Some aspects of parabolic induction for the general linear group over a p-adic field

Erez Lapid

Weizmann Institute of Science
Based on joint works with Alberto Mínguez and Max Gurevich

Let F be a non-archimedean local field.
My goal is to review the status of what is known and conjectured about the question of irreducibility of parabolic induction

$$
\pi_{1} \times \pi_{2}=\operatorname{Ind}_{P_{n_{1}, n_{2}}}^{\mathrm{GL}(F)} \pi_{1} \otimes \pi_{2}
$$

(normalized) parabolic induction from the standard parabolic subgroup of type (n_{1}, n_{2}).
There will be more questions than answers.
Please don't hesitate to interrupt me for any questions and comments, or simply to set the record straight!

Why GL_{n} ?

- Many aspects of representation theory of p-adic groups (e.g., L-packets, endoscopy) are simpler for GL_{n}. It is a benchmark (and a prerequisite) for understanding other groups (especially classical groups).
- Representation theory of GL_{n} was undertaken by Bernstein-Zelevinsky in the 1970s. They highlighted working with all n 's together, i.e., considering

$$
\oplus_{n \geq 0} \mathcal{R}\left(\mathrm{GL}_{n}(F)\right) .
$$

It is a monoidal category, with parabolic induction as the tensor functor and transitivity of induction as the associativity constraints with the identity being the one-dimensional representation of $\mathrm{GL}_{0}=1$. It is a ring category (the tensor functor is bilinear and biexact).

- Connections between representation theory of $\mathrm{GL}_{n}(F)$ and quantum groups.

Consider a quiver Q of type A_{n} with the standard orientation

A representation of Q is a collection of finite-dimensional \mathbb{C}-vector spaces V_{1}, \ldots, V_{n} together with linear transformations $T_{i}: V_{i} \rightarrow V_{i+1}, i=1, \ldots, n-1$; in other words a finite-dimensional graded vector space $V=\oplus_{i=1}^{n} V_{i}$ and a degree 1 (nilpotent) linear transformation $T: V \rightarrow V$.
This forms an abelian category. Its indecomposable objects are Jordan blocks (segments) $[i, j]$, indexed by $1 \leq i \leq j \leq n$: $\operatorname{dim} V_{k}=1$ if $k \in[i, j]$ and $V_{k}=0$ otherwise; $T_{k} \neq 0$ iff $i \leq k<j$. The irreducible objects are $[i, i], i=1, \ldots, n$.
Thus, the objects up to isomorphisms are indexed by multisegments, which are simply formal finite sums of segments. This is of course a special case of Gabriel's theorem (1972) which classifies the indecomposable objects of a Dynkin diagram of a root system with an orientation by the positive roots - followed up by Bernstein-Gelfand-Ponomarev 1973.

Fix $V=\oplus_{i=1}^{n} V_{i}$ of graded dimension $\boldsymbol{d}=\left(d_{1}, \ldots, d_{n}\right)$ and set $V_{i}=d_{i}=0$ if $i \notin\{1, \ldots, n\}$. Consider the vector space

$$
E_{\rightarrow}(V)=\left\{T: V \rightarrow V \mid T\left(V_{i}\right) \subset V_{i+1} \text { for all } i\right\} .
$$

(This is the module variety (of dimension \boldsymbol{d}) of the path algebra of Q.) Then $\mathrm{GL}_{\boldsymbol{d}}=\prod_{i=1}^{n} \mathrm{GL}_{\boldsymbol{d}_{i}}$ acts linearly on $E_{\rightarrow}(V)$ with finitely many orbits, indexed by multisegments of type \boldsymbol{d}.
Note that $\operatorname{dim} E_{\rightarrow}(V)=\sum_{i} d_{i} d_{i+1}$.
We could also consider the opposite quiver (reversing the arrows) and

$$
E_{\leftarrow}(V)=\left\{T: V \rightarrow V \mid T\left(V_{i}\right) \subset V_{i-1} \text { for all } i\right\} .
$$

This is the dual space of $E_{\rightarrow}(V)$. Once again, $\mathrm{GL}_{\boldsymbol{d}}$-orbits in $E_{\leftarrow}(V)$ are indexed by multisegments of type \boldsymbol{d}.

Preprojective algebra and nilpotent varieties (Pyasetskĩ̈ 1975, Gelfand-Ponomarev 1979, . . , Lusztig 1990-1)

Consider all orientations simultaneously, i.e., the "bipartisan" quiver \bar{Q}
$\bullet \leftrightarrow \bullet \leftrightarrow \cdots \leftrightarrow \bullet$

Fix V of graded dimension \boldsymbol{d}.

$$
\Lambda_{\boldsymbol{d}}=\left\{(A, B) \in E_{\rightarrow}(V) \times E_{\leftarrow}(V): A B=B A\right\}
$$

This is the module variety of the \boldsymbol{d}-dimensional modules of the finite-dimensional quotient of the path algebra of \bar{Q} by the

$$
\text { relations } \quad \vec{e}_{i} \overleftarrow{e}_{i+1}-\overleftarrow{e}_{i} \vec{e}_{i-1}, \quad i=1, \ldots, n
$$

$\Lambda_{\boldsymbol{d}}$ is of pure dimension $\operatorname{dim} E_{\rightarrow}(V)$ and in fact a Lagrangian subvariety of $T^{*}\left(E_{\rightarrow}(V)\right)=E_{\rightarrow}(V) \times E_{\leftarrow}(V)$.
The irr. comp. of $\Lambda_{\boldsymbol{d}}$ are the closure of the conormal bundle of $\mathrm{GL}_{\boldsymbol{d}}$-orbits in $E_{\rightarrow}(V)$ (which are indexed by multisegments of type d).

General results

Let C_{i} be irr. comp. of $\Lambda_{\boldsymbol{d}_{i}}, i=1,2$ and let $\boldsymbol{d}=\boldsymbol{d}_{1}+\boldsymbol{d}_{2}$. Denote by $C_{1} \oplus C_{2}$ the $\mathrm{GL}_{\boldsymbol{d}}$-orbit of $\left\{x_{1} \oplus x_{2}: x_{i} \in C_{i}\right\}$. This is an irreducible set.
We say that an irr. comp. C is generically indecomposable if the set $\{x \in C: x$ is indecomposable $\}$ has nonempty interior.

Theorem (Crawley-Boevey-Schröer (2002))

(1) (analogue of Krull-Remak-Schmidt) Any irr. comp. C of $\Lambda_{\boldsymbol{d}}$ can be written uniquely (up to permutation) as $\overline{C_{1} \oplus \cdots \oplus C_{k}}$ where C_{i} are generically indecomposable.
(2) Let C_{1}, C_{2} be irr. comp.. Then $\overline{C_{1} \oplus C_{2}}$ is an irr. comp. if and only if there exist $x_{i} \in C_{i}, i=1,2$ such that $\operatorname{Ext}^{1}\left(x_{1}, x_{2}\right)=\operatorname{Ext}^{1}\left(x_{2}, x_{1}\right)=0$. (This is a open condition in $\left.\left(x_{1}, x_{2}\right) \in \Lambda_{\boldsymbol{d}_{1}} \times \Lambda_{\boldsymbol{d}_{2}}.\right)$

Remarks

- The results above hold for the module variety of the d-dimensional modules of an arbitrary finite-dimensional ring. (Or more generally, the \boldsymbol{d}-dimensional modules of a finite-dimensional ring with orthogonal idempotents e_{1}, \ldots, e_{n} such that $e_{1}+\cdots+e_{n}=1$.)
- By Voigt's lemma (1974), for any $x \in \Lambda_{\boldsymbol{d}}$ with $\mathrm{GL}_{\boldsymbol{d}}$-orbit $\mathcal{O}(x)$

$$
\operatorname{Ext}^{1}(x, x) \simeq N_{x}(\mathcal{O}(x))=T_{x} \wedge_{\boldsymbol{d}} / T_{x} \mathcal{O}(x)
$$

where $T_{x} \Lambda_{\boldsymbol{d}}$ is the tangent space of the scheme $\Lambda_{\boldsymbol{d}}$ at x.

- In the preprojective case, $\operatorname{Ext}^{1}\left(x, x^{\prime}\right)$ and $\operatorname{Ext}^{1}\left(x^{\prime}, x\right)$ are in duality (and in particular, have the same dimension) for any $x \in \Lambda_{\boldsymbol{d}}$ and $x^{\prime} \in \Lambda_{\boldsymbol{d}^{\prime}}$. Moreover,

$$
\operatorname{codim} \mathcal{O}(x)=\operatorname{dim} \Lambda_{\boldsymbol{d}}-\operatorname{dim} \mathcal{O}(x)=\operatorname{dim} T_{x} \Lambda_{\boldsymbol{d}}-\operatorname{dim} \Lambda_{\boldsymbol{d}}
$$

It follows that $\operatorname{dim} \operatorname{Ext}^{1}(x, x)=2 \operatorname{codim} \mathcal{O}(x)$ and therefore $\operatorname{dim} E x t^{1}\left(x, x^{\prime}\right)=\operatorname{codim} \mathcal{O}\left(x \oplus x^{\prime}\right)-\operatorname{codim} \mathcal{O}(x)-\operatorname{codim} \mathcal{O}\left(x^{\prime}\right)$.

Rigid modules

We say that $x \in \Lambda_{\boldsymbol{d}}$ is rigid if the following equivalent conditions are satisfied.
(1) $\operatorname{Ext}^{1}(x, x)=0$.
(2) $\mathcal{O}(x)$ is open in $\Lambda_{\boldsymbol{d}}$.
(3) $\mathcal{O}(x)$ is an open subscheme of $\Lambda_{\boldsymbol{d}}$.
(9) The Zariski closure $\overline{\mathcal{O}(x)}$ is an irr. comp. of $\Lambda_{\boldsymbol{d}}$.
(3) $\operatorname{dim} \operatorname{End}(x)=\operatorname{dim} G L_{\boldsymbol{d}}-\operatorname{dim} \Lambda_{\boldsymbol{d}}$.
(0) $\operatorname{dim} \operatorname{End}(x) \leq \operatorname{dim} G L_{\boldsymbol{d}}-\operatorname{dim} \Lambda_{\boldsymbol{d}}$.
((The scheme $\Lambda_{\boldsymbol{d}}$ is smooth at x.
This condition can be checked by linear algebra.
If $x_{1} \in \Lambda_{\boldsymbol{d}_{1}}$ and $x_{2} \in \Lambda_{\boldsymbol{d}_{2}}$ are rigid, then
$x_{1} \oplus x_{2}$ is rigid $\Longleftrightarrow \operatorname{Ext}^{1}\left(x_{1}, x_{2}\right)=0 \Longleftrightarrow \operatorname{Ext}^{1}\left(x_{2}, x_{1}\right)=0$.

Rigid irr. comp.

An irr. comp. C of $\Lambda_{\boldsymbol{d}}$ is called rigid if it satisfies the following equivalent conditions.
(1) Contains a rigid module.
(2) C contains a (unique) open $G L_{\boldsymbol{d}}$-orbit.
(3) The scheme $\Lambda_{\boldsymbol{d}}$ is generically reduced at C.

In this case, the open orbit in C consists of the rigid modules in C; it is contained in the conormal bundle whose closure in C.
rigid irr. comp. \longleftrightarrow rigid modules $/ \mathrm{GL}_{\boldsymbol{d}}$
The role of rigid modules and irr. comp. was highlighted in the work of Geiss-Leclerc-Schröer (early 2000s -).
The rigidity condition for an irr. comp. can be checked probabilistically by linear algebra.

Question

Is there a simple combinatorial criterion for the rigidity of an irr. comp., or at least a deterministic algorithm?

Examples

- Suppose that C is the irr. comp. corresponding to a multisegment $\sum_{i=1}^{r}\left[a_{i}, b_{i}\right]$ such that $a_{1} \leq \cdots \leq a_{r}$ and $b_{1} \geq \cdots \geq b_{r}$. (Any two segments are comparable by inclusion.) Then C is rigid. In fact, in this case $C=E_{\rightarrow}(V)$.
- Similarly if $b_{i}=a_{i}$ for all i (all segments are singletons). In this case $C=E_{\leftarrow}(V)$.
- Assume $\left[a_{i}, b_{i}\right]=[i, n-r+i], i=1, \ldots, r$. We get the proj. indecomp. module p_{r} corresponding to the r-th simple root.
- More generally suppose that $a_{1}<\cdots<a_{r}$ and $b_{1}<\cdots<b_{r}$. (We call such C special.) Then C is rigid.

A non-rigid example (Geiss-Schröer 2005, following Leclerc 2003)

For $n \leq 4$ all irr. comp. are rigid. ($\Lambda_{\boldsymbol{d}}$ is representation-finite.)
Consider $n=5, \boldsymbol{d}=(1,2,2,2,1)\left(\operatorname{dim} \Lambda_{\boldsymbol{d}}=12, \operatorname{dim} G L_{\boldsymbol{d}}=14\right)$ and the irr. comp. C with multisegment

$$
[4,5]+[2,4]+[3,3]+[1,2] .
$$

C is the closure of a one-parameter family of 11-dimensional orbits and C is indecomposable. If $\mathcal{O}(x) \neq \mathcal{O}(y)$ then $\operatorname{dim} \operatorname{Hom}(x, y)=2$ and $\operatorname{Ext}^{1}(x, y)=0$, but $\operatorname{dim} \operatorname{End}(x)=3$ and $\operatorname{dim} \operatorname{Ext}^{1}(x, x)=2$. Thus, $\overline{C \oplus C}$ is an irr. comp. even though there is a short exact sequence

$$
0 \rightarrow x \rightarrow p_{2} \oplus p_{4} \rightarrow x \rightarrow 0
$$

where as before p_{2} and p_{4} have multisegments

$$
[1,4]+[2,5] \text { and }[1,2]+[2,3]+[3,4]+[4,5] .
$$

Relation to representation theory

By Zelevinsky's classification (1980), there is a bijection

$$
C \rightarrow \pi_{C}
$$

between the irr. comp. of $\Lambda_{\boldsymbol{d}}$ (i.e., multisegments of type \boldsymbol{d}) and the irreducible subquotients (up to isomorphism) of

(a representation of $\mathrm{GL}_{d_{1}+\cdots+d_{n}}(F)$).
Also, Lusztig's canonical bases (1990) of $U\left(\mathfrak{s l}_{n+1}\right)^{\boldsymbol{d}}$ (the \boldsymbol{d}-graded piece of the positive part of the universal enveloping algebra of type A_{n}) are indexed by irr. comp. of $\Lambda_{\boldsymbol{d}}$.
Dually, if N is the maximal unipotent subgroup of GL_{n+1}, then $\mathbb{C}[N]$ is isomorphic to the subring of the Bernstein-Zelevinsky ring of representations of $\mathrm{GL}_{k}(F), k \geq 0$ generated by $|\cdot|, \ldots,|\cdot| n$. The dual canonical basis corresponds to the irreducible representations (Ariki, Grojnowski, Leclerc, Nazarov, Thibon, Zelevinsky)

Going back to the previous example if C, C_{1}, C_{2} corresponds to

$$
\begin{gathered}
\mathfrak{m}=[4,5]+[2,4]+[3,3]+[1,2] \\
\mathfrak{m}_{1}=[1,4]+[2,5], \quad \mathfrak{m}_{2}=[1,2]+[2,3]+[3,4]+[4,5],
\end{gathered}
$$

then (Leclerc, 2003)

$$
\pi_{C} \times \pi_{C}=\pi_{\overline{C \oplus C}}+\pi_{C_{1}} \times \pi_{C_{2}}=\pi_{\overline{C \oplus C}}+\pi_{\overline{C_{1} \oplus C_{2}}}
$$

$\overline{C \oplus C}$ and $\overline{C_{1} \oplus C_{2}}$ have multisegments $\mathfrak{m}+\mathfrak{m}$ and $\mathfrak{m}_{1}+\mathfrak{m}_{2}$.

Conjecture 1 (Geiss-Schröer 2005, after Marsh-Reineke)

Let C_{i} be irr. comp. of $\Lambda_{\boldsymbol{d}_{i}}, i=1,2$. Assume that there exist nonempty open subset $U_{i} \subset C_{i}$ such that

$$
\operatorname{Ext}^{1}\left(x_{1}, x_{2}\right)=0 \text { for all } x_{i} \in U_{i}, i=1,2
$$

Then $\pi_{C_{1}} \times \pi_{C_{2}}$ is irreducible.

- As far as I know, the conjecture is wide open in general.
- Strong form: the converse also holds.
- If $C_{1}=C_{2}$, the condition $\left({ }^{*}\right)$ is that C_{1} is rigid.
- In general, $\left({ }^{*}\right)$ implies that $\overline{C_{1} \oplus C_{2}}$ is an irr. comp..
- The converse holds if C_{1} (say) is rigid, in which case the condition $\left(^{*}\right)$ is that $\operatorname{Ext}{ }^{1}\left(x_{1}, x_{2}\right)=0$ for a rigid $x_{1} \in C_{1}$ and generic $x_{2} \in C_{2}$. This condition can be checked efficiently by a probabilistic algorithm.
- If neither C_{i} is rigid (and $C_{1} \neq C_{2}$) then it is unclear how to check $\left({ }^{*}\right)$ algorithmically.

Special case: type $A_{2 n-1}, \boldsymbol{d}=(1,2, \ldots, n, n-1, \ldots, 1)$

 $\left(\sum d_{i}=n^{2}\right)$$$
\stackrel{1}{\bullet} \rightarrow \stackrel{2}{\bullet} \rightarrow \cdots \rightarrow \stackrel{n}{\bullet} \rightarrow \stackrel{n-1}{\bullet} \rightarrow \cdots \rightarrow \stackrel{1}{\bullet}
$$

Consider the following open, $\mathrm{GL}_{\boldsymbol{d}}$-invariant subset of $E_{\rightarrow}(V)$
$E_{\rightarrow}^{b}(V)=\left\{T \in E_{\rightarrow}(V):\left.T\right|_{V_{i}}\right.$ is injective $\forall i<n$ and surjective $\left.\forall i \geq n\right\}$
Let X be the (complete) flag variety of GL_{n}.
The map $E_{\rightarrow}^{b}(V) \rightarrow X \times X$ given by $T \mapsto\left(\mathcal{F}_{1}(T), \mathcal{F}_{2}(T)\right)$ where
$\mathcal{F}_{1}(T): 0 \subsetneq T^{n-1}\left(V_{1}\right) \subsetneq T^{n-2}\left(V_{2}\right) \subsetneq \cdots \subsetneq T\left(V_{n-1}\right) \subsetneq V_{n}$,
$\mathcal{F}_{2}(T): 0 \subsetneq \operatorname{Ker}\left(\left.T\right|_{V_{n}}\right) \subsetneq \operatorname{Ker}\left(\left.T^{2}\right|_{V_{n}}\right) \subsetneq \cdots \subsetneq \operatorname{Ker}\left(\left.T^{n-1}\right|_{V_{n}}\right) \subsetneq V_{n}$,
is a principal $\prod_{i \neq n} \mathrm{GL}\left(V_{i}\right)$-bundle. Hence, we get an isomorphism of GL_{n}-varieties (cf. Kashiwara-Saito 1997)

$$
E_{\rightarrow}^{b}(V) / \prod_{i \neq n} \mathrm{GL}\left(V_{i}\right) \longleftrightarrow X \times X
$$

Thus, the $\mathrm{GL}_{\boldsymbol{d}}$-orbits in $E_{\rightarrow}^{b}(V)$ correspond to the GL_{n}-orbits in $X \times X$, which are parameterized by the symmetric group S_{n}. If $Y_{w}, w \in S_{n}$ is a GL_{n}-orbit in $X \times X$ (Bruhat cell), then the corresponding irr. comp. C_{w} of $\Lambda_{\boldsymbol{d}}$ has multisegment

$$
[1, w(1)+n-1]+\cdots+[n, w(n)+n-1] .
$$

Denote by X_{w} the closure of Y_{w} (Schubert variety).
For example, $X_{e}=Y_{e}=\Delta X$ (diagonal), $Y_{w_{0}}$ open, $X_{w_{0}}=X \times X$.

Theorem (•+Mínguez, 2018)

The following conditions on $w \in S_{n}$ are equivalent.
(1) C_{w} is rigid.
(2) The conormal bundle of $Y_{w} \subset X$ has an open GL_{n}-orbit.
(3) $X_{w_{0} w}$ is (rationally) smooth.
(9) $\pi_{C_{w}} \times \pi_{C_{w}}$ is irreducible.
(5) (Lakshmibai-Sandhya, 1990) w is 1324 and 2143 avoiding.

The case $w=1324$ is essentially Leclerc's example.

Remarks

Conditions 2 and 3 are purely geometric.
Their equivalence leads to the following

Conjecture 2 (Mellit)

Let $x, w \in S_{n}$ with $Y_{w} \subset X_{x}$ (i.e., $w \leq x$). Suppose that X_{x} is smooth. Then the following conditions are equivalent
(1) The conormal bundle of $Y_{w} \subset X_{x}$ has an open GL_{n}-orbit.
(2) The smooth locus of $X_{w_{0} w}$ contains $Y_{w_{0} x}$.

We proved this conjecture (along with a representation-theoretic criterion) for $x 231$ avoiding (which implies that X_{x} is smooth). The current proof is not conceptual.
In general, one can realize in a similar way the GL_{n}-action on $P \backslash \mathrm{GL}_{n} \times Q \backslash \mathrm{GL}_{n}$ for any parabolic subgroups P and Q of GL_{n}. Unfortunately, the naive analogue of the theorem in this context is not true - nor do we have a conjectural replacement for the smoothness condition.

Theorem (translation of Kang-Kashiwara-Kim-Oh (2015))

The following conditions are equivalent for a rep'n π of $\mathrm{GL}_{n}(F)$.
(1) $\pi \times \pi$ is irreducible.
(2) $\operatorname{End}_{\mathrm{GL}_{2 n}(F)}(\pi \otimes \pi)=\mathbb{C}$.
(3) The normalized intert. oper. $\pi \times \pi \rightarrow \pi \times \pi$ is a scalar.

Under these conditions, for any irreducible representation σ of $\mathrm{GL}_{m}(F)$ the socle of $\pi \times \sigma$ is irreducible and occurs with mult. one in $\mathrm{JH}(\pi \times \sigma)$. It is the image of the intert. oper. $\sigma \times \pi \rightarrow \pi \times \sigma$.

This result gives an interesting perspective on Bernstein's result (1983) on the irreducibility of parabolic induction of unitarizable representations (proved by a completely different method). It yields a simplification of the proof of Tadic's classification of the unitary dual of $\mathrm{GL}_{n}(F)$ (1986).
Recall that conjecturally $\pi \times \pi$ is irreducible if and only if the corresponding irr. comp. of $\Lambda_{\boldsymbol{d}}$ is rigid.

Subrepresentations

Let C_{i} be an irr. comp. of $\Lambda_{\boldsymbol{d}_{i}}, i=1,2$ and $\boldsymbol{d}=\boldsymbol{d}_{1}+\boldsymbol{d}_{2}$. Let

$$
S=\left\{\left(x_{1}, x_{2}\right) \in C_{1} \times C_{2}: \operatorname{dim} \operatorname{Ext}^{1}\left(x_{1}, x_{2}\right) \text { is minimal }\right\},
$$

an open subset of $C_{1} \times C_{2}$. The $\mathrm{GL}_{\boldsymbol{d}}$-invariant set

$$
\begin{aligned}
\mathcal{E}\left(C_{1}, C_{2}\right)=\left\{x \in \Lambda_{\boldsymbol{d}}:\right. & \exists \text { a short exact sequence } \\
& \left.0 \rightarrow x_{2} \rightarrow x \rightarrow x_{1} \rightarrow 0 \text { with }\left(x_{1}, x_{2}\right) \in S\right\}
\end{aligned}
$$

is irreducible (Crawley-Boevey-Schröer, 2002). Moreover, $C=\overline{\mathcal{E}}\left(C_{1}, C_{2}\right)$ is an irr. comp. (Rami Aizenbud)

Conjecture 3

π_{C} is a subrepresentation of $\pi_{C_{1}} \times \pi_{C_{2}}$.
If true, a generic extension of a generic $x_{1} \in C_{1}$ by a generic $x_{2} \in C_{2}$ determines an irreducible subrepresentation of $\pi_{C_{1}} \times \pi_{C_{2}}$. (It is easy to compute $\overline{\mathcal{E}\left(C_{1}, C_{2}\right)}$ by a probabilistic algorithm.)

Example

The following diagram is an extension of the red part by the blue part.
Recall that the dots represent a basis for V, the grading is by the horizontal position; the horizontal arrows define $A \in E_{\rightarrow}(V)$ and the diagonal arrows define $B \in E_{\leftarrow}(V)$.

Corroboration

Theorem (•+Mínguez, 2016, 2020)

Suppose that C_{1} or C_{2} is a direct sum of special irr. comp.. Then there is a simple combinatorial way to determine the multisegment of $C=\overline{\mathcal{E}\left(C_{1}, C_{2}\right)}$ from the multisegments \mathfrak{m}_{1} and \mathfrak{m}_{2} of C_{1} and C_{2}. Moreover, $\pi_{C}=\operatorname{soc}\left(\pi_{C_{1}} \times \pi_{C_{2}}\right)$.

A special case

Let \mathfrak{m}_{i} be the multisegments of C_{i} and write $\mathfrak{m}_{i}=\sum_{j \in l_{i}} \Delta_{j}$, $i=1,2$ with $I_{1} \cap I_{2}=\emptyset$.
Define a bipartite graph $\mathcal{G}=(X, Y, E)$ by

$$
\begin{aligned}
X= & \left\{(r, s) \in\left(I_{1} \times I_{2}\right) \cup\left(I_{2} \times I_{1}\right): \Delta_{r} \prec \Delta_{s}\right\} \\
Y= & \left\{(r, s) \in\left(I_{1} \times I_{2}\right) \cup\left(I_{2} \times I_{1}\right): \vec{\Delta}_{r} \prec \Delta_{s}\right\} \\
E= & \left\{((r, s),(r, t)) \in X \times Y: \vec{\Delta}_{s} \prec \Delta_{t}\right\} \cup \\
& \left\{((r, t),(s, t)) \in X \times Y: \vec{\Delta}_{s} \prec \Delta_{r}\right\}
\end{aligned}
$$

where for $\Delta=[a, b], \Delta^{\prime}=\left[a^{\prime}, b^{\prime}\right]$ we write

$$
\Delta \prec \Delta^{\prime} \Longleftrightarrow a \leq a^{\prime} \leq b \leq b^{\prime}, \quad \vec{\Delta}=[a+1, b+1] .
$$

Theorem

If C_{1} or C_{2} is special then $\pi_{C_{1}} \times \pi_{C_{2}}$ is irreducible if and only if there exists a matching in \mathcal{G} which covers all vertices of Y.

Odds and ends

Question

Is there a relation between the set of irreducible subquotients of $\pi_{C_{1}} \times \pi_{C_{2}}$ and the set of irr. comp. containing $C_{1} \oplus C_{2}$?

For instance, it is clear that if C_{i} correspond to $\mathfrak{m}_{i}, i=1,2$ and C corresponds to $\mathfrak{m}_{1}+\mathfrak{m}_{2}$ then $C \supset C_{1} \oplus C_{2}$.

Question

Is there a practical way to check whether a given $x \in \Lambda_{\boldsymbol{d}}$ is contained in a given irr. comp.?

Standard modules and Robinson-Schensted-Knuth

Let C be an irr. comp. with multisegment $\mathfrak{m}=\sum_{i=1}^{r}\left[a_{i}, b_{i}\right]$. Apply the RSK correspondence to $\left(a_{i}, b_{i}\right)_{i=1}^{r}$ to obtain a pair (P, Q) of "semistandard" Young tableaux of the same shape. The entries of P are the a_{i} 's and the entries of Q are the b_{i} 's. In our conventions, the entries along each row (of both P or Q) are strictly decreasing while the entries down each column are weakly decreasing. Note that we do not get all such pairs (P, Q) because of the restriction $a_{i} \leq b_{i}$. Let k be the number of rows of P and Q and for each $i=1, \ldots, k$ let C_{i} be the special irr. comp. with multisegment $\sum_{j=1}^{n_{i}}\left[p_{i, j}, q_{i, j}\right]$ formed by the entries of the i-th row of P and Q. (Indeed, $p_{i, j} \leq q_{i, j}$.)

Theorem (Max Gurevich+•, 2020)

π_{C} is a subrepresentation of $\Pi_{C}:=\pi_{C_{k}} \times \cdots \times \pi_{C_{1}}$
In fact, Gurevich proved that the socle of Π_{C} is irreducible (hence equal to π_{C}) and occurs with multiplicity one in $\mathrm{JH}\left(\Pi_{C}\right)$.

Upper triangularity

We can think of Π_{C} as a new (?) kind of standard module. Define a partial order on "semistandard" Young tableaux by

$$
Y \leq Y^{\prime} \quad \text { if } \operatorname{shape}\left(Y_{\geq r}\right) \prec \operatorname{shape}\left(Y_{\geq r}^{\prime}\right) \text { for all } r \geq 0
$$

where shape $\left(Y_{\geq r}\right)$ is the Young diagram of the sub "semistandard" tableaux consisting of the entries $\geq r$ and \prec is the dominance order

$$
\left(\lambda_{1}, \ldots, \lambda_{k}\right) \prec\left(\lambda_{1}^{\prime}, \ldots, \lambda_{k^{\prime}}^{\prime}\right) \text { if } k \leq k^{\prime} \text { and } \sum_{i=1}^{j} \lambda_{i} \geq \sum_{i=1}^{j} \lambda_{i}^{\prime} \forall j
$$

Conjecture 4

Suppose that $\pi_{C^{\prime}}$ is an irreducible subquotient of Π_{C}. Let $\left(P^{\prime}, Q^{\prime}\right)$ be the RSK of the corresponding multisegment. Then $P^{\prime} \leq P$ and $Q^{\prime} \leq Q$.

A family of standard modules

We can enhance this construction as follows. Fix a "dummy" multisegment $\mathfrak{d}=\sum_{i=1}^{l}\left[t_{i}, t_{i}-1\right]$ with $1 \leq t_{i} \leq n$ and apply RSK to $\mathfrak{m}+\mathfrak{d}$. The previous theorem is still valid. We get standard modules $\Pi_{C}^{\mathfrak{d}}$. For an appropriate choice of $\mathfrak{d}, \Pi_{C}^{\mathfrak{d}}$ can be either the Zelevinsky standard module or the Langlands standard module. Thus, we get an interpolation between the two. I do not know what lies behind this construction.

