is the dominance order

$$(\lambda_1, \dots, \lambda_k) \prec (\lambda'_1, \dots, \lambda'_{k'}) \text{ if } k \leq k' \text{ and } \sum_{i=1}^j \lambda_i \geq \sum_{i=1}^j \lambda'_i \ \forall j$$

Conjecture 4

Suppose that $\pi_{C'}$ is an irreducible subquotient of \prod_{C} . Let (P', Q') be the RSK of the corresponding multisegment. Then $P' \leq P$ and $Q' \leq Q$.

We can enhance this construction as follows. Fix a "dummy" multisegment $\mathfrak{d} = \sum_{i=1}^{l} [t_i, t_i - 1]$ with $1 \leq t_i \leq n$ and apply RSK to $\mathfrak{m} + \mathfrak{d}$. The previous theorem is still valid. We get standard modules $\Pi_C^{\mathfrak{d}}$. For an appropriate choice of \mathfrak{d} , $\Pi_C^{\mathfrak{d}}$ can be either the Zelevinsky standard module or the Langlands standard module. Thus, we get an interpolation between the two. I do not know what lies behind this construction.