In a natural way, the faces of ranks 1 and 2 in a 4-polytope \mathcal{P} provide the vertices of a bipartite graph \mathcal{G}. Recently, Asia Weiss and I have examined this construction when \mathcal{P} is a finite, abstract regular (or chiral) polytope of Schläfli type $\{3, q, 3\}$. If, in this case, \mathcal{P} is also self-dual, then \mathcal{G} must be a 3-transitive (or 2-transitive) trivalent graph. With Egon Schulte and Tomáš Pisanski, we have also proved that if \mathcal{P} is not self-dual, then \mathcal{G} is no more symmetric then it has right to be. Indeed, \mathcal{G} is then a trivalent semisymmetric graph, so that $\text{Aut}(\mathcal{G})$ is transitive on edges but not on vertices. (Such graphs are a little elusive.)

After covering some background ideas, I’ll illustrate the theorems through some beautiful examples: for example, when \mathcal{P} is the 4-simplex (which of course can realized as a regular convex polytope), the graph \mathcal{G} is the Levi graph for the Desargues configuration. And when \mathcal{P} is the universal locally toroidal abstract regular polytope

\[\{ \{3,6\}_{(3,0)}, \{6,3\}_{(1,1)} \}, \]

we find that \mathcal{G} is the Gray graph, smallest among all semisymmetric trivalent graphs.

To get a feel for these things try a related problem: from a $3 \times 3 \times 3$ cube construct a bipartite graph \mathcal{G} whose red vertices are the $27 = 3^3$ cubelets and whose blue nodes are the $27 = 9 + 9 + 9$ columns of 3 cubelets parallel to an edge, with red adjacent to blue when incident. Just how symmetrical is this trivalent graph? What is its order? Structure? Is $\text{Aut}(\mathcal{G})$ transitive on vertices? What does this have to do with the Pappus configuration in plane geometry?