What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition o Unipotent Representations of Complex Groups

What is a unipotent representation?

Lucas Mason-Brown

April 2021

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Big unsolved problem (Gelfand)

Let G be a real reductive Lie group. Classify

 $Irr_u(G) = \{ irreducible unitary representations of G \}$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Big unsolved problem (Gelfand)

Let G be a real reductive Lie group. Classify

 $Irr_u(G) = \{ irreducible unitary representations of G \}$

Conjecture (Arthur, Vogan, Adams, Barbasch,...)

The classification of $Irr_u(G)$ should reduce to the classification of a small finite subset

$$\operatorname{Unip}(G) \subset \operatorname{Irr}_u(G)$$

RHS built out of LHS by *parabolic induction*. LHS indexed by *nilpotent orbits*.

Goals

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

- Real and Complex Groups
- Special Unipotent Representa tions of Complex Groups
- A New Definition of Unipotent Representations of Complex Groups

- Propose a definition of unipotent representations of a complex reductive group (geometric and case-free)
- Describe key properties of unipotent representations (unitarity, restriction to K, maximality of annihilators, etc.)
- 3 Define an enhancement of Barbasch-Vogan duality
- 4 Give a classification of unipotent representations
- 5 Speculate about applications to real reductive groups?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Problem solved completely by Lusztig in early 1980s.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Construction of representations:

- Choose a Fr-stable maximal torus $T \subset G$ and a character $\theta : T(\mathbb{F}_q) \to \mathbb{C}^{\times}$.
- Deligne-Lusztig define a virtual representation R_T(θ) of G(F_q) (obtained as the *l*-adic cohomology of associated 'Deligne-Lusztig' variety)

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Construction of representations:

- Choose a Fr-stable maximal torus $T \subset G$ and a character $\theta : T(\mathbb{F}_q) \to \mathbb{C}^{\times}$.
- Deligne-Lusztig define a virtual representation R_T(θ) of G(F_q) (obtained as the *l*-adic cohomology of associated 'Deligne-Lusztig' variety)

Theorem (Deligne-Lusztig, 1976)

Every irreducible representation of $G(\mathbb{F}_q)$ appears in some $R_T(\theta)$. Most $R_T(\theta)$ are irreducible.

Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Definition (Deligne-Lusztig, 1976)

A unipotent representation of $G(\mathbb{F}_q)$ is an irreducible representation appearing in some $R_T(1)$. Write

 $\mathrm{Unip}(\mathsf{G}(\mathbb{F}_q))\subset\mathrm{Irr}_{\mathit{fd}}(\mathsf{G}(\mathbb{F}_q))$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

for the set of unipotent representations.

Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Definition (Deligne-Lusztig, 1976)

A unipotent representation of $G(\mathbb{F}_q)$ is an irreducible representation appearing in some $R_T(1)$. Write

 $\operatorname{Unip}(\mathsf{G}(\mathbb{F}_q)) \subset \operatorname{Irr}_{\mathit{fd}}(\mathsf{G}(\mathbb{F}_q))$

for the set of unipotent representations.

Since there are finitely-many conjugacy classes of maximal tori $T(\mathbb{F}_q) \subset G(\mathbb{F}_q)$, there are finitely-many unipotent representations of $G(\mathbb{F}_q)$.

Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Definition (Deligne-Lusztig, 1976)

A unipotent representation of $G(\mathbb{F}_q)$ is an irreducible representation appearing in some $R_T(1)$. Write

 $\operatorname{Unip}(\mathsf{G}(\mathbb{F}_q)) \subset \operatorname{Irr}_{\mathit{fd}}(\mathsf{G}(\mathbb{F}_q))$

for the set of unipotent representations.

Since there are finitely-many conjugacy classes of maximal tori $T(\mathbb{F}_q) \subset G(\mathbb{F}_q)$, there are finitely-many unipotent representations of $G(\mathbb{F}_q)$.

Theorem (Lusztig, 1984)

The classification of $\operatorname{Irr}_{fd}(\mathsf{G}(\mathbb{F}_q))$ reduces to the classification of $\operatorname{Unip}(\mathsf{G}(\mathbb{F}_q))$.

(日) (四) (日) (日) (日)

Classification of Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups ■ Let G be the associated complex reductive algebraic group, and let G[∨] be the dual group.

(日) (四) (日) (日) (日)

Classification of Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

- Let G be the associated complex reductive algebraic group, and let G[∨] be the dual group.
- If $\mathcal{O}^{\vee} \subset \mathcal{N}^{\vee}$ is a *special* nilpotent orbit, there is a canonically defined quotient group

$$\pi_1^{\mathcal{G}^{\vee}}(\mathcal{O}^{\vee}) \twoheadrightarrow \overline{\mathcal{A}}(\mathcal{O}^{\vee})$$

Classification of Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

- Let G be the associated complex reductive algebraic group, and let G[∨] be the dual group.
- If $\mathcal{O}^{\vee} \subset \mathcal{N}^{\vee}$ is a *special* nilpotent orbit, there is a canonically defined quotient group

$$\pi_1^{\mathcal{G}^{\vee}}(\mathcal{O}^{\vee}) \twoheadrightarrow \overline{\mathcal{A}}(\mathcal{O}^{\vee})$$

Theorem (Lusztig, 1984)

There is a natural bijection between $\operatorname{Unip}(G(\mathbb{F}_q))$ and the set of triples

 $(\mathcal{O}^{\vee} = \text{special nilp}, \ C = \text{conj class in } \overline{A}, \ \xi = \text{irrep of } \overline{A}^{c})$

In particular, the classification is *independent of q*.

Recap

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

There is a finite set of irreducibles

$$\operatorname{Unip}(\mathsf{G}(\mathbb{F}_q)) \subset \operatorname{Irr}_{\mathit{fd}}(\mathsf{G}(\mathbb{F}_q))$$

such that

1 $\operatorname{Unip}(G(\mathbb{F}_q))$ is classified by certain geometric data related to nilpotent orbits, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2 The classification of $\operatorname{Irr}_{fd}(G(\mathbb{F}_q))$ reduces to the classification of $\operatorname{Unip}(G(\mathbb{F}_q))$ (analagous to the Jordan decomposition of matrices).

	Unipotent Representations of Real and Complex Groups
What is a inipotent rep- resentation?	Replace $\mathbb{F} \to k \in (\mathbb{P} \ \mathbb{C})$
Lucas Mason-Brown	$\mathbb{F}_q \rightsquigarrow K \in \{\mathbb{I}, \mathbb{C}\}$
	$G(\mathbb{F}_q) \rightsquigarrow G(k)$
inite Groups of Lie Type	$\operatorname{Irr}_{fd}(G(\mathbb{F}_q)) \rightsquigarrow \operatorname{Irr}_u(G(k))$
Real and Complex Groups	
pecial Inipotent Representa- ions of Complex Groups	
A New Definition of Jnipotent Representa- ions of Complex	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Replace

$$\mathbb{F}_q \rightsquigarrow k \in \{\mathbb{R}, \mathbb{C}\}$$
$$\mathsf{G}(\mathbb{F}_q) \rightsquigarrow \mathsf{G}(k)$$
$$\operatorname{Irr}_{fd}(\mathsf{G}(\mathbb{F}_q)) \rightsquigarrow \operatorname{Irr}_u(\mathsf{G}(k))$$

Problem (Gelfand, 1930s)

Determine $Irr_u(G(k))$ for arbitrary G.

- Problem remains *unsolved* in general.
- Answer known in special cases: connected compact groups (Weyl, 1920s), SL₂(ℝ) (Bargmann, 1947), GL_n(k) (Vogan, 1986), complex classical groups (Barbasch, 1989), some low-rank groups...

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

- Special Unipotent Representations of Complex Groups
- A New Definition of Unipotent Representations of Complex Groups

One possible strategy for solving this problem is to try to *imititate* the approach for $G(\mathbb{F}_q)$:

Conjecture (Vogan, 1987)

There is a finite subset $Unip(G(k)) \subset Irr(G(k))$ which completes the following analogy

$\operatorname{Unip}(G(k))$	is to	$Irr_u(G(k))$
	as	
$\operatorname{Unip}(G(\mathbb{F}_q))$	is to	$\operatorname{Irr}_{fd}(G(\mathbb{F}_q))$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups One possible strategy for solving this problem is to try to *imititate* the approach for $G(\mathbb{F}_q)$:

Conjecture (Vogan, 1987)

There is a finite subset $Unip(G(k)) \subset Irr(G(k))$ which completes the following analogy

$\operatorname{Unip}(G(k))$	is to	$Irr_u(G(k))$
	as	
$\operatorname{Unip}(G(\mathbb{F}_q))$	is to	$\operatorname{Irr}_{fd}(G(\mathbb{F}_q))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What does this mean?

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups In light of Lusztig (1984), one expects:

 Unip(G(k)) is classified by certain geometric objects related to nilpotent orbits, and

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

2 The classification of Irr_u(G(k)) reduces to the classification of Unip(G(k))

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups In light of Lusztig (1984), one expects:

 Unip(G(k)) is classified by certain geometric objects related to nilpotent orbits, and

2 The classification of Irr_u(G(k)) reduces to the classification of Unip(G(k))

Vogan describes some additional expected properties of Unip(G(k)). Briefly:

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups In light of Lusztig (1984), one expects:

 Unip(G(k)) is classified by certain geometric objects related to nilpotent orbits, and

2 The classification of Irr_u(G(k)) reduces to the classification of Unip(G(k))

Vogan describes some additional expected properties of Unip(G(k)). Briefly:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

3 Annihilators are maximal, completely prime

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups In light of Lusztig (1984), one expects:

- Unip(G(k)) is classified by certain geometric objects related to nilpotent orbits, and
- 2 The classification of Irr_u(G(k)) reduces to the classification of Unip(G(k))

Vogan describes some additional expected properties of Unip(G(k)). Briefly:

- 3 Annihilators are maximal, completely prime
- Restriction to K has a very special form (global sections of certain K-eqvt vector bundles)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups In light of Lusztig (1984), one expects:

- Unip(G(k)) is classified by certain geometric objects related to nilpotent orbits, and
- 2 The classification of Irr_u(G(k)) reduces to the classification of Unip(G(k))

Vogan describes some additional expected properties of Unip(G(k)). Briefly:

- 3 Annihilators are maximal, completely prime
- Restriction to K has a very special form (global sections of certain K-eqvt vector bundles)
- **5** Infinitesimal characters are 'as small as possible' in their translation families.

What is a unipotent rep- resentation?	Restrict to the case of $k = \mathbb{C}$. Let $G := G(\mathbb{C})$.
Lucas Mason-Brown	
Finite Groups of Lie Type	
Real and Complex Groups	
Special Unipotent Representa- tions of Complex Groups	
A New Definition of Unipotent Representa- tions of Complex Groups	

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Restrict to the case of $k = \mathbb{C}$. Let $G := G(\mathbb{C})$.

Well-known equivalence

 $\operatorname{Rep}(G) \simeq \operatorname{HC}(G)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(HC(G)is category of *Harish-Chandra bimodules*).

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Restrict to the case of $k = \mathbb{C}$. Let $G := G(\mathbb{C})$.

Well-known equivalence

 $\operatorname{Rep}(G)\simeq\operatorname{HC}(G)$

(HC(G)is category of *Harish-Chandra bimodules*).

If $M \in HC(G)$, can define left and right annihilators

 $\operatorname{Ann}_{L}(M) \subset U(\mathfrak{g}) \qquad \operatorname{Ann}_{R}(M) \subset U(\mathfrak{g})$

and associated variety

 $V(M) = V(\operatorname{Ann}_{L}(M)) = V(\operatorname{Ann}_{R}(M)) \subset \mathcal{N}$

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Restrict to the case of $k = \mathbb{C}$. Let $G := G(\mathbb{C})$.

Well-known equivalence

 $\operatorname{Rep}(G)\simeq\operatorname{HC}(G)$

(HC(G)is category of *Harish-Chandra bimodules*).

If $M \in HC(G)$, can define left and right annihilators

 $\operatorname{Ann}_{L}(M) \subset U(\mathfrak{g}) \qquad \operatorname{Ann}_{R}(M) \subset U(\mathfrak{g})$

and associated variety

 $V(M) = V(\operatorname{Ann}_{L}(M)) = V(\operatorname{Ann}_{R}(M)) \subset \mathcal{N}$

• If *M* is irreducible, then $\operatorname{Ann}_{L}(M)$, $\operatorname{Ann}_{R}(M)$ are primitive, and $V(M) = \overline{O}$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Barbasch-Vogan define an important subset of Unip(G)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Barbasch-Vogan define an important subset of Unip(G)Barbasch-Vogan duality:

$$d: \mathcal{N}^{\vee}/G^{\vee} \to \mathcal{N}/G$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Barbasch-Vogan define an important subset of Unip(G)Barbasch-Vogan duality:

$$d: \mathcal{N}^{\vee}/G^{\vee} \to \mathcal{N}/G$$

• Dual orbit \mathcal{O}^{\vee} determines infl char for \mathfrak{g} :

$$\mathcal{O}^{ee}\mapsto (e^{ee},f^{ee},h^{ee})\mapsto rac{1}{2}h^{ee}\in \mathfrak{h}^{ee}\simeq \mathfrak{h}^*$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Barbasch-Vogan define an important subset of Unip(G)■ Barbasch-Vogan duality:

$$d: \mathcal{N}^{\vee}/G^{\vee} \to \mathcal{N}/G$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dual orbit \mathcal{O}^{\vee} determines infl char for \mathfrak{g} : $\mathcal{O}^{\vee} \mapsto (e^{\vee}, f^{\vee}, h^{\vee}) \mapsto \frac{1}{2}h^{\vee} \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^*$

• And hence a unique maximal ideal $J_{\frac{1}{2}h^{\vee}} \subset U(\mathfrak{g}).$

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Barbasch-Vogan define an important subset of Unip(G)Barbasch-Vogan duality:

$$d: \mathcal{N}^{\vee}/G^{\vee} \to \mathcal{N}/G$$

• Dual orbit \mathcal{O}^{\vee} determines infl char for \mathfrak{g} :

$$\mathcal{O}^{ee}\mapsto (e^{ee},f^{ee},h^{ee})\mapsto rac{1}{2}h^{ee}\in\mathfrak{h}^{ee}\simeq\mathfrak{h}^*$$

And hence a unique maximal ideal J_{1/2}h[∨] ⊂ U(g).
 V(J_{1/2}O[∨]) = d(O[∨]).

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Definition (Barbasch-Vogan, 1985)

The special unipotent ideal attached to \mathcal{O}^{\vee} is the maximal ideal $J_{\frac{1}{2}h^{\vee}} \subset U(\mathfrak{g})$. A special unipotent representation attached to \mathcal{O}^{\vee} is an irreducible HC bimodule M such that

$$\operatorname{Ann}_{L}(M) = \operatorname{Ann}_{R}(M) = J_{\frac{1}{2}h^{\vee}}$$

Write

$$\operatorname{Unip}^{\mathrm{s}}_{\mathcal{O}^{\vee}}(\mathcal{G}) \subset \operatorname{Irr}(\mathcal{G})$$

for the set of special unipotent representations attached to \mathcal{O}^{\vee} and

$$\operatorname{Unip}^{\mathrm{s}}(G) := \bigsqcup_{\mathcal{O}^{\vee}} \operatorname{Unip}^{\mathrm{s}}_{\mathcal{O}^{\vee}}(G)$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups $\operatorname{Unip}^{\mathrm{s}}(G)$ are known to satisfy many of Vogan's desiderata.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Unip^s(G) are known to satisfy many of Vogan's desiderata.
Infinitesimal characters are 'as small as possible.'
What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups $\operatorname{Unip}^{\mathrm{s}}(G)$ are known to satisfy many of Vogan's desiderata.

- Infinitesimal characters are 'as small as possible.'
- Annihilators are maximal.

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Unip^s(G) are known to satisfy many of Vogan's desiderata.
Infinitesimal characters are 'as small as possible.'

- Annihilators are maximal.
- Unitary (Barbasch, Barbasch-Ciobotaru).

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups $\operatorname{Unip}^{\mathrm{s}}(G)$ are known to satisfy many of Vogan's desiderata.

- Infinitesimal characters are 'as small as possible.'
- Annihilators are maximal.
- Unitary (Barbasch, Barbasch-Ciobotaru).
- Classified by geometric objects related to nilpotent orbits:

Theorem (Barbasch-Vogan, 1985)

There is a natural bijection

$$\operatorname{Unip}^{\mathrm{s}}_{\mathcal{O}^{ee}}(\mathcal{G}) \simeq \overline{\mathcal{A}}(\mathcal{O}^{ee})^{\wedge}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

What is a unipotent representation?

Problem

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Let G = Sp(2n) and let $\mathcal{O} \subset \mathcal{N}$ be the minimal nilpotent orbit.

- Joseph ideal $J \subset U(\mathfrak{g})$. Maximal, completely prime, $V(J) = \overline{O}$.
- Oscillator representations M^{\pm} . Unitary, irreducible, $\operatorname{Ann}_{L}(M^{\pm}) = \operatorname{Ann}_{R}(M^{\pm}) = J.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Since \mathcal{O} is *rigid*, M^{\pm} cannot be induced.
- Since \mathcal{O} is not special, $M^{\pm} \notin \operatorname{Unip}^{\mathfrak{s}}(G)$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Problem

Let G = Sp(2n) and let $\mathcal{O} \subset \mathcal{N}$ be the minimal nilpotent orbit.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Joseph ideal $J \subset U(\mathfrak{g})$. Maximal, completely prime, $V(J) = \overline{O}$.
- Oscillator representations M^{\pm} . Unitary, irreducible, $\operatorname{Ann}_{L}(M^{\pm}) = \operatorname{Ann}_{R}(M^{\pm}) = J.$
- Since \mathcal{O} is *rigid*, M^{\pm} cannot be induced.
- Since \mathcal{O} is not special, $M^{\pm} \notin \operatorname{Unip}^{\mathfrak{s}}(G)$.

Conclusion

 $\operatorname{Unip}^{s}(G) \subsetneq \operatorname{Unip}(G)$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Problem

Let G = Sp(2n) and let $\mathcal{O} \subset \mathcal{N}$ be the minimal nilpotent orbit.

- Joseph ideal $J \subset U(\mathfrak{g})$. Maximal, completely prime, $V(J) = \overline{O}$.
- Oscillator representations M^{\pm} . Unitary, irreducible, $\operatorname{Ann}_{L}(M^{\pm}) = \operatorname{Ann}_{R}(M^{\pm}) = J.$
- Since \mathcal{O} is *rigid*, M^{\pm} cannot be induced.
- Since \mathcal{O} is not special, $M^{\pm} \notin \operatorname{Unip}^{\mathfrak{s}}(G)$.

Conclusion

 $\operatorname{Unip}^{\mathfrak{s}}(G) \subsetneq \operatorname{Unip}(G)$

I will propose a natural definition of Unip(G) which generalizes BV.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Unipotent representations of G will be parameterized by *nilpotent covers*.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Unipotent representations of G will be parameterized by *nilpotent covers*.

A nilpotent cover is a triple consisting of a nilpotent orbit
 O ⊂ *N*, a homogeneous space *O* for *G*, and a finite
 G-equivariant map *O* → *O*.

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Unipotent representations of G will be parameterized by *nilpotent covers*.

- A nilpotent cover is a triple consisting of a nilpotent orbit
 O ⊂ *N*, a homogeneous space *O* for *G*, and a finite
 G-equivariant map *O* → *O*.
- Choose $e \in \mathcal{O}$ and $x \in \widetilde{\mathcal{O}}$ over e. Then

$$\pi_1^{\sf G}({\cal O})\simeq {\sf G}_{\sf e}/{\sf G}_{\sf e}^{\sf o}$$

and

$$\pi_1^{\mathcal{G}}(\widetilde{\mathcal{O}}) \simeq \mathcal{G}_{\mathsf{x}}/\mathcal{G}_{\mathsf{x}}^{o} \subseteq \mathcal{G}_{\mathsf{e}}/\mathcal{G}_{\mathsf{e}}^{o} \simeq \pi_1^{\mathcal{G}}(\mathcal{O})$$

This defines a Galois correspondence between nilpotent covers of \mathcal{O} (up to isomorphism) and subgroups of $\pi_1^{\mathcal{G}}(\mathcal{O})$ (up to conjugacy).

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Unipotent representations of G will be parameterized by *nilpotent covers*.

- A nilpotent cover is a triple consisting of a nilpotent orbit
 O ⊂ *N*, a homogeneous space *O* for *G*, and a finite
 G-equivariant map *O* → *O*.
- Choose $e \in \mathcal{O}$ and $x \in \widetilde{\mathcal{O}}$ over e. Then

$$\pi_1^{\sf G}({\cal O})\simeq {\sf G}_{\sf e}/{\sf G}_{\sf e}^{\sf o}$$

and

$$\pi_1^{\mathcal{G}}(\widetilde{\mathcal{O}}) \simeq \mathcal{G}_{\mathsf{x}}/\mathcal{G}_{\mathsf{x}}^{o} \subseteq \mathcal{G}_{\mathsf{e}}/\mathcal{G}_{\mathsf{e}}^{o} \simeq \pi_1^{\mathcal{G}}(\mathcal{O})$$

This defines a Galois correspondence between nilpotent covers of \mathcal{O} (up to isomorphism) and subgroups of $\pi_1^{\mathcal{G}}(\mathcal{O})$ (up to conjugacy).

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups There is a G-eqvt symplectic form ω ∈ Ω²(O) (Kostant), inducing a G-eqvt symplectic form p^{*}ω ∈ Ω²(O).

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

- There is a G-eqvt symplectic form ω ∈ Ω²(O) (Kostant), inducing a G-eqvt symplectic form p^{*}ω ∈ Ω²(Õ).
- Symplectic form induces graded *G* eqvt Poisson bracket on $\mathbb{C}[\widetilde{\mathcal{O}}]$

Definition

A *quantization* of \widetilde{O} is a pair (\mathcal{A}, θ) consisting of a filtered algebra \mathcal{A} such that

$$[\mathcal{A}_{\leq m}, \mathcal{A}_{\leq n}] \subseteq \mathcal{A}_{\leq m+n-1}$$

and an isomorphism of graded Poisson algebras

$$\theta : \operatorname{gr}(\mathcal{A}) \simeq \mathbb{C}[\widetilde{\mathcal{O}}]$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Every $\widetilde{\mathcal{O}}$ defines

- **1** A Levi subgroup $L \subset G$.
- **2** A finite group W acting on $\mathfrak{z}(\mathfrak{l})$ by reflections.

Theorem (Loseu, Matvieievskyi)

There is a canonical bijection

{quantizations of $\widetilde{\mathcal{O}}$ } $\simeq \mathfrak{z}(\mathfrak{l})/W$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Every $\widetilde{\mathcal{O}}$ defines

- **1** A Levi subgroup $L \subset G$.
- **2** A finite group W acting on $\mathfrak{z}(\mathfrak{l})$ by reflections.

Theorem (Loseu, Matvieievskyi)

There is a canonical bijection

{quantizations of $\widetilde{\mathcal{O}}$ } $\simeq \mathfrak{z}(\mathfrak{l})/W$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Example

Let $\mathcal{O} \subset \mathcal{N}$ be the principal nilpotent orbit. Then

L = T W = W(G)

Conclusion:

 $\mathfrak{t}^*/\mathcal{W}(\mathcal{G})\simeq\{\text{quantizations of }\mathcal{N}\}$

In this case, bijection is very easy to describe.

 $\lambda \longmapsto U(\mathfrak{g})/\langle \ker \chi_{\lambda} \rangle$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Observation

If $\widetilde{\mathcal{O}}$ is an eqvt nilpotent cover, there is a distinguished quantization corresponding to $0 \in \mathfrak{z}(\mathfrak{l})/W$. We call this quantization the *canonical quantization* and denote it by \mathcal{A}_0 .

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Observation

If $\widetilde{\mathcal{O}}$ is an eqvt nilpotent cover, there is a distinguished quantization corresponding to $0 \in \mathfrak{z}(\mathfrak{l})/W$. We call this quantization the *canonical quantization* and denote it by \mathcal{A}_0 .

The canonical quantization has many distinguishing properties (Loseu, MB, Matvieievskyi):

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Observation

If $\widetilde{\mathcal{O}}$ is an eqvt nilpotent cover, there is a distinguished quantization corresponding to $0 \in \mathfrak{z}(\mathfrak{l})/W$. We call this quantization the *canonical quantization* and denote it by \mathcal{A}_0 .

The canonical quantization has many distinguishing properties (Loseu, MB, Matvieievskyi):

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• \mathcal{A}_0 is the unique *even* quantization of $\widetilde{\mathcal{O}}$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Observation

If $\widetilde{\mathcal{O}}$ is an eqvt nilpotent cover, there is a distinguished quantization corresponding to $0 \in \mathfrak{z}(\mathfrak{l})/W$. We call this quantization the *canonical quantization* and denote it by \mathcal{A}_0 .

The canonical quantization has many distinguishing properties (Loseu, MB, Matvieievskyi):

- \mathcal{A}_0 is the unique *even* quantization of $\widetilde{\mathcal{O}}$.
- A₀ has a large automorphism group (all Poisson automorphisms of C[Õ] lift to filtered automorphisms of A₀).

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Observation

If $\widetilde{\mathcal{O}}$ is an eqvt nilpotent cover, there is a distinguished quantization corresponding to $0 \in \mathfrak{z}(\mathfrak{l})/W$. We call this quantization the *canonical quantization* and denote it by \mathcal{A}_0 .

The canonical quantization has many distinguishing properties (Loseu, MB, Matvieievskyi):

- \mathcal{A}_0 is the unique *even* quantization of $\widetilde{\mathcal{O}}$.
- A₀ has a large automorphism group (all Poisson automorphisms of C[Õ] lift to filtered automorphisms of A₀).

• \mathcal{A}_0 is *G*-eqvt (i.e. *G*-action on $\mathbb{C}[\widetilde{\mathcal{O}}]$ lifts to \mathcal{A}_0).

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups The G-action on \mathcal{A}_0 is Hamiltonian, i.e. there is a (quantum) co-moment map

$$\Phi: \mathit{U}(\mathfrak{g}) \to \mathcal{A}_0$$

lifting the (classical) co-moment map

$$S(\mathfrak{g})\simeq \mathbb{C}[\mathfrak{g}^*]
ightarrow \mathbb{C}[\widetilde{\mathcal{O}}]$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups The G-action on \mathcal{A}_0 is Hamiltonian, i.e. there is a (quantum) co-moment map

$$\Phi: U(\mathfrak{g}) \to \mathcal{A}_0$$

lifting the (classical) co-moment map

$$S(\mathfrak{g})\simeq \mathbb{C}[\mathfrak{g}^*]
ightarrow \mathbb{C}[\widetilde{\mathcal{O}}]$$

Definition (Loseu-MB-Matvieievskyi)

The unipotent ideal attached to $\widetilde{\mathcal{O}}$ is the primitive ideal

$$J(\widetilde{\mathcal{O}}):= {\sf ker}\,(\Phi: U(\mathfrak{g})
ightarrow \mathcal{A}_0) \subset U(\mathfrak{g})$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Two important examples:

Example

Let $\mathcal{O} = \{0\}$. Then $\mathcal{A}_0 = \mathbb{C}$, $\Phi : U(\mathfrak{g}) \to \mathbb{C}$ is the augmentation map, and $J(\mathcal{O})$ is the augmentation ideal. In particular $\lambda(\mathcal{O}) = \rho$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Two important examples:

Example

Let $\mathcal{O} = \{0\}$. Then $\mathcal{A}_0 = \mathbb{C}$, $\Phi : U(\mathfrak{g}) \to \mathbb{C}$ is the augmentation map, and $J(\mathcal{O})$ is the augmentation ideal. In particular $\lambda(\mathcal{O}) = \rho$.

Example

Let $\mathcal{O} = \mathcal{O}_{\text{prin}}$. Then $\mathcal{A}_0 = U(\mathfrak{g})/\langle \ker \gamma_0 \rangle$, $\Phi : U(\mathfrak{g}) \to \mathcal{A}_0$ is the quotient map, and $J(\mathcal{O}) = \langle \ker \gamma_0 \rangle$. In particular, $\lambda(\mathcal{O}) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Example

Let G = SL(2) and let $\widetilde{\mathcal{O}} \to \mathcal{O}_{prin}$ be the 2-fold G-eqvt cover. $\widetilde{\mathcal{O}} \longrightarrow \mathbb{C}^2$

The Weyl algebra $\mathbb{C}[x, \partial x]$ is the *unique* quantization of \mathbb{C}^2 . Has a \mathbb{Z}_2 action (by negation). There is a surjection $\Phi: U(\mathfrak{g}) \twoheadrightarrow \mathbb{C}[x, \partial x]^{\mathbb{Z}_2}$

$$e \mapsto \frac{1}{2}x^2$$
 $f \mapsto -\frac{1}{2}\partial x^2$ $h \mapsto x\partial x + \frac{1}{2}\partial x^2$

with kernel $\Omega + \frac{3}{4}$. Recall $\gamma_{\lambda}(\Omega) = \lambda^2 - 2\lambda$. Hence, $\lambda(\widetilde{\mathcal{O}}) = \frac{1}{2}$.

Properties of Unipotent Ideals

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Theorem (Loseu-MB-Matvieievskyi)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The following are true: (i) $V(J(\tilde{\mathcal{O}})) = \overline{\mathcal{O}}$ (ii) $J(\tilde{\mathcal{O}})$ is completely prime (iii) $J(\tilde{\mathcal{O}})$ is maximal. (iv) $m_{\overline{\mathcal{O}}}(J(\tilde{\mathcal{O}})) = 1$ if and only if $\tilde{\mathcal{O}} \to \mathcal{O}$ is Galois.

Properties of Unipotent Ideals

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Theorem (Loseu-MB-Matvieievskyi)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The following are true: (i) $V(J(\tilde{\mathcal{O}})) = \overline{\mathcal{O}}$ (ii) $J(\tilde{\mathcal{O}})$ is completely prime (iii) $J(\tilde{\mathcal{O}})$ is maximal. (iv) $m_{\overline{\mathcal{O}}}(J(\tilde{\mathcal{O}})) = 1$ if and only if $\tilde{\mathcal{O}} \to \mathcal{O}$ is Galois.

Unipotent Ideals for G = Sp(4)

Unipotent Ideals for G = Sp(4)

Unipotent Ideals for G = Sp(8)

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups The unipotent ideals $J(\widetilde{\mathcal{O}})$ are the maximal ideals with the following infl chars:

Õ	$\lambda(\tilde{\mathcal{O}})$	Õ	$\lambda(\tilde{O})$	Õ	$\lambda(\tilde{O})$
(8)	(0, 0, 0, 0)	$(42^2)_2$	$(1, 1, \frac{1}{2}, 0)$	(3 ² 2) ₂	$(\frac{3}{2}, 1, \frac{1}{2}, \frac{1}{2})$
(8)2	$(\frac{1}{2}, 0, 0, 0)$	$(42^2)_2$	$(\frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$	(3 ² 1 ²)	$(2, 1, \frac{1}{2}, \frac{1}{2})$
(62)	$(\frac{1}{2}, \frac{1}{2}, 0, 0)$	$(42^2)_2$	$(\frac{3}{2}, \frac{1}{2}, \frac{1}{2}, 0)$	(2 ⁴)	$(\frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2})$
(62)2	$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0)$	$(42^2)_4$	$(\frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$	(2 ⁴) ₂	(2, 1, 1, 0)
(62)2	(1, 0, 0, 0)	(421 ²)	(2, 1, 0, 0)	$(2^3 1^2)$	$(\frac{5}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2})$
(62)2	$(1, \frac{1}{2}, 0, 0)$	$(421^2)_2$	(2, 1, 0, 0)	$(2^31^2)_2$	$(\frac{5}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2})$
(62)4	$(1, \frac{1}{2}, 0, 0)$	$(421^2)_2$	(2, 1, 0, 0)	(2 ² 1 ⁴)	(3, 2, 1, 0)
(61 ²)	$(\frac{3}{2}, \frac{1}{2}, 0, 0)$	$(421^2)_2$	$(2, 1, \frac{1}{2}, 0)$	$(2^21^4)_2$	(3, 2, 1, 0)
$(61^2)_2$	$(\frac{3}{2}, \frac{1}{2}, 0, 0)$	$(421^2)_4$	$(2, 1, \frac{1}{2}, 0)$	(21 ⁶)	$(\frac{7}{2}, \frac{5}{2}, \frac{3}{2}, \frac{1}{2})$
(4 ²)	$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$	(41^4)	$(\frac{5}{2}, \frac{3}{2}, \frac{1}{2}, 0)$	(21 ⁶) ₂	$(\frac{7}{2}, \frac{5}{2}, \frac{3}{2}, \frac{1}{2})$
$(4^2)_2$	$(1, \frac{1}{2}, \frac{1}{2}, 0)$	$(41^4)_2$	$(\frac{5}{2}, \frac{3}{2}, \frac{1}{2}, 0)$	(18)	(4, 3, 2, 1)
(42 ²)	(1, 1, 0, 0)	(3 ² 2)	(1, 1, 1, 0)		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Blue = special unipotent. Note: all such appear.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Definition (Loseu-MB-Matvieievskyi)

Suppose $\widetilde{\mathcal{O}}^1$ and $\widetilde{\mathcal{O}}^2$ are equt covers of \mathcal{O} . We say $\widetilde{\mathcal{O}}^1$ and $\widetilde{\mathcal{O}}^2$ are equivalent if the affine varieties $\operatorname{Spec}([\widetilde{\mathcal{O}}^1])$ and $\operatorname{Spec}([\widetilde{\mathcal{O}}^2])$ have the same codimension 2 singularities. Denote the equivalence classes by $[\widetilde{\mathcal{O}}]$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Definition (Loseu-MB-Matvieievskyi)

Suppose $\widetilde{\mathcal{O}}^1$ and $\widetilde{\mathcal{O}}^2$ are eqvt covers of \mathcal{O} . We say $\widetilde{\mathcal{O}}^1$ and $\widetilde{\mathcal{O}}^2$ are equivalent if the affine varieties $\operatorname{Spec}([\widetilde{\mathcal{O}}^1])$ and $\operatorname{Spec}([\widetilde{\mathcal{O}}^2])$ have the same codimension 2 singularities. Denote the equivalence classes by $[\widetilde{\mathcal{O}}]$.

Theorem (Loseu-MB-Matvieievskyi)

The map $\widetilde{\mathcal{O}} \mapsto J(\widetilde{\mathcal{O}})$ defines a bijection

{equivalence class of covers} \simeq {unipotent ideals}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Complex Groups

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Example

Let
$$G = SL(2)$$
.

$$\begin{array}{c|c} \{0\} & \mathcal{O} & \widetilde{\mathcal{O}} \\ \hline J_1 & J_0 & J_{\frac{1}{2}} \end{array}$$

Example

Let \mathcal{O} be the minimal orbit (for any G). Unless dim(\mathcal{O}) = 2, Spec($\mathbb{C}[\mathcal{O}]$) has *no* codim 2 singularities. Hence, all covers of \mathcal{O} are equivalent. Corresponding ideal is Joseph ideal.

Enhanced BV Duality

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Want to show that all special unipotent ideals are unipotent.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Enhanced BV Duality

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Want to show that all special unipotent ideals are unipotent.

Theorem (Loseu-MB-Matvieievskyi)

There is an injective map

$$\widetilde{d}: \{\mathcal{O}^{\vee}\} \hookrightarrow \{[\widetilde{\mathcal{O}}]\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

with the following properties:

(i) d(O[∨]) covers d(O[∨])
(ii) ½h[∨] = infl char of J(d(O[∨])).
Enhanced BV Duality

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups Want to show that all special unipotent ideals are unipotent.

Theorem (Loseu-MB-Matvieievskyi)

There is an injective map

$$\widetilde{d}: \{\mathcal{O}^{\vee}\} \hookrightarrow \{[\widetilde{\mathcal{O}}]\}$$

with the following properties:

(i) $\widetilde{d}(\mathcal{O}^{\vee})$ covers $d(\mathcal{O}^{\vee})$ (ii) $\frac{1}{2}h^{\vee} = \text{infl char of } J(\widetilde{d}(\mathcal{O}^{\vee})).$

Since unipotent ideals are maximal, this shows that special unipotent \implies unipotent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

New Definition of Unipotent Representations

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Definition (Loseu-MB-Matvievskyi)

A unipotent representation attached to $\tilde{\mathcal{O}}$ is an irreducible HC bimodule M such that

$$\operatorname{Ann}_{L}(M) = \operatorname{Ann}_{R}(M) = I_{0}(\widetilde{\mathcal{O}})$$

Write

$$\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G) \subset \operatorname{Irr}(G)$$

for the set of unipotent representations attached to $\widetilde{\mathcal{O}}$ and

$$\operatorname{Unip}(G) := \bigsqcup_{\widetilde{\mathcal{O}}} \operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$$

(日) (四) (日) (日) (日)

Properties of Unipotent Representations

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Theorem (Loseu-MB-Matvieievskyi)

If G is linear classical all representations in Unip(G) are unitary.

(日) (四) (日) (日) (日)

Properties of Unipotent Representations

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

Theorem (Loseu-MB-Matvieievskyi)

If G is linear classical all representations in Unip(G) are unitary.

Let G and $\widetilde{\mathcal{O}}$ be arbitrary. We prove a conjecture of Vogan:

Theorem (Loseu-MB-Matvieievskyi)

Let $V \in \operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$. Then there is a distinguished good filtration on V giving rise to an isomorphism of G-representations

 $V \simeq_G \Gamma(\mathcal{O}, \operatorname{gr}(V))$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups • Want to classify $\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$ for arbitrary $G, \widetilde{\mathcal{O}}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

- Want to classify $\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$ for arbitrary $G, \widetilde{\mathcal{O}}$
- Replace \$\tilde{O}\$ with maximal cover in its equivalence class \$[\tilde{O}]\$ (always exists!)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representations of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

- Want to classify $\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$ for arbitrary $G, \widetilde{\mathcal{O}}$
- Replace \$\tilde{O}\$ with maximal cover in its equivalence class \$[\tilde{O}]\$ (always exists!)
- Consider the finite group

$$\Gamma(\widetilde{\mathcal{O}}) := \operatorname{Gal}(\widetilde{\mathcal{O}}/\mathcal{O})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

- Want to classify $\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$ for arbitrary $G, \widetilde{\mathcal{O}}$
- Replace \$\tilde{O}\$ with maximal cover in its equivalence class \$[\tilde{O}]\$ (always exists!)
- Consider the finite group

$${\sf F}(\widetilde{\mathcal{O}}):={
m Gal}(\widetilde{\mathcal{O}}/\mathcal{O})$$

Theorem (Loseu-MB-Matvieievskyi)

There is a natural bijection

$$\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G) \simeq \Gamma(\widetilde{\mathcal{O}})^{\wedge}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What is a unipotent representation?

Lucas Mason-Brown

Finite Group of Lie Type

Real and Complex Groups

Special Unipotent Representa tions of Complex Groups

A New Definition of Unipotent Representations of Complex Groups

- Want to classify $\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$ for arbitrary $G, \widetilde{\mathcal{O}}$
- Replace \$\tilde{O}\$ with maximal cover in its equivalence class \$[\tilde{O}]\$ (always exists!)
- Consider the finite group

$${\sf F}(\widetilde{\mathcal{O}}):={
m Gal}(\widetilde{\mathcal{O}}/\mathcal{O})$$

Theorem (Loseu-MB-Matvieievskyi)

There is a natural bijection

$$\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G) \simeq \Gamma(\widetilde{\mathcal{O}})^{\wedge}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで