September 13: David Vogan (MIT), "How many jellybeans are in that jar?"
Jeff Adams' research group "Atlas of Lie groups and representations" is getting ready to do a big computation: of the Kazhdan-Lusztig polynomials attached to the split real group of type E_{8}. The software to do this was written by Fokko du Cloux, and there is a supercomputer being built at the University of Oklahoma which will try to do the computation, under the supervision of Birne Binegar. I will explain a number of mathematical questions related to this computation. The most fundamental is the one of the seminar title: how many distinct Kazhdan-Lusztig polynomials (for E_{8}) are there? The best upper bound we now know is 7 billion. If that's correct, then the calculation needs about a terabyte of RAM, and we can't do it. My best (optimistic!) guess is that there are about half a billion. If that's correct, then the calculation needs about 150G of RAM, and the Oklahoma supercomputer will do it as soon as they figure out how to turn on the air conditioning.

As a teaser, here is one of the 10,147,580 distinct Kazhdan-Lusztig polynomials for the non-split real form of E_{8} polynomials. (For this group, the a priori upper bound on the number of polynomials was 130 million. I picked this polynomial because the coefficient 2545 is the largest one that occurs.)

$$
\begin{aligned}
& 3 q^{1} 3+30 q^{1} 2+190 q^{1} 1+682 q^{1} 0+1547 q^{9}+2364 q^{8} \\
& \quad+2545 q^{7}+2031 q^{6}+1237 q^{5}+585 q^{4}+216 q^{3}+60 q^{2}+11 q+1
\end{aligned}
$$

