Bioinformatics Seminar

Speaker: Roderick V. Jensen, Brann Professor of Physics, Biology and Mathematics, University of Massachusetts Boston
Title: Shotgun Microarrays: High-throughput Validation of Gene Expression Changes Using Multiple Platforms
Date: Monday, 26 September 2005
Time & Location:
Refreshments: 11 am in the Theory of Computation Lab at MIT's Building 32, Stata Center Room G-575
Talk: 11:30 am the Theory of Computation Lab at MIT's Building 32, Stata Center, Room G-575
URL: http://www-math.mit.edu/compbiosem/

Abstract:

DNA Microarrays have emerged as important tools for the large-scale measurement of differential gene expression in a wide variety of biomedical experiments - comparing normal and diseased tissues, different states of biological processes, and the response to drugs or toxins. The current generation of whole genome, oligonucleotide microarrays provide detailed quantitative information on the levels of expression of tens of thousands of genes. However, as with any laboratory measurement, this data is subject to errors. To identify real changes in gene expression it is essential to understand and model the sources of errors in these measurements. To this end our laboratory has participated in extensive studies of microarray data from multiple commercial microarray platforms including the GE/Amersham/Motorola CodeLink bioarrays, the Agilent in situ microarrays, the popular Affymetrix GeneChips, as well as the newer Illumina, Combimatrix, and ABI arrays. The comparison of differential gene expression measurements both within and across platforms provides a statistical basis for dealing with the problems of both false positives and false negatives. Our "shotgun microarray" approach has successfully identified and validated gene expression signatures in a variety of different applications ranging from the study of patterns of gene expression in primate brain development to the diagnosis and prognosis of neurologic diseases.

The seminar is co-hosted by Professor Peter Clote of Boston College's Biology and Computer Science Departments and MIT Professor of Applied Math Bonnie Berger. Professor Berger is also affiliated with CSAIL & HST.

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

For General Questions, please contact kvdickey@mit.edu