COMBINATORICS SEMINAR On The Number of Sums and Products

József Solymosi
UBC

May 11, 2005
4:15 PM Room 2-338

Abstract

: Let A be a finite subset of complex numbers. The sum-set of A is $A+A=\{a+b$: $a, b \in A\}$, and the product-set is $A \cdot A=\{a \cdot b: a, b \in A\}$. Erdős and Szemerédi proved the inequality $\max (|A+A|,|A \cdot A|) \geq c|A|^{1+\varepsilon}$ for a small but positive ε, where A is a subset of integers. They conjectured that $\max (|A+A|,|A \cdot A|) \geq c|A|^{2-\delta}$ for any positive δ. In this talk we will review recent results on the sum-product problem and we will show that if $|A|=n$, then $c n^{14} / \log ^{3} n \leq|A+A|^{8} \cdot|A \cdot A|^{3}$, whence $c n^{\frac{14}{11}-\varepsilon} \leq \max \{|A+A|,|A \cdot A|\}$.

