April 29: Lucas Mason-Brown Unipotent representations of real reductive groups.

Let G be a real reductive group and let \widehat{G} be the set of irreducible unitary representations of G. The determination of \widehat{G} (for arbitrary G) is one of the fundamental unsolved problems in representation theory. In the early 1980s, Arthur introduced a finite set $\operatorname{Unip}(G)$ of (conjecturally unitary) irreducible representations of G called *unipotent representations*. In a certain sense, these representations form the building blocks of \widehat{G} . Hence, the determination of \widehat{G} requires as a crucial ingredient the determination of $\operatorname{Unip}(G)$. In this thesis, we prove three results on unipotent representations. First, we study unipotent representations by restriction to $K \subset G$, a maximal compact subgroup. We deduce a formula for this restriction in a wide range of cases, proving (in these cases) a long-standing conjecture of Vogan. Next, we study the unipotent representations attached to induced nilpotent orbits. We find that $\operatorname{Unip}(G)$ is generated by an even smaller set $\operatorname{Unip}'(G)$ consisting of representations attached to rigid nilpotent orbits. Finally, we study the unipotent representations attached to the principal nilpotent orbit. We provide a complete classification of such representations, including a formula for their K-types.