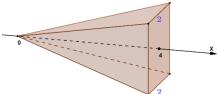

Pre-Class Quiz

Question 1	1 pts
On Page 369, the textbook explains how the volume of a solid can be approximated by cylindrical solids. In each sentence, choose the correct option .	e
$ullet$ the exact volume / an approximation of the volume ullet of the solid.	
• Δx_k is the $oxed{f base}$ area / height / volume $oldsymbol{ imes}$ of the k -th cylinde	r.
+ $A(x_k)$ is the $oxed{f base}$ base area / height / volume $oldsymbol{^{f v}}$ of the k -th cylind	ler.
+ $A(x_k)\Delta x_k$ is the $egin{array}{cccccccccccccccccccccccccccccccccccc$	
cylinder. $\bullet \ \sum_{k=1}^n A(x_k) \Delta x_k \ \text{ is } \boxed{ \frac{\text{the exact volume } /}{\text{an approximation of the volume}}} \ \text{of the solid}$	


Pre-Class Quiz

Pre-Class Quiz

Question 3 1 pts

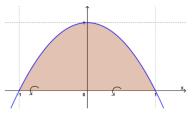
The following pyramid has height ${\bf 4}$ and a square base of side length ${\bf 2}$. It is positioned, so that its vertex is at the origin, and its altitude lies on the ${\bf x}$ -axis.

What is the function A(x), representing the area of a cross section at x? (See Example 1 on pages 369-370.)

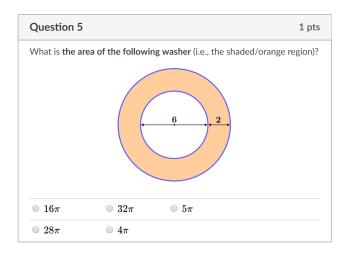
$$A(x)=rac{x^2}{2}$$

$$A(x)=rac{x^2}{16}$$

$$A(x) = \frac{x^2}{4}$$


$igorphi$
 $A(x)=2x^2$

$$\bigcirc A(x) = 4x^2$$


Pre-Class Quiz

Question 4 1 pts

Find the volume of the solid obtained by revolving the region between the x-axis and the curve $y=1-x^2$ around the x-axis. Round your answer to two decimal places.

(<u>Hints</u>: Are the cross sections disks or washers? What is the area of a cross section at x?)

Example: The Limit of a Function Post-Class Quiz

Question 1 1 pts

The region between the curve $y=6x-x^2$ and the x-axis is the base of a solid.

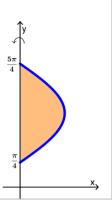
For each x-value, the cross section of the solid taken perpendicular to the x-axis is a **square** (with one side in the base).

Find the volume of the solid. Round your answer to two decimals.

Post-Class Quiz

Question 2 1 pts

The region bounded by the curve


$$x\!=\!\sin y\!-\!\cos y$$
 , for $\frac{\pi}{4}\!\leq\!y\!\leq\!\frac{5\pi}{4}$,

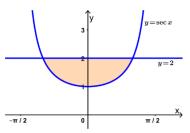
revolves about the y-axis (see diagram).

Find the volume of the resulting solid.

Round your answer to two decimals.

Post-Class Quiz

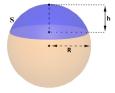
Question 3


1 pts

The region bounded by the curves $y=\sec x$ (for $-\frac{\pi}{2} < x < \frac{\pi}{2}$) and y=2 rotates about the x-axis (see diagram).

Find the volume of the resulting solid.

Round your answer to two decimals.



Post-Class Quiz

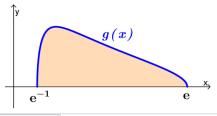
Question 4

1 pts

In the diagram, the purple solid $\,S\,$ is a portion of a sphere cut off by a plane.

Find a formula for the volume of $\, S \,$ in terms of $\, R \,$ and $\, h \,$. Show and explain your work.

The following diagram will help you set up the integral.


Upload Choose a File

Post-Class Quiz

Question 5 1 pts

Find the volume of a solid, whose base is the region bounded by the graph of $g(x) = \sqrt{\frac{1-(\ln x)^2}{x}}$ and the x-axis (see diagram), and its

cross sections, perpendicular to the x-axis, are **equilateral triangles** (with one side in the base).

Upload

Choose a File