A Flipped Classroom Demonstration

Shay Fuchs

University of Toronto Mississauga
Course Structure

1. Read New Material & Watch Videos
2. Pre-Class Quiz
3. Polling Questions & Activities (in class)
4. Tutorials & Post-Class Quiz
In-Class Routine

10-15 minutes
MC Questions

15-25 minutes
Short Lecture/Discussion

15-20 minutes
In-Class Activity

10-20 minutes
Discussion/Summary
Section 6.1

Volumes Using Cross Sections

Get Ready to Vote!
The following formula is used to compute volumes of solids using cross sections:

\[V = \int_{a}^{b} A(x) \, dx. \]

What does the function \(A(x) \) represent?

(A) The surface area of the solid.
(B) The area of a cross section at \(x \).
(C) The volume of the solid on the interval \([a, x]\).
(D) The volume of the solid on the interval \([x, b]\).
(E) The area of the base of the solid.

Answer: (B).
Volumes Using Cross Sections (6.1)

The following formula is used to compute volumes of solids using cross sections:

\[V = \int_{a}^{b} A(x) \, dx \]

What does the function \(A(x) \) represent?

(A) The surface area of the solid.
(B) The area of a cross section at \(x \).
(C) The volume of the solid on the interval \([a, x]\).
(D) The volume of the solid on the interval \([x, b]\).
(E) The area of the base of the solid.

Answer: (B)
Volumes Using Cross Sections (6.1)

The following formula is used to compute volumes of solids using cross sections:

\[V = \int_{a}^{b} A(x) \, dx. \]

What does the function \(A(x) \) represent?

(A) The surface area of the solid.
(B) The area of a cross section at \(x \).
(C) The volume of the solid on the interval \([a, x]\).
(D) The volume of the solid on the interval \([x, b]\).
(E) The area of the base of the solid.

Answer: (B).
Volumes Using Cross Sections (6.1)

The following formula is used to compute volumes of solids using cross sections:

\[V = \int_{a}^{b} A(x) \, dx. \]

What does the function \(A(x) \) represent?

(A) The surface area of the solid.
(B) The area of a cross section at \(x \).
(C) The volume of the solid on the interval \([a, x] \).
(D) The volume of the solid on the interval \([x, b] \).
(E) The area of the base of the solid.

Answer: (B).
Volumes Using Cross Sections (6.1)

The diagram shows a solid, whose base is the region between the curve \(y = 4x - x^3 \) and the x-axis, for \(0 \leq x \leq 2 \).

Its cross sections are isosceles right triangles.

What is the function \(A(x) \) in this case?

Answer: (A), as each leg of a cross sectional triangle at \(x \) has length \(4x - x^3 \).
The diagram shows a solid, whose base is the region between the curve \(y = 4x - x^3 \) and the x-axis, for \(0 \leq x \leq 2 \).

Its cross sections are **isosceles right triangles**.

What is the function \(A(x) \) in this case?

(A) \(\frac{1}{2} (4x - x^3)^2 \)

(B) \((4x - x^3)^2 \)

(C) \(4x - x^3 \)

(D) \(x \cdot (4x - x^3) \)

(E) \(\frac{1}{2} (4x - x^3) \)

Answer: (A), as each leg of a cross sectional triangle at \(x \) has length \(4x - x^3 \).
Volumes Using Cross Sections (6.1)

The diagram shows a solid, whose base is the region between the curve \(y = 4x - x^3 \) and the x-axis, for \(0 \leq x \leq 2 \).

Its cross sections are isosceles right triangles.

What is the function \(A(x) \) in this case?

(A) \(\frac{1}{2}(4x - x^3)^2 \)

(B) \((4x - x^3)^2 \)

(C) \(4x - x^3 \)

(D) \(x \cdot (4x - x^3) \)

(E) \(\frac{1}{2}(4x - x^3) \)

Answer: (A), as each leg of a cross sectional triangle at \(x \) has length \(4x - x^3 \).
The diagram shows a solid, whose base is the region between the curve \(y = 4x - x^3\) and the x-axis, for \(0 \leq x \leq 2\).

Its cross sections are **isosceles right triangles**.

What is the function \(A(x)\) in this case?

- (A) \(\frac{1}{2}(4x - x^3)^2\)
- (B) \((4x - x^3)^2\)
- (C) \(4x - x^3\)
- (D) \(x \cdot (4x - x^3)\)
- (E) \(\frac{1}{2}(4x - x^3)\)

Answer: (A), as each leg of a cross sectional triangle at \(x\) has length \(4x - x^3\).
Volumes Using Cross Sections (6.1)

The shaded region rotates around the x-axis.

What is the shape of a typical cross section?

Answer: (E)
The shaded region rotates around the x-axis.

What is the shape of a typical cross section?

(A) A square.
(B) A triangle.
(C) A parabola.
(D) A disk.
(E) A washer.

Answer: (E)
Volumes Using Cross Sections (6.1)

The shaded region rotates around the x-axis.

What is the shape of a typical cross section?

(A) A square.
(B) A triangle.
(C) A parabola.
(D) A disk.
(E) A washer.

Answer: (E)
The shaded region rotates around the x-axis.

What is the shape of a typical cross section?

(A) A square.
(B) A triangle.
(C) A parabola.
(D) A disk.
(E) A washer.

Answer: (E)
Volumes Using Cross Sections (6.1)
Volumes Using Cross Sections (6.1)

Which integral gives the volume of the resulting solid?

\[
\pi \int_0^2 \left[3 - (3 + \cos x)^2 \right] dx
\]

Answer: (B), as the volume is given by

\[
V = \pi \int_a^b \left[R^2(x) - r^2(x) \right] dx
\]
Volumes Using Cross Sections (6.1)

Which integral gives the volume of the resulting solid?

(A) \(\pi \int_{0}^{2\pi} [3 - (3 + \cos x)]^2 \, dx \)

(B) \(\pi \int_{0}^{2\pi} [3^2 - (3 + \cos x)^2] \, dx \)

(C) \(\pi \int_{0}^{2\pi} (3 + \cos x)^2 \, dx \)

(D) \(\pi \int_{0}^{2\pi} \cos^2 x \, dx \)

(E) \(\pi \int_{0}^{2\pi} (-\cos x) \, dx \)

Answer: (B), as the volume is given by \(V = \pi \int_{a}^{b} [R(x)^2 - r(x)^2] \, dx \).
Volumes Using Cross Sections (6.1)

Which integral gives the volume of the resulting solid?

(A) \[\pi \int_{0}^{2\pi} [3 - (3 + \cos x)]^2 \, dx \]

(B) \[\pi \int_{0}^{2\pi} [3^2 - (3 + \cos x)^2] \, dx \]

(C) \[\pi \int_{0}^{2\pi} (3 + \cos x)^2 \, dx \]

(D) \[\pi \int_{0}^{2\pi} \cos^2 x \, dx \]

(E) \[\pi \int_{0}^{2\pi} (-\cos x) \, dx \]

Answer: (B), as the volume is given by \(V = \pi \int_{a}^{b} [R(x)^2 - r(x)^2] \, dx \).
Volumes Using Cross Sections (6.1)

Which integral gives the volume of the resulting solid?

(A) \[\pi \int_{0}^{2\pi} [3 - (3 + \cos x)]^2 \, dx \]

(B) \[\pi \int_{0}^{2\pi} [3^2 - (3 + \cos x)^2] \, dx \]

(C) \[\pi \int_{0}^{2\pi} (3 + \cos x)^2 \, dx \]

(D) \[\pi \int_{0}^{2\pi} \cos^2 x \, dx \]

(E) \[\pi \int_{0}^{2\pi} (-\cos x) \, dx \]

Answer: (B), as the volume is given by \[V = \pi \int_{a}^{b} [R^2(x) - r^2(x)] \, dx \].
Volumes Using Cross Sections (6.1)

Highlights:

- **Main Formula**: \(V = \int_a^b A(x) \, dx \).
 - If the cross-sections are disks, then \(A(x) = \pi \left[R(x)^2 \right] \), and \(V = \pi \int_a^b \left[R(x)^2 \right] \, dx \).
 - If the cross-sections are washers, then \(A(x) = \pi \left[R(x)^2 - r(x)^2 \right] \), and \(V = \pi \int_a^b \left[R(x)^2 - r(x)^2 \right] \, dx \).
 - When we rotate a region around a vertical axis, we need to integrate with respect to \(y \).
Volumes Using Cross Sections (6.1)

Highlights:

- Main Formula: \[V = \int_a^b A(x) \, dx \]
- If the cross-sections are disks, then \[A(x) = \pi \left(R(x)^2 \right) \]
 and \[V = \pi \int_a^b R(x)^2 \, dx \]
- If the cross-sections are washers, then \[A(x) = \pi \left(R(x)^2 - r(x)^2 \right) \]
 and \[V = \pi \int_a^b \left(R(x)^2 - r(x)^2 \right) \, dx \]
- When we rotate a region around a vertical axis, we need to integrate with respect to \(y \).
Volumes Using Cross Sections (6.1)

Highlights:

- **Main Formula:** \(V = \int_{a}^{b} A(x) \, dx \).

 - If the cross-sections are disks, then \(A(x) = \pi [R(x)]^2 \), and \(V = \pi \int_{a}^{b} [R(x)]^2 \, dx \).

 - If the cross-sections are washers, then \(A(x) = \pi [R(x)]^2 - \pi [r(x)]^2 \), and \(V = \pi \int_{a}^{b} ([R(x)]^2 - [r(x)]^2) \, dx \).

 - When we rotate a region around a vertical axis, we need to integrate with respect to \(y \).
Volumes Using Cross Sections (6.1)

Highlights:

- Main Formula: \[V = \int_{a}^{b} A(x) \, dx \, . \]

- If the cross-sections are disks, then \[A(x) = \pi [R(x)]^2 \, , \quad \text{and} \]

\[V = \pi \int_{a}^{b} [R(x)]^2 \, dx \, . \]
Volumes Using Cross Sections (6.1)

Highlights:

• **Main Formula**: \(V = \int_{a}^{b} A(x) \, dx \).

• If the cross-sections are **disks**, then \(A(x) = \pi [R(x)]^2 \), and

\[
V = \pi \int_{a}^{b} [R(x)]^2 \, dx.
\]

• If the cross-sections are **washers**, then \(A(x) = \pi [R(x)]^2 - \pi [r(x)]^2 \), and

\[
V = \pi \int_{a}^{b} ([R(x)]^2 - [r(x)]^2) \, dx.
\]
Volumes Using Cross Sections (6.1)

Highlights:

• **Main Formula:** \(V = \int_{a}^{b} A(x) \, dx \).

• If the cross-sections are **disks**, then \(A(x) = \pi \left[R(x) \right]^2 \), and

\[
V = \pi \int_{a}^{b} \left[R(x) \right]^2 \, dx.
\]

• If the cross-sections are **washers**, then \(A(x) = \pi \left[R(x) \right]^2 - \pi \left[r(x) \right]^2 \), and

\[
V = \pi \int_{a}^{b} \left(\left[R(x) \right]^2 - \left[r(x) \right]^2 \right) dx.
\]

• When we rotate a region around a **vertical axis**, we need to integrate with respect to \(y \).
Volumes Using Cross Sections (6.1)

Find the volume of the solid obtained by revolving the region bounded by the curves \(x = y^2 + 1 \) and \(x = 5 \), around the line \(x = 8 \).
Volumes Using Cross Sections (6.1)

Find the volume of the solid obtained by revolving the region bounded by the curves \(x = y^2 + 1 \) and \(x = 5 \), around the line \(x = 8 \).

Guidelines:

- Integrate with respect to \(y \).
- What is the shape of the cross sections?
Volumes Using Cross Sections (6.1)

Find the volume of the solid obtained by revolving the region bounded by the curves $x = y^2 + 1$ and $x = 5$, around the line $x = 8$.

Guidelines:

- Integrate with respect to y.
- What is the shape of the cross sections?
- Find the inner and the outer radius (as a function of y).
- Set up the integral and compute it.