March 5, 2014: Hiroshi Oda (Takushoku University and MIT), The abstract radial part formula

I shall give an exposition of the contents in §§8,9,11–14 of $\operatorname{arXiv:} 1402.3231$. There are many parallel stories in the representation theories of a real semisimple Lie group G = NAK and the corresponding graded Hecke algebra **H**. In the last fall I gave a talk on generalization of the radial part formulas for the restriction $C^{\infty}(G/K) \to C^{\infty}(A)$ (this roughly corresponds to §§2,4–7 of the same paper.) Put $M = Z_K(A)$ and let \widehat{K}_M be the set of K-types V with non-zero M-fixed part V^M . For each $V \in \widehat{K}_M$ the Weyl group W = W(G, A) naturally acts on V^M and there is a certain natural W-subspace V^M_{single} in V^M . I recently noticed when a $(\mathfrak{g}_{\mathbb{C}}, K)$ module \mathcal{M}_G and an **H**-module $\mathcal{M}_{\mathbf{H}}$ are in the same position of the parallel worlds, there always exists a set of "restriction" maps

$$\widetilde{\Gamma}^V_{\mathcal{M}}$$
: Hom_K(V, \mathcal{M}_G) \to Hom_W($V^M_{\text{single}}, \mathcal{M}_{\mathbf{H}}$) ($V \in \widehat{K}_M$)

with some properties that are formally the same with the generalized Chevalley restriction theorem and the generalized radial part formula. So we define a category of such pairs $\mathcal{M} = (\mathcal{M}_G, \mathcal{M}_H)$ and describe some parallel stories in terms of this category:

Poisson transforms,

Knapp-Stein type intertwining operators,

The Helgason-Fourier transform and the Opdam-Cherednik transform.

In each of them two parallel stories are directly linked via $\widetilde{\Gamma}_{\mathcal{M}}^{V}$.