A Flipped Classroom Demonstration

Shay Fuchs

University of Toronto Mississauga

Course Structure

Section 6.1

Volumes Using Cross Sections

Get Ready to Vote!

Volumes Using Cross Sections (6.1)

The following formula is used to compute volumes
of solids using cross sections: $\quad \mathbf{V}=\int_{a}^{b} \mathbf{A}(\mathbf{x}) \mathbf{d x}$.
What does the function $\mathbf{A}(\mathbf{x})$ represent?

Volumes Using Cross Sections (6.1)

The following formula is used to compute volumes
of solids using cross sections: $\quad \mathbf{V}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{A}(\mathbf{x}) \mathbf{d x}$.
What does the function $\mathbf{A}(\mathbf{x})$ represent?
(A) The surface area of the solid.
(B) The area of a cross section at x .
(C) The volume of the solid on the interval $[\mathbf{a}, \mathbf{x}]$.
(D) The volume of the solid on the interval $[\mathbf{x}, \mathbf{b}]$.
(E) The area of the base of the solid.

Volumes Using Cross Sections (6.1)

The following formula is used to compute volumes
of solids using cross sections: $\quad \mathbf{V}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{A}(\mathbf{x}) \mathbf{d x}$.
What does the function $\mathbf{A}(\mathbf{x})$ represent?
(A) The surface area of the solid.
(B) The area of a cross section at x .
(C) The volume of the solid on the interval $[\mathbf{a}, \mathbf{x}]$.
(D) The volume of the solid on the interval $[\mathbf{x}, \mathbf{b}]$.
(E) The area of the base of the solid.

Volumes Using Cross Sections (6.1)

The following formula is used to compute volumes
of solids using cross sections: $\quad \mathbf{V}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{A}(\mathrm{x}) \mathrm{dx}$.
What does the function $\mathbf{A}(\mathbf{x})$ represent?
(A) The surface area of the solid.
(B) The area of a cross section at x .
(C) The volume of the solid on the interval $[\mathbf{a}, \mathbf{x}]$.
(D) The volume of the solid on the interval $[\mathbf{x}, \mathbf{b}]$.
(E) The area of the base of the solid.

Answer: (B).

Volumes Using Cross Sections (6.1)

Volumes Using Cross Sections (6.1)

The diagram shows a solid, whose base is the region between the curve $\mathbf{y}=\mathbf{4 x}-\mathbf{x}^{\mathbf{3}}$ and the x -axis, for $\mathbf{0} \leq \mathbf{x} \leq \mathbf{2}$. Its cross sections are isosceles right triangles. What is the function $\mathbf{A}(\mathbf{x})$ in this case?

Volumes Using Cross Sections (6.1)

The diagram shows a solid, whose base is the region between the curve $\mathbf{y}=\mathbf{4 x}-\mathbf{x}^{\mathbf{3}}$ and the x -axis, for $\mathbf{0} \leq \mathbf{x} \leq \mathbf{2}$. Its cross sections are isosceles right triangles. What is the function $\mathbf{A}(\mathbf{x})$ in this case?
(A) $\frac{1}{2}\left(4 x-x^{3}\right)^{2}$
(D) $x \cdot\left(4 x-x^{3}\right)$
(B) $\left(4 x-x^{3}\right)^{2}$
(E) $\frac{1}{2}\left(4 x-x^{3}\right)$

(C) $4 x-x^{3}$

Volumes Using Cross Sections (6.1)

The diagram shows a solid, whose base is the region between the curve $\mathbf{y}=\mathbf{4 x}-\mathbf{x}^{\mathbf{3}}$ and the x -axis, for $\mathbf{0} \leq \mathbf{x} \leq \mathbf{2}$. Its cross sections are isosceles right triangles. What is the function $\mathbf{A}(\mathbf{x})$ in this case?
(A) $\frac{1}{2}\left(4 x-x^{3}\right)^{2}$
(D) $x \cdot\left(4 x-x^{3}\right)$
(B) $\left(4 x-x^{3}\right)^{2}$
(E) $\frac{1}{2}\left(4 x-x^{3}\right)$

(C) $4 x-x^{3}$

Volumes Using Cross Sections (6.1)

The diagram shows a solid, whose base is the region between the curve $\mathbf{y}=\mathbf{4 x}-\mathbf{x}^{\mathbf{3}}$ and the x -axis, for $\mathbf{0} \leq \mathbf{x} \leq \mathbf{2}$. Its cross sections are isosceles right triangles. What is the function $\mathbf{A}(\mathbf{x})$ in this case?
(A) $\frac{1}{2}\left(4 x-x^{3}\right)^{2}$
(D) $x \cdot\left(4 x-x^{3}\right)$
(B) $\left(4 x-x^{3}\right)^{2}$
(E) $\frac{1}{2}\left(4 x-x^{3}\right)$
(C) $4 x-x^{3}$

Answer: (A), as each leg of a cross sectional triangle at x has length $4 x-x^{3}$.

Volumes Using Cross Sections (6.1)

The shaded region rotates around the x-axis.
What is the shape of a typical cross section?

Volumes Using Cross Sections (6.1)

The shaded region rotates around the x -axis.
What is the shape of a typical cross section?
(A) A square.
(B) A triangle.
(C) A parabola.
(D) A disk.

(E) A washer.

Volumes Using Cross Sections (6.1)

The shaded region rotates around the x-axis.
What is the shape of a typical cross section?
(A) A square.
(B) A triangle.
(C) A parabola.
(D) A disk.

(E) A washer.

Volumes Using Cross Sections (6.1)

The shaded region rotates around the x-axis.
What is the shape of a typical cross section?
(A) A square.
(B) A triangle.
(C) A parabola.
(D) A disk.

(E) A washer.

Answer: (E).

Volumes Using Cross Sections (6.1)

Volumes Using Cross Sections (6.1)

Which integral gives the volume of the resulting solid? ? ? ?

Volumes Using Cross Sections (6.1)

Which integral gives the volume of the resulting solid? ? ? ?
(A) $\pi \int_{0}^{2 \pi}[3-(3+\cos x)]^{2} d x$
(B) $\pi \int_{0}^{2 \pi}\left[3^{2}-(3+\cos x)^{2}\right] d x$

(C) $\pi \int_{0}^{2 \pi}(3+\cos x)^{2} d x$
(D) $\pi \int_{0}^{2 \pi} \cos ^{2} x d x$
(E) $\pi \int_{0}^{2 \pi}(-\cos x) d x$

Volumes Using Cross Sections (6.1)

Which integral gives the volume of the resulting solid? ? ? ?
(A) $\pi \int_{0}^{2 \pi}[3-(3+\cos x)]^{2} d x$
(B) $\pi \int_{0}^{2 \pi}\left[3^{2}-(3+\cos x)^{2}\right] d x$

(C) $\pi \int_{0}^{2 \pi}(3+\cos x)^{2} d x$
(D) $\pi \int_{0}^{2 \pi} \cos ^{2} x d x$
(E) $\pi \int_{0}^{2 \pi}(-\cos x) d x$

Volumes Using Cross Sections (6.1)

Which integral gives the volume of the resulting solid?
(A) $\pi \int_{0}^{2 \pi}[3-(3+\cos x)]^{2} d x$
(B) $\pi \int_{0}^{2 \pi}\left[3^{2}-(3+\cos x)^{2}\right] d x$

(C) $\pi \int_{0}^{2 \pi}(3+\cos x)^{2} d x$
(D) $\pi \int_{0}^{2 \pi} \cos ^{2} x d x$
(E) $\pi \int_{0}^{2 \pi}(-\cos x) d x$

Answer: (B), as the volume is given by $\mathbf{V}=\pi \int_{\mathbf{a}}^{\mathbf{b}}\left[\mathbf{R}^{2}(\mathbf{x})-\mathbf{r}^{2}(\mathbf{x})\right] \mathbf{d x}$.

Volumes Using Cross Sections (6.1)

Volumes Using Cross Sections (6.1)

Highlights:

Volumes Using Cross Sections (6.1)

Highlights:

- Main Formula: $V=\int_{a}^{b} A(x) d x$.

Volumes Using Cross Sections (6.1)

Highlights:

- Main Formula: $V=\int_{a}^{b} A(x) d x$.
- If the cross-sections are disks, then $\mathbf{A}(\mathbf{x})=\pi[\mathbf{R}(\mathbf{x})]^{2}$, and

$$
\mathbf{V}=\pi \int_{\mathbf{a}}^{\mathbf{b}}[\mathbf{R}(\mathrm{x})]^{2} \mathbf{d x}
$$

Volumes Using Cross Sections (6.1)

Highlights:

- Main Formula: $V=\int_{a}^{b} A(x) d x$.
- If the cross-sections are disks, then $\mathbf{A}(\mathbf{x})=\pi[\mathbf{R}(\mathbf{x})]^{2}$, and

$$
\mathbf{V}=\pi \int_{\mathbf{a}}^{\mathbf{b}}[\mathbf{R}(\mathrm{x})]^{2} \mathbf{d x}
$$

- If the cross-sections are washers, then $\mathbf{A}(\mathbf{x})=\pi[\mathbf{R}(\mathrm{x})]^{2}-\pi[\mathbf{r}(\mathbf{x})]^{2}$, and

$$
\mathbf{V}=\pi \int_{\mathbf{a}}^{\mathbf{b}}\left([\mathbf{R}(\mathrm{x})]^{2}-[\mathbf{r}(\mathrm{x})]^{2}\right) \mathbf{d x} .
$$

Volumes Using Cross Sections (6.1)

Highlights:

- Main Formula: $V=\int_{a}^{b} A(x) d x$.
- If the cross-sections are disks, then $\mathbf{A}(\mathbf{x})=\pi[\mathbf{R}(\mathbf{x})]^{2}$, and

$$
\mathbf{V}=\pi \int_{\mathbf{a}}^{\mathrm{b}}[\mathbf{R}(\mathrm{x})]^{2} \mathbf{d x}
$$

- If the cross-sections are washers, then $\mathbf{A}(\mathbf{x})=\pi[\mathbf{R}(\mathrm{x})]^{2}-\pi[\mathbf{r}(\mathrm{x})]^{2}$, and

$$
\mathbf{V}=\pi \int_{\mathbf{a}}^{\mathbf{b}}\left([\mathbf{R}(\mathrm{x})]^{2}-[\mathbf{r}(\mathrm{x})]^{2}\right) \mathbf{d x} .
$$

- When we rotate a region around a vertical axis, we need to integrate with respect to \mathbf{y}.

Volumes Using Cross Sections (6.1)

Find the volume of the solid obtained by revolving the region bounded by the curves $\mathbf{x}=\mathbf{y}^{2}+\mathbf{1}$ and $\mathbf{x}=5$, around the line $\mathbf{x}=8$.

Volumes Using Cross Sections (6.1)

Find the volume of the solid obtained by revolving the region bounded by the curves $\mathbf{x}=\mathbf{y}^{2}+\mathbf{1}$ and $\mathbf{x}=\mathbf{5}$, around the line $\mathbf{x}=\mathbf{8}$.

Guidelines:

- Integrate with respect to \mathbf{y}.

- What is the shape of the cross sections?

Volumes Using Cross Sections (6.1)

Find the volume of the solid obtained by revolving the region bounded by the curves $\mathbf{x}=\mathbf{y}^{\mathbf{2}}+\mathbf{1}$ and $\mathbf{x}=\mathbf{5}$, around the line $\mathbf{x}=\mathbf{8}$.

Guidelines:

- Integrate with respect to \mathbf{y}.

- What is the shape of the cross sections?
- Find the inner and the outer radius (as a function of \mathbf{y}).
- Set up the integral and compute it.

