Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representa tions

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

April, 2020

Plan

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview o Thesis

Principal Unipotent Representations **1** Problem of Unitary Dual

2 Orbit Method

3 Unipotent Representations

4 Overview of Thesis

5 Principal Unipotent Representations

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representa tions • $G_{\mathbb{R}}$ = real reductive group

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations • $G_{\mathbb{R}} = \text{real reductive group}$

• Examples: $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$, $Sp(2n, \mathbb{R})$, $SO(n, \mathbb{R})$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations • $G_{\mathbb{R}}$ = real reductive group

- Examples: $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$, $Sp(2n, \mathbb{R})$, $SO(n, \mathbb{R})$
- Unitary rep = Hilbert space H, continuous grp hom $\pi: G_{\mathbb{R}} \to U(H)$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations • $G_{\mathbb{R}}$ = real reductive group

- Examples: $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$, $Sp(2n, \mathbb{R})$, $SO(n, \mathbb{R})$
- Unitary rep = Hilbert space H, continuous grp hom $\pi: G_{\mathbb{R}} \to U(H)$

Problem (Gelfand, 1930s)

Determine $\widehat{G_{\mathbb{R}}} := \{ \text{irr unitary reps of } G_{\mathbb{R}} \}$ for arbitrary $G_{\mathbb{R}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview o Thesis

Principal Unipotent Representations • $G_{\mathbb{R}}$ = real reductive group

- Examples: $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$, $Sp(2n, \mathbb{R})$, $SO(n, \mathbb{R})$
- Unitary rep = Hilbert space H, continuous grp hom $\pi: G_{\mathbb{R}} \to U(H)$

Problem (Gelfand, 1930s)

Determine $\widehat{G_{\mathbb{R}}} := \{ \text{irr unitary reps of } G_{\mathbb{R}} \}$ for arbitrary $G_{\mathbb{R}}$

 Answer known for: connected compact groups (Weyl,1920s), SL₂(ℝ) (Bargmann, 1947), GL_n(ℝ), GL_n(ℂ), GL_n(ℍ) (Vogan, 1986), complex classical groups (Barbasch, 1989), some low-rank groups...

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview o Thesis

Principal Unipotent Representations • $G_{\mathbb{R}}$ = real reductive group

- Examples: $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$, $Sp(2n, \mathbb{R})$, $SO(n, \mathbb{R})$
- Unitary rep = Hilbert space H, continuous grp hom $\pi: G_{\mathbb{R}} \to U(H)$

Problem (Gelfand, 1930s)

Determine $\widehat{G_{\mathbb{R}}} := \{ \text{irr unitary reps of } G_{\mathbb{R}} \}$ for arbitrary $G_{\mathbb{R}}$

- Answer known for: connected compact groups (Weyl,1920s), SL₂(ℝ) (Bargmann, 1947), GL_n(ℝ), GL_n(ℂ), GL_n(ℍ) (Vogan, 1986), complex classical groups (Barbasch, 1989), some low-rank groups...
 - Also known: algorithm for $\widehat{G_{\mathbb{R}}}$ (Atlas, 2000s)

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representa tions

• Let $\mathfrak{g}_{\mathbb{R}} = \operatorname{Lie}(G_{\mathbb{R}})$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations • Let $\mathfrak{g}_{\mathbb{R}} = \operatorname{Lie}(G_{\mathbb{R}})$

Big idea (Kostant, Kirillov):

Conjecture (Orbit Method)

Should be a correspondence

$$\{\mathcal{G}_{\mathbb{R}}- ext{orbits on }\mathfrak{g}^*_{\mathbb{R}}\} \nleftrightarrow \widehat{\mathcal{G}_{\mathbb{R}}}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

approximately a bijection

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview o[.] Thesis

Principal Unipotent Representations • Let $\mathfrak{g}_{\mathbb{R}} = \operatorname{Lie}(\mathcal{G}_{\mathbb{R}})$

Big idea (Kostant, Kirillov):

Conjecture (Orbit Method)

Should be a correspondence

$$\{\mathcal{G}_{\mathbb{R}}- ext{orbits on }\mathfrak{g}^*_{\mathbb{R}}\} \nleftrightarrow \widehat{\mathcal{G}_{\mathbb{R}}}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

approximately a bijection

- LHS = symplectic manifolds (with $G_{\mathbb{R}}$ -action)
- RHS = hilbert spaces (with $G_{\mathbb{R}}$ -action)

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations • Let $\mathfrak{g}_{\mathbb{R}} = \operatorname{Lie}(\mathcal{G}_{\mathbb{R}})$

Big idea (Kostant, Kirillov):

Conjecture (Orbit Method)

Should be a correspondence

$$\{\mathcal{G}_{\mathbb{R}}- ext{orbits on }\mathfrak{g}^*_{\mathbb{R}}\} \nleftrightarrow \widehat{\mathcal{G}_{\mathbb{R}}}$$

approximately a bijection

- LHS = symplectic manifolds (with $G_{\mathbb{R}}$ -action)
- RHS = hilbert spaces (with $G_{\mathbb{R}}$ -action)
- Right arrow: geometric quantization, left arrow: classical limit

Example $(GL_n(\mathbb{R}))$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representa tions

• Let
$$p = (p_1, ..., p_k) =$$
 partition of n , and $\nu = (\nu_1, ..., \nu_k) \in \mathbb{R}^k$

ヘロア 人間 アメヨアメヨア

æ

Example $(GL_n(\mathbb{R}))$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representa tions

• Let $p = (p_1, ..., p_k) =$ partition of n, and $\nu = (\nu_1, ..., \nu_k) \in \mathbb{R}^k$

• Orbit $\mathcal{O}(p,\nu) \subset \mathfrak{g}_0^*$ (Jordan normal form)

イロト 不得 トイヨト イヨト

3

Example $(GL_n(\mathbb{R}))$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations

• Let $p = (p_1, ..., p_k) =$ partition of n, and $\nu = (\nu_1, ..., \nu_k) \in \mathbb{R}^k$

- Orbit $\mathcal{O}(p,\nu) \subset \mathfrak{g}_0^*$ (Jordan normal form)
- Orbit Method: $\mathcal{O}(p,\nu) \rightsquigarrow \operatorname{Ind}_{GL(p_1) \times \ldots \times GL(p_k)}^{GL(n)} \operatorname{det}^{i\nu_1} \otimes \ldots \otimes \operatorname{det}^{i\nu_k}$

イロト 不得 トイヨト イヨト

3

Example $(GL_n(\mathbb{R}))$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations

• Let $p = (p_1, ..., p_k) =$ partition of n, and $\nu = (\nu_1, ..., \nu_k) \in \mathbb{R}^k$

- Orbit $\mathcal{O}(p,\nu) \subset \mathfrak{g}_0^*$ (Jordan normal form)
- Orbit Method: $\mathcal{O}(p,\nu) \rightsquigarrow \operatorname{Ind}_{GL(p_1) \times \ldots \times GL(p_k)}^{GL(n)} \operatorname{det}^{i\nu_1} \otimes \ldots \otimes \operatorname{det}^{i\nu_k}$

イロト 不得 トイヨト イヨト

3

RHS: 'looks like' functions on $\mathcal{O}(p,\nu)$

Example ($GL_n(\mathbb{R})$)

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview o Thesis

Principal Unipotent Representa tions

• Let $p = (p_1, ..., p_k) = \text{partition of } n$, and $\nu = (\nu_1, ..., \nu_k) \in \mathbb{R}^k$

- Orbit $\mathcal{O}(p,\nu)\subset\mathfrak{g}_0^*$ (Jordan normal form)
- Orbit Method: $\mathcal{O}(p,\nu) \rightsquigarrow \operatorname{Ind}_{GL(p_1) \times \ldots \times GL(p_k)}^{GL(n)} \det^{i\nu_1} \otimes \ldots \otimes \det^{i\nu_k}$
- RHS: 'looks like' functions on $\mathcal{O}(p,\nu)$
- Caveats:

more complicated when $\mathcal{O}(p,\nu)$ nilpotent $\mathcal{O}(p,\nu) \implies$ compact quotient $\mathcal{O}(p,\nu)/\sim$ functions $\implies L^2$ sections of Hermitian line bundle

Unipotent Representations: Intuition

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations Kostant, Kirillov, ..., Vogan, Zuckerman: can attach irred unitary reps to *semisimple* orbits (parabolic and cohomological induction)

Unipotent Representations: Intuition

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview o Thesis

Principal Unipotent Representations

- Kostant, Kirillov, ..., Vogan, Zuckerman: can attach irred unitary reps to *semisimple* orbits (parabolic and cohomological induction)
- Problem of unitary dual 'reduces' to

Problem

Find a natural correspondence

 $\mathcal{O} = \mathsf{nilptnt} \text{ orbt} \rightsquigarrow \mathrm{Unip}(\mathcal{O}) = \mathsf{fin} \text{ set of irred unitary reps}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representa tions • Let G, \mathfrak{g} be complexifications, $\mathcal{N} \subset \mathfrak{g}$ nilpotent cone

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representa tions \blacksquare Let ${\mathcal G}, {\mathfrak g}$ be complexifications, ${\mathcal N} \subset {\mathfrak g}$ nilpotent cone

• Form Langlands dual
$$G^{\vee}$$
, \mathfrak{g}^{\vee} , $\mathcal{N}^{\vee} \subset \mathfrak{g}^{\vee}$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations \blacksquare Let ${\cal G}, {\mathfrak g}$ be complexifications, ${\cal N} \subset {\mathfrak g}~$ nilpotent cone

- Form Langlands dual G^{\vee} , \mathfrak{g}^{\vee} , $\mathcal{N}^{\vee} \subset \mathfrak{g}^{\vee}$
- Lusztig, Spaltenstein, Barbasch-Vogan

$$d:\mathcal{N}^{ee}/G^{ee}
ightarrow\mathcal{N}/G$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview o Thesis

Principal Unipotent Representations \blacksquare Let ${\mathcal G}, {\mathfrak g}$ be complexifications, ${\mathcal N} \subset {\mathfrak g}$ nilpotent cone

• Form Langlands dual G^{\vee} , \mathfrak{g}^{\vee} , $\mathcal{N}^{\vee} \subset \mathfrak{g}^{\vee}$

Lusztig, Spaltenstein, Barbasch-Vogan

$$d: \mathcal{N}^{\vee}/G^{\vee} \to \mathcal{N}/G$$

Dual orbit
$$\mathcal{O}^{\vee}$$
 determines infl char for *G*:

$$\mathcal{O}^{ee}\mapsto (e^{ee},f^{ee},h^{ee})\mapsto rac{1}{2}h^{ee}\in \mathfrak{h}^{ee}\simeq \mathfrak{h}^*$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representa tions \blacksquare Let ${\mathcal G}, {\mathfrak g}$ be complexifications, ${\mathcal N} \subset {\mathfrak g}$ nilpotent cone

- \blacksquare Form Langlands dual ${\cal G}^{\vee}, \, \mathfrak{g}^{\vee}, \, {\cal N}^{\vee} \subset \mathfrak{g}^{\vee}$
- Lusztig, Spaltenstein, Barbasch-Vogan

$$d: \mathcal{N}^{\vee}/G^{\vee} \to \mathcal{N}/G$$

Dual orbit
$$\mathcal{O}^{\vee}$$
 determines infl char for G :
 $\mathcal{O}^{\vee} \mapsto (e^{\vee}, f^{\vee}, h^{\vee}) \mapsto \frac{1}{2}h^{\vee} \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^*$

And a maximal ideal

$$I(\mathcal{O}^ee) = I(rac{1}{2}h^ee) \subset U(\mathfrak{g})$$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

Definition (Arthur, Barbasch-Vogan)

 $\operatorname{Unip}^{a}(\mathcal{O}) = \{X \text{ irred} \mid \operatorname{Ann}(X) = I(\mathcal{O}^{\vee}), d(\mathcal{O}^{\vee}) = \mathcal{O}\}$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

Definition (Arthur, Barbasch-Vogan)

$$\mathrm{Unip}^{a}(\mathcal{O}) = \{X \text{ irred } | \operatorname{Ann}(X) = I(\mathcal{O}^{\vee}), d(\mathcal{O}^{\vee}) = \mathcal{O}\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example

f
$$\mathcal{O}=\{0\}$$
, then $\mathrm{Unip}^{a}(\mathcal{O})=\{1-\mathsf{dim}\ \mathsf{reps}\}$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview o Thesis

Principal Unipotent Representations

Definition (Arthur, Barbasch-Vogan)

$$\mathrm{Unip}^{a}(\mathcal{O}) = \{X \text{ irred } | \operatorname{Ann}(X) = I(\mathcal{O}^{\vee}), d(\mathcal{O}^{\vee}) = \mathcal{O}\}$$

Example

If
$$\mathcal{O}=\{0\}$$
, then $\mathrm{Unip}^a(\mathcal{O})=\{1-\mathsf{dim}\ \mathsf{reps}\}$

Example

If $\mathcal{O} = \text{principal}$, then $\operatorname{Unip}^{a}(\mathcal{O}) = \{\text{irred reps of infl char 0}\}$. Includes prin series $\operatorname{Ind}_{B_{\mathbb{R}}}^{G_{\mathbb{R}}}\mathbb{C}$.

Unipotent
Representa-
tions of Real
Reductive
Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representa tions Arthur's definition is too restrictive:

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations Arthur's definition is *too restrictive*:

1 Big problem: $\operatorname{Unip}^{a}(\mathcal{O}) = \emptyset$ unless \mathcal{O} is special

Example

Let $G_{\mathbb{R}} = Sp(2n, \mathbb{C})$. Extremely important unitary rep V called *oscillator representation*. Known: V attached to minimal nilpotent orbit (quantization of reg functions).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations Arthur's definition is *too restrictive*:

1 Big problem: $\operatorname{Unip}^{a}(\mathcal{O}) = \emptyset$ unless \mathcal{O} is special

Example

Let $G_{\mathbb{R}} = Sp(2n, \mathbb{C})$. Extremely important unitary rep V called *oscillator representation*. Known: V attached to minimal nilpotent orbit (quantization of reg functions).

2 Smaller problem: Unip^a(O) is too small, even when O is special.

Example

Let $G_{\mathbb{R}} = SL_n(\mathbb{C})$. Then $\operatorname{Unip}^a(\mathcal{O}^{\operatorname{prin}})$ consists of infl char = 0. Unitary rep of infl char $(\frac{n-1}{2n}, \frac{n-3}{2n}, \dots, \frac{1-n}{2n})$ attached to $\mathcal{O}^{\operatorname{prin}}$, qzation of universal cover.

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations • If $I \subset U(\mathfrak{g})$,

$$U(\mathfrak{g})/I = \text{fin gen } U(\mathfrak{g}) - \text{mod}$$

 $\operatorname{gr}(U(\mathfrak{g})/I) = \text{fin gen } S(\mathfrak{g}) - \text{mod}$
 $V(I) := \operatorname{Supp}(\operatorname{gr}(U(\mathfrak{g})/I)) \subset \mathfrak{g}^*$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

• If
$$I \subset U(\mathfrak{g})$$
,
 $U(\mathfrak{g})/I = \text{fin gen } U(\mathfrak{g}) - \text{mod}$
 $\operatorname{gr}(U(\mathfrak{g})/I) = \text{fin gen } S(\mathfrak{g}) - \text{mod}$
 $V(I) := \operatorname{Supp}(\operatorname{gr}(U(\mathfrak{g})/I)) \subset \mathfrak{g}^*$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Joseph: If *I* primitive, $V(I) = \overline{O}$.

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview o Thesis

Principal Unipotent Representations

$$\subset U(\mathfrak{g}),$$

 $U(\mathfrak{g})/I = \text{fin gen } U(\mathfrak{g}) - \text{mod}$
 $\operatorname{gr}(U(\mathfrak{g})/I) = \text{fin gen } S(\mathfrak{g}) - \text{mod}$
 $V(I) := \operatorname{Supp}(\operatorname{gr}(U(\mathfrak{g})/I)) \subset \mathfrak{g}^*$

• Joseph: If *I* primitive, $V(I) = \overline{O}$.

Definition (Vogan)

If /

Infl char λ is weakly unipotent for ${\mathcal O}$ if rational for wt lattice and

$$\lambda = \min\{\mu \in \lambda + \text{wt lattice} : V(I(\mu)) = \overline{O}\}$$

Then

 $\mathrm{Unip}^{\mathsf{w}}(\mathcal{O}) = \{X \text{ irred } | \operatorname{Ann}(X) = I(\lambda), \ \lambda = \mathsf{wkly unptnt} \}$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

Example

f

Let $G_{\mathbb{R}} = SL_2(\mathbb{R})$. Then

$$\begin{array}{l} \text{weight lattice} = \mathbb{Z} \\ \text{roots} = \{\pm 2\} \\ \text{undamental chamber} = \mathbb{R}_{\geq 0} \\ V(I(\lambda)) = \begin{cases} \{0\} & \text{if } \lambda \in \{1,2,3,...\} \\ \mathcal{N} & \text{else} \end{cases} \end{array}$$

Hence

$$egin{aligned} \mathrm{Unip}^w(\mathcal{O}^\mathrm{prin}) &\leadsto \lambda \in [0,rac{1}{2}] \cap \mathbb{Q} \ \mathrm{Unip}^w(\mathbf{0}) &\longleftrightarrow \lambda = 1 \end{aligned}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representa tions Vogan's definition is too broad:

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations Vogan's definition is *too broad*:

• Problem: typically $\# \operatorname{Unip}^{w}(\mathcal{O}) = \infty$.

Example

If $G_{\mathbb{R}} = SL_2(\mathbb{R})$, $\mathcal{O} = \text{principal}$, weak unipotent infl chars for \mathcal{O} are: $[0, \frac{1}{2}] \cap \mathbb{Q}$.
Unipotent Representations: Vogan

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview o Thesis

Principal Unipotent Representations

Vogan's definition is too broad:

Problem: typically
$$\# \operatorname{Unip}^{w}(\mathcal{O}) = \infty$$
.

Example

If $G_{\mathbb{R}} = SL_2(\mathbb{R})$, $\mathcal{O} = \text{principal}$, weak unipotent infl chars for \mathcal{O} are: $[0, \frac{1}{2}] \cap \mathbb{Q}$.

Problem: many reps are non-unitary

Example

If $G_{\mathbb{R}} = SL_2(\mathbb{R})$, two irreps at infl char $\frac{1}{2}$. One unitary, one non-unitary.

(日) (四) (日) (日) (日)

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representa tions \blacksquare Let $\tilde{\mathcal{O}} \rightarrow \mathcal{O}$ be a G-equivariant covering

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations \blacksquare Let $\tilde{\mathcal{O}} \rightarrow \mathcal{O}$ be a G-equivariant covering

Losev, Matvieievskyi, Namikawa: classification of quantizations of C[Õ]

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

- \blacksquare Let $\tilde{\mathcal{O}} \rightarrow \mathcal{O}$ be a G-equivariant covering
- Losev, Matvieievskyi, Namikawa: classification of quantizations of C[Õ]
- There is always a **distinguished** quantization $\mathcal{A}(\tilde{\mathcal{O}})$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representations

Overview o Thesis

Principal Unipotent Representations

- \blacksquare Let $\tilde{\mathcal{O}} \rightarrow \mathcal{O}$ be a G-equivariant covering
- Losev, Matvieievskyi, Namikawa: classification of quantizations of C[Õ]
- There is always a **distinguished** quantization A(Õ)
 L-MB-M:

$$J(ilde{\mathcal{O}}) := \ker \left(U(\mathfrak{g})
ightarrow \mathcal{A}(ilde{\mathcal{O}})
ight)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

maximal, completely prime

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representations

Overview o[.] Thesis

Principal Unipotent Representations

- \blacksquare Let $\tilde{\mathcal{O}} \rightarrow \mathcal{O}$ be a G-equivariant covering
- Losev, Matvieievskyi, Namikawa: classification of quantizations of C[Õ]
- There is always a distinguished quantization A(Õ)
 L-MB-M:

$$J(ilde{\mathcal{O}}) := \ker \left(U(\mathfrak{g})
ightarrow \mathcal{A}(ilde{\mathcal{O}})
ight)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

maximal, completely prime

Definition (L-MB-M)

 $\mathrm{Unip}(\mathcal{O}) = \{X \text{ irred } | \operatorname{Ann}(X) = J(\tilde{\mathcal{O}}) \text{ for some } \tilde{\mathcal{O}} \to \mathcal{O} \}$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

Theorem (L-MB-M)

In classical types,

 $\operatorname{Unip}^{a}(\mathcal{O}) \subset \operatorname{Unip}(\mathcal{O}) \subset \operatorname{Unip}^{w}(\mathcal{O})$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representations

Overview o Thesis

Principal Unipotent Representations

Theorem (L-MB-M)

In classical types,

$$\operatorname{Unip}^{a}(\mathcal{O}) \subset \operatorname{Unip}^{w}(\mathcal{O})$$

$\operatorname{Unip}^*(\mathcal{O}^{\operatorname{prin}})$ for $Sp(4,\mathbb{R})$:

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations • Let $K_{\mathbb{R}} = \max$ cmptct subgrp

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

- Let $K_{\mathbb{R}} = \max$ cmptct subgrp
- Irreps of $\mathcal{K}_{\mathbb{R}}$ parameterized by int dom weights. If X is a nice representation of $G_{\mathbb{R}}$, get a 'multiplicity' function

$$\operatorname{mult}:\widehat{K_{\mathbb{R}}} \to \mathbb{Z}_{\geq 0}$$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations • Let $K_{\mathbb{R}} = \max$ cmptct subgrp

• Irreps of $\mathcal{K}_{\mathbb{R}}$ parameterized by int dom weights. If X is a nice representation of $G_{\mathbb{R}}$, get a 'multiplicity' function

$$\operatorname{mult}:\widehat{K_{\mathbb{R}}}\to\mathbb{Z}_{\geq0}$$

 Powerful invariant: rate of growth determines size of representation (i.e. Gelfand-Kirillov dimension) and shape (i.e. associated variety)

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations • Let $K_{\mathbb{R}} = \max$ cmptct subgrp

Irreps of $\mathcal{K}_{\mathbb{R}}$ parameterized by int dom weights. If X is a nice representation of $G_{\mathbb{R}}$, get a 'multiplicity' function

$$\operatorname{mult}:\widehat{K_{\mathbb{R}}}\to\mathbb{Z}_{\geq0}$$

 Powerful invariant: rate of growth determines size of representation (i.e. Gelfand-Kirillov dimension) and shape (i.e. associated variety)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In my thesis I study restriction to $\mathcal{K}_{\mathbb{R}}$ of unipotent representations

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representa tions

Lusztig-Spaltenstein:

 $Q = LU \subset G$ $\operatorname{Ind}_{L}^{G} : \mathcal{O}_{\mathfrak{l}} \mapsto \mathcal{O}_{\mathfrak{g}} =:$ dense orbit in $G(\mathfrak{u} + \mathcal{O}_{\mathfrak{l}})$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

Lusztig-Spaltenstein:

 $Q = LU \subset G \quad \mathrm{Ind}_L^G : \mathcal{O}_\mathfrak{l} \mapsto \mathcal{O}_\mathfrak{g} =: \mathsf{dense orbit in } G(\mathfrak{u} + \mathcal{O}_\mathfrak{l})$

. Induction is **birational** if moment map

$$G \times_Q (\mathfrak{u} + \mathcal{O}_{\mathfrak{l}}) \to \overline{\mathcal{O}}_{\mathfrak{g}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is birational.

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

Lusztig-Spaltenstein:

 $Q = LU \subset G \quad \mathrm{Ind}_L^G : \mathcal{O}_\mathfrak{l} \mapsto \mathcal{O}_\mathfrak{g} =: \mathsf{dense orbit in } G(\mathfrak{u} + \mathcal{O}_\mathfrak{l})$

. Induction is birational if moment map

$$G \times_Q (\mathfrak{u} + \mathcal{O}_{\mathfrak{l}}) \to \overline{\mathcal{O}}_{\mathfrak{g}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is birational. Three results in thesis:

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations

Lusztig-Spaltenstein:

 $Q = LU \subset G \quad \mathrm{Ind}_L^G : \mathcal{O}_\mathfrak{l} \mapsto \mathcal{O}_\mathfrak{g} =: \mathsf{dense orbit in } G(\mathfrak{u} + \mathcal{O}_\mathfrak{l})$

. Induction is birational if moment map

$$G imes_Q (\mathfrak{u} + \mathcal{O}_\mathfrak{l}) o \overline{\mathcal{O}}_\mathfrak{g}$$

is birational. Three results in thesis:

If \$\mathcal{O}_g\$ is birationally induced, \$K\$-structure of Unip^w(\$\mathcal{O}_g\$)\$ built out of \$K\$-structure of Unip^w(\$\mathcal{O}_l\$)\$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations

Lusztig-Spaltenstein:

 $Q = LU \subset G \quad \mathrm{Ind}_L^G : \mathcal{O}_\mathfrak{l} \mapsto \mathcal{O}_\mathfrak{g} =: \mathsf{dense orbit in } G(\mathfrak{u} + \mathcal{O}_\mathfrak{l})$

. Induction is **birational** if moment map

$$G imes_Q (\mathfrak{u} + \mathcal{O}_\mathfrak{l}) o \overline{\mathcal{O}}_\mathfrak{g}$$

is birational. Three results in thesis:

- If \$\mathcal{O}_g\$ is birationally induced, \$K\$-structure of Unip^w(\$\mathcal{O}_g\$)\$ built out of \$K\$-structure of Unip^w(\$\mathcal{O}_l\$)\$
- If O_g birationally rigid, Vogan has conjecture regarding K-structure of Unip^w(O_g). I prove this conjecture in many cases.

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations

Lusztig-Spaltenstein:

 $Q = LU \subset G \quad \mathrm{Ind}_L^G : \mathcal{O}_\mathfrak{l} \mapsto \mathcal{O}_\mathfrak{g} =: \mathsf{dense orbit in } G(\mathfrak{u} + \mathcal{O}_\mathfrak{l})$

. Induction is **birational** if moment map

$$G imes_Q (\mathfrak{u} + \mathcal{O}_\mathfrak{l}) o \overline{\mathcal{O}}_\mathfrak{g}$$

is birational. Three results in thesis:

- If \$\mathcal{O}_g\$ is birationally induced, \$K\$-structure of Unip^w(\$\mathcal{O}_g\$)\$ built out of \$K\$-structure of Unip^w(\$\mathcal{O}_l\$)\$
- If \$\mathcal{O}_g\$ birationally rigid, Vogan has conjecture regarding \$K\$-structure of Unip^w(\$\mathcal{O}_g\$)\$. I prove this conjecture in many cases.
- **3** If $\mathcal{O}_{\mathfrak{g}}$ is **principal**, complete classification of $\operatorname{Unip}^{\mathfrak{a}}(\mathcal{O}_{\mathfrak{g}})$ and determination of *K*-types

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Unipotent Representations of Real Reductive Groups

Let

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations $\theta = Cartan involution \quad K = G^{\theta} \quad \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$

Can assume G_ℝ is quasi-split (else, Unip^a(O^{prin}) = Ø)
 Distinguished element of Unip^a(O^{prin}):

$$S(G_{\mathbb{R}}) := \mathrm{Ind}_{B_{\mathbb{R}}}^{G_{\mathbb{R}}}\mathbb{C}$$

Unipotent Representations of Real Reductive Groups

Let

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations

$$heta = \mathsf{Cartan} ext{ involution } extsf{K} = extsf{G}^{ heta} extsf{g} = extsf{t} \oplus extsf{p}$$

Can assume G_ℝ is quasi-split (else, Unip^a(O^{prin}) = Ø)
 Distinguished element of Unip^a(O^{prin}):

$$S(G_{\mathbb{R}}) := \mathrm{Ind}_{B_{\mathbb{R}}}^{G_{\mathbb{R}}}\mathbb{C}$$

Kostant:

$$S(G_{\mathbb{R}})\simeq_{\mathcal{K}} \mathbb{C}[\mathcal{N}\cap \mathfrak{p}]$$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations

Definition

A unipotent parameter for $\mathcal{O}^{\mathrm{prin}}$ is a pair (\mathfrak{q},χ) , where

- $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ is a θ -stable parabolic
- χ is a character of the subgroup $L_{\mathbb{R}} \subset \mathcal{G}_{\mathbb{R}}$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

Definition

A unipotent parameter for $\mathcal{O}^{\mathrm{prin}}$ is a pair (q, $\chi)$, where

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ is a heta-stable parabolic

• χ is a character of the subgroup $\mathcal{L}_{\mathbb{R}} \subset \mathcal{G}_{\mathbb{R}}$

such that

1 $L_{\mathbb{R}}$ is split

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations

Definition

A unipotent parameter for $\mathcal{O}^{\mathrm{prin}}$ is a pair (q, $\chi)$, where

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ is a θ -stable parabolic

• χ is a character of the subgroup $L_{\mathbb{R}} \subset \mathcal{G}_{\mathbb{R}}$

such that

1
$$L_{\mathbb{R}}$$
 is split

2
$$d\chi = -\rho(\mathfrak{u})$$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations

Definition

```
A unipotent parameter for \mathcal{O}^{\text{prin}} is a pair (\mathfrak{q}, \chi), where

\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u} is a \theta-stable parabolic
```

• χ is a character of the subgroup $L_{\mathbb{R}} \subset G_{\mathbb{R}}$

such that

1 $L_{\mathbb{R}}$ is split

2
$$d\chi = -\rho(\mathfrak{u})$$

 ${\tt 3}\ {\tt u}\cap {\tt p}$ contains a principal nilpotent element

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations

Definition

A unipotent parameter for O^{prin} is a pair (q, χ), where
q = l ⊕ u is a θ-stable parabolic
χ is a character of the subgroup L_R ⊂ G_R
such that
L_R is split
d χ = -ρ(u)
u ∩ p contains a principal nilpotent element

Theorem (MB)

There is a bijection

 $\mathrm{Param}(\mathcal{O}^{\mathrm{prin}})/\mathcal{K}\simeq\mathrm{Unip}^{\mathfrak{s}}(\mathcal{O}^{\mathrm{prin}})\quad (\mathfrak{q},\chi)\mapsto\mathrm{CohInd}_{\mathfrak{q}}^{\mathfrak{g}}\left(\chi\otimes\mathcal{S}\right)$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations ■ Harish-Chandra: category equivalence

$$\mathrm{HC}:\mathrm{Rep}^{\lambda}(\mathcal{G}_{\mathbb{R}})\simeq M^{\lambda}(\mathfrak{g},K)$$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations • Harish-Chandra: category equivalence

$$\mathrm{HC}:\mathrm{Rep}^{\lambda}(\mathcal{G}_{\mathbb{R}})\simeq M^{\lambda}(\mathfrak{g},K)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Can define sheaf \mathcal{D}^{λ} of twisted diff ops on \mathcal{B} and $M(\mathcal{D}^{\lambda}, K) = K$ -equivariant \mathcal{D}^{λ} -modules on \mathcal{B}

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview o Thesis

Principal Unipotent Representations Harish-Chandra: category equivalence

$$\mathrm{HC}:\mathrm{Rep}^{\lambda}(\mathcal{G}_{\mathbb{R}})\simeq M^{\lambda}(\mathfrak{g},\mathcal{K})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Can define sheaf \mathcal{D}^{λ} of twisted diff ops on \mathcal{B} and $M(\mathcal{D}^{\lambda}, K) = K$ -equivariant \mathcal{D}^{λ} -modules on \mathcal{B}

Beilinson-Bernstein: quotient functor $\Gamma : M(\mathcal{D}^{\lambda}, K) \twoheadrightarrow M^{\lambda}(\mathfrak{g}, K)$

Equivalence if λ regular.

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations Hence:

 $\mathrm{Unip}^{\mathsf{a}}(\mathcal{O}^{\mathrm{prin}}) \simeq \left\{\mathsf{irred}\ \mathcal{M} \in \mathcal{M}(\mathcal{D}^0,\mathcal{K}): \mathsf{\Gamma}(\mathcal{M}) \neq 0\right\}$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations Hence:

 $\mathrm{Unip}^{\mathtt{a}}(\mathcal{O}^{\mathrm{prin}}) \simeq \left\{ \mathsf{irred} \ \mathcal{M} \in \mathcal{M}(\mathcal{D}^0, \mathcal{K}) : \mathsf{\Gamma}(\mathcal{M}) \neq 0 \right\}$

Beilsinson-Bernstein:

{irreds in
$$M(\mathcal{D}^0, K)$$
} \simeq { $(Z \subset \mathcal{B}, \gamma \xrightarrow{\text{loc sys}} Z)$ }
irred subsheaf of $j_! \gamma \leftarrow (Z, \gamma) \quad j : Z \subset \mathcal{B}$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview o Thesis

Principal Unipotent Representations Hence:

 $\mathrm{Unip}^{a}(\mathcal{O}^{\mathrm{prin}}) \simeq \left\{ \mathsf{irred} \ \mathcal{M} \in \mathcal{M}(\mathcal{D}^{0}, \mathcal{K}) : \Gamma(\mathcal{M}) \neq 0 \right\}$

Beilsinson-Bernstein:

{irreds in
$$M(\mathcal{D}^0, K)$$
} \simeq { $(Z \subset \mathcal{B}, \gamma \xrightarrow{\text{loc sys}} Z)$ }
irred subsheaf of $j_! \gamma \leftarrow (Z, \gamma) \quad j : Z \subset \mathcal{B}$

Choose a base point:

$$\{(Z,\gamma)\}\simeq\{(\mathfrak{b}\subset\mathfrak{g},\chi\in\widehat{H_{\mathbb{R}}}):d\chi=-
ho(\mathfrak{n})\}/K$$

 $\Gamma(\mathcal{B}, j_! \gamma) \simeq \operatorname{Ind}_{\mathfrak{b}, H \cap K}^{\mathfrak{g}, K} \chi$

・ ロット 4 回 > 4 回 > 4 回 > 1 回 > 2 の 4 回 >

and

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations • The non-vanishing condition $\Gamma(\mathcal{B}, j_! \gamma) \neq 0$ imposes a constraint in each simple root direction

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

- The non-vanishing condition $\Gamma(\mathcal{B}, j_!\gamma) \neq 0$ imposes a constraint in each simple root direction
- These conditions precisely guarantee: (b, χ) comes from a unipotent parameter (q, χ)

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

- The non-vanishing condition $\Gamma(\mathcal{B}, j_!\gamma) \neq 0$ imposes a constraint in each simple root direction
- These conditions precisely guarantee: (b, χ) comes from a unipotent parameter (q, χ)
- In this case, $j_!\gamma$ is *irreducible* and

Г(

$$\begin{split} \mathcal{B}, j_! \gamma) &= \mathrm{Ind}_{\mathfrak{b}, \mathcal{H} \cap \mathcal{K}}^{\mathfrak{g}, \mathcal{K}} \chi \\ &= \mathrm{Ind}_{\mathfrak{q}, \mathcal{L} \cap \mathcal{K}}^{\mathfrak{g}, \mathcal{K}} \mathrm{Ind}_{\mathfrak{l} \cap \mathfrak{b}, \mathcal{H} \cap \mathcal{K}}^{\mathfrak{l}, \mathcal{L} \cap \mathcal{K}} \chi \\ &= \mathrm{CohInd}_{\mathfrak{q}}^{\mathfrak{g}} \chi \otimes \mathcal{S}(\mathcal{L}_{\mathbb{R}}) \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで
Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations • Nice feature of this classification: K-structure is 'visible'

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations Nice feature of this classification: K-structure is 'visible'
Kostant: S ≃_K C[N ∩ p]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations

- Nice feature of this classification: K-structure is 'visible'
 Kostant: S ≃_K C[N ∩ p]
- Blattner: gives K-structure of cohomological induction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dual

Orbit Method

Unipotent Representa tions

Overview of Thesis

Principal Unipotent Representations

- Nice feature of this classification: *K*-structure is 'visible'
- Kostant: $S \simeq_{\mathcal{K}} \mathbb{C}[\mathcal{N} \cap \mathfrak{p}]$
- Blattner: gives K-structure of cohomological induction
- Combined: we get nice formulas for K-types of Unip^a(O^{prin}) which are computable using Borel-Weil-Bott

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Principal Unipotent Reps: $Sp(4, \mathbb{R})$

Unipotent Representations of Real Reductive Groups

Lucas Mason-Brown

Problem of Unitary Dua

Orbit Method

Unipotent Representations

Overview of Thesis

Principal Unipotent Representations Five elements of $\text{Unip}^{a}(\mathcal{O}^{\text{prin}})$: principal series *S*, two limit of discrete series, and two 'in-between'

Spherical principal series (quantization of $\mathcal{N} \cap \mathfrak{p}$)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Principal Unipotent Reps: $Sp(4, \mathbb{R})$

Principal Unipotent Reps: $Sp(4, \mathbb{R})$

Cohomologically induced from spherical principal series of Segal parabolic (quantization of one irred component of $\mathcal{N} \cap \mathfrak{p}$)